7.3. Analysis of KKT Conditions#

Reference: Section 4.3 in Biegler (2010)

7.3.1. Active Sets#

picture

7.3.2. Sensitivity Analysis#

picture

picture

picture

picture

7.3.3. Multipliers in Pyomo#

Reference: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Suffixes.html

\[\begin{split} \begin{align} \min_{x_1,...,x_4} \quad & x_1 \cdot x_4 \cdot (x_1 + x_2 + x_3) + x_3 \\ \mathrm{s.t.} \quad & x_1 \cdot x_2 \cdot x_3 \cdot x_4 \geq 25 \\ & x_1 + x_2 + x_3 + x_4 = 40 \end{align} \end{split}\]
import pyomo.environ as pyo

# Example from
# https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Suffixes.html#exporting-suffix-data

model = pyo.ConcreteModel()
model.x1 = pyo.Var(bounds=(1,5),initialize=1.0)
model.x2 = pyo.Var(bounds=(1,5),initialize=5.0)
model.x3 = pyo.Var(bounds=(1,5),initialize=5.0)
model.x4 = pyo.Var(bounds=(1,5),initialize=1.0)
model.obj = pyo.Objective(
    expr=model.x1*model.x4*(model.x1 + model.x2 + model.x3) + model.x3)
model.inequality = pyo.Constraint(
    expr=model.x1*model.x2*model.x3*model.x4 >= 25.0)
model.equality = pyo.Constraint(
    expr=model.x1**2 + model.x2**2 + model.x3**2 + model.x4**2 == 40.0)

### Declare all suffixes
# Ipopt bound multipliers (obtained from solution)
model.ipopt_zL_out = pyo.Suffix(direction=pyo.Suffix.IMPORT)
model.ipopt_zU_out = pyo.Suffix(direction=pyo.Suffix.IMPORT)
# Ipopt bound multipliers (sent to solver)
model.ipopt_zL_in = pyo.Suffix(direction=pyo.Suffix.EXPORT)
model.ipopt_zU_in = pyo.Suffix(direction=pyo.Suffix.EXPORT)
# Obtain dual solutions from first solve and send to warm start
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT_EXPORT)

ipopt = pyo.SolverFactory('ipopt')

7.3.3.1. Solve without warm starting#

ipopt.solve(model, tee=True)
Ipopt 3.13.2: 

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This is Ipopt version 3.13.2, running with linear solver ma27.

Number of nonzeros in equality constraint Jacobian...:        4
Number of nonzeros in inequality constraint Jacobian.:        4
Number of nonzeros in Lagrangian Hessian.............:       10

Total number of variables............................:        4
                     variables with only lower bounds:        0
                variables with lower and upper bounds:        4
                     variables with only upper bounds:        0
Total number of equality constraints.................:        1
Total number of inequality constraints...............:        1
        inequality constraints with only lower bounds:        1
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  1.6109693e+01 1.12e+01 5.28e-01  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0
   1  1.6982239e+01 7.30e-01 1.02e+01  -1.0 6.11e-01    -  7.19e-02 1.00e+00f  1
   2  1.7318411e+01 3.60e-02 5.05e-01  -1.0 1.61e-01    -  1.00e+00 1.00e+00h  1
   3  1.6849424e+01 2.78e-01 6.68e-02  -1.7 2.85e-01    -  7.94e-01 1.00e+00h  1
   4  1.7051199e+01 4.71e-03 2.78e-03  -1.7 6.06e-02    -  1.00e+00 1.00e+00h  1
   5  1.7011979e+01 7.19e-03 8.50e-03  -3.8 3.66e-02    -  9.45e-01 9.98e-01h  1
   6  1.7014271e+01 1.74e-05 9.78e-06  -3.8 3.33e-03    -  1.00e+00 1.00e+00h  1
   7  1.7014021e+01 1.23e-07 1.82e-07  -5.7 2.69e-04    -  1.00e+00 1.00e+00h  1
   8  1.7014017e+01 1.77e-11 2.52e-11  -8.6 3.32e-06    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 8

                                   (scaled)                 (unscaled)
Objective...............:   1.7014017145179160e+01    1.7014017145179160e+01
Dual infeasibility......:   2.5166710821230136e-11    2.5166710821230136e-11
Constraint violation....:   1.7706724975141697e-11    1.7706724975141697e-11
Complementarity.........:   2.5277100427932999e-09    2.5277100427932999e-09
Overall NLP error.......:   2.5277100427932999e-09    2.5277100427932999e-09


Number of objective function evaluations             = 9
Number of objective gradient evaluations             = 9
Number of equality constraint evaluations            = 9
Number of inequality constraint evaluations          = 9
Number of equality constraint Jacobian evaluations   = 9
Number of inequality constraint Jacobian evaluations = 9
Number of Lagrangian Hessian evaluations             = 8
Total CPU secs in IPOPT (w/o function evaluations)   =      0.002
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Optimal Solution Found.
{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 2, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.05761003494262695}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}

Inspect dual variables for lower bound

model.ipopt_zL_out.display()
ipopt_zL_out : Direction=Suffix.IMPORT, Datatype=Suffix.FLOAT
    Key : Value
     x1 :     1.087871225865903
     x2 : 6.693166200639301e-10
     x3 : 8.887657145296478e-10
     x4 : 6.570872591662968e-09

Inspect dual variables for upper bound

model.ipopt_zU_out.display()
ipopt_zU_out : Direction=Suffix.IMPORT, Datatype=Suffix.FLOAT
    Key : Value
     x1 : -6.262653086171725e-10
     x2 : -9.788835007044501e-09
     x3 :  -2.12284925206338e-09
     x4 : -6.925197858855533e-10

7.3.3.2. Solve with warm starting#

### Set Ipopt options for warm-start
# The current values on the ipopt_zU_out and ipopt_zL_out suffixes will
# be used as initial conditions for the bound multipliers to solve the
# new problem
model.ipopt_zL_in.update(model.ipopt_zL_out)
model.ipopt_zU_in.update(model.ipopt_zU_out)
ipopt.options['warm_start_init_point'] = 'yes'
ipopt.options['warm_start_bound_push'] = 1e-6
ipopt.options['warm_start_mult_bound_push'] = 1e-6
ipopt.options['mu_init'] = 1e-6

ipopt.solve(model, tee=True)