7.7. Simple Netwon Method for Equality Constrained NLPs#

Reference: Section 5.2 in Biegler (2010)

Alg51

7.7.1. Helper Functions#

# Load required Python libraries.
import matplotlib.pyplot as plt
import numpy as np
from scipy import linalg

## Check is element of array is NaN
def check_nan(A):
    return np.sum(np.isnan(A))

## Calculate gradient with central finite difference
## Calculate gradient with central finite difference
def my_grad_approx(x,f,eps1,verbose=False):
    '''
    Calculate gradient of function f using central difference formula
    
    Inputs:
        x - point for which to evaluate gradient
        f - function to consider
        eps1 - perturbation size
        
    Outputs:
        grad - gradient (vector)
    '''
    
    n = len(x)
    grad = np.zeros(n)
    
    if(verbose):
        print("***** my_grad_approx at x = ",x,"*****")
    
    for i in range(0,n):
        
        # Create vector of zeros except eps in position i
        e = np.zeros(n)
        e[i] = eps1
        
        # Finite difference formula
        my_f_plus = f(x + e)
        my_f_minus = f(x - e)
        
        # Diagnostics
        if(verbose):
            print("e[",i,"] = ",e)
            print("f(x + e[",i,"]) = ",my_f_plus)
            print("f(x - e[",i,"]) = ",my_f_minus)
        
        
        grad[i] = (my_f_plus - my_f_minus)/(2*eps1)
    
    if(verbose):
        print("***** Done. ***** \n")
    
    return grad

def my_jac_approx(x,h,eps1,verbose=False):
    '''
    Calculate Jacobian of function h(x) using central difference formula
    
    Inputs:
        x - point for which to evaluate gradient
        h - vector-valued function to consider. h(x): R^n --> R^m
        eps1 - perturbation size
        
    Outputs:
        A - Jacobian (n x m matrix)
    '''
    
    # Check h(x) at x
    h_x0 = h(x)
    
    # Extract dimensions
    n = len(x)
    m = len(h_x0)
    
    # Initialize Jacobian matrix
    A = np.zeros((n,m))
    
    # Calculate Jacobian by row
    for i in range(0,n):
        
        # Create vector of zeros except eps in position i
        e = np.zeros(n)
        e[i] = eps1
        
        # Finite difference formula
        my_h_plus = h(x + e)
        my_h_minus = h(x - e)
        
        # Diagnostics
        if(verbose):
            print("e[",i,"] = ",e)
            print("h(x + e[",i,"]) = ",my_h_plus)
            print("h(x - e[",i,"]) = ",my_h_minus)
        
        
        A[i,:] = (my_h_plus - my_h_minus)/(2*eps1)
    
    if(verbose):
        print("***** Done. ***** \n")
    
    return A
    
## Calculate gradient using central finite difference and my_hes_approx
def my_hes_approx(x,grad,eps2):
    '''
    Calculate gradient of function my_f using central difference formula and my_grad
    
    Inputs:
        x - point for which to evaluate gradient
        grad - function to calculate the gradient
        eps2 - perturbation size (for Hessian NOT gradient approximation)
        
    Outputs:
        H - Hessian (matrix)
    '''
    
    n = len(x)
    H = np.zeros([n,n])
    
    for i in range(0,n):
        # Create vector of zeros except eps in position i
        e = np.zeros(n)
        e[i] = eps2
        
        # Evaluate gradient twice
        grad_plus = grad(x + e)
        grad_minus = grad(x - e)
        
        # Notice we are building the Hessian by column (or row)
        H[:,i] = (grad_plus - grad_minus)/(2*eps2)

    return H

## Linear algebra calculation
def xxT(u):
    '''
    Calculates u*u.T to circumvent limitation with SciPy
    
    Arguments:
    u - numpy 1D array
    
    Returns:
    u*u.T
    
    Assume u is a nx1 vector.
    Recall: NumPy does not distinguish between row or column vectors
    
    u.dot(u) returns a scalar. This functon returns an nxn matrix.
    '''
    
    n = len(u)
    A = np.zeros([n,n])
    for i in range(0,n):
        for j in range(0,n):
            A[i,j] = u[i]*u[j]
    
    return A

## Analyze Hessian
def analyze_hes(B):
    print(B,"\n")
    
    l = linalg.eigvals(B)
    print("Eigenvalues: ",l,"\n")

7.7.2. Algorithm 5.1#

def alg51(x0,calc_f,calc_h,eps1=1E-6,eps2=1E-6,max_iter=50,verbose=False):
    '''
    Basic Full Space Newton Method for Equality Constrained NLP
    
    Input:
        x0 - starting point (vector)
        calc_f - function to calculate objective (returns scalar)
        calc_h - function to calculate constraints (returns vector)
        eps1 - tolerance for primal and dual steps
        eps2 - tolerance for gradient of L1
        
    Outputs:
        x - history of steps (primal variables)
        v - history of steps (dual variables)
        f - history of objective evaluations
        h - history of constraint evaluations
        df - history of objective gradients
        dL - history of Lagrange function gradients
        A - history of constraint Jacobians
        W - history of Lagrange Hessians
    
    Notes:
        1. For simplicity, central finite difference is used 
           for all gradient calculations.
    '''
    
    # Declare iteration histories as empty lists
    x = []
    v = []
    f = []
    L = []
    h = []
    df = []
    dL = []
    A = []
    W = []
    
    # Flag for iterations
    flag = True
    
    # Iteration counter
    k = 0
    
    # Copy initial point to primal variable history
    n = len(x0)
    x.append(x0)
    
    # Evaluate objective and constraints at initial point
    f.append(calc_f(x0))
    h.append(calc_h(x0))
    
    # Determine number of equality constraints
    m = len(h[0])
    
    # Initial dual variables with vector of ones
    v.append(np.ones(m))
    
    # Print header for iteration information
    print("Iter. \tf(x) \t\t||h(x)|| \t||grad_L(x)|| \t||dx|| \t\t||dv||")
    
    while(flag and k < max_iter):
        
        # STEP 1. Construct KKT matrix
        
        if(k > 0):
            # Evaluate objective function
            f.append(calc_f(x[k]))
            
            # Evaluate constraint function
            h.append(calc_h(x[k]))
        
        # Evaluate objective gradient
        df.append(my_grad_approx(x[k],calc_f,1E-6))
        
        # Evaluate constraint Jacobian
        A.append(my_jac_approx(x[k],calc_h,1E-6))
        
        # Evaluate gradient of Lagrange function
        L_func = lambda x_ : calc_f(x_) + (calc_h(x_)).dot(v[k])
        L_grad = lambda x_ : my_grad_approx(x_,L_func,1E-6)
        dL.append(L_grad(x[k]))
        norm_dL = linalg.norm(dL[k])
        
        # Evaluate Hessian of Lagrange function
        W.append(my_hes_approx(x[k],L_grad,1E-6))
        
        if(verbose):
            print("*** k =",k," ***")
            print("x_k =",x[k])
            print("v_k =",v[k])
            print("f_k =",f[k])
            print("df_k =",df[k])
            print("h_k =",h[k])
            print("A_k =\n",A[k])
            print("W_k =\n",W[k])
            print("\n")
        
        # Assemble KKT matrix
        KKT_top = np.concatenate((W[k],A[k]),axis=1)
        KKT_bot = np.concatenate((A[k].T,np.zeros((m,m))),axis=1)
        KKT = np.concatenate((KKT_top,KKT_bot),axis=0)
        
        if(verbose):
            print("KKT matrix =\n",KKT,"\n")
        
        # Check if KKT matrix is singular
        l, eigvec = linalg.eig(KKT)
        
        if(verbose):
            print("KKT matrix eigenvalues:")
            print(l)
        
        zero_eigenvalues = sum(np.abs(l) <= 1E-8)
        
        if(zero_eigenvalues > 0):
            flag = False
            print("KKT matrix is singular. Eigenvalues:\n")
            print(l,"\n")
        
        ## STEP 2. Solve linear system.
        
        if(flag):
            b = -np.concatenate((dL[k],h[k]),axis=0)
            z = linalg.solve(KKT,b)
        else:
            z = []
            
        ## STEP 3. Take step
        if(flag):
            dx = z[0:n]
            dv = z[n:(n+m+1)]
            
            x.append(x[k] + dx)
            v.append(v[k] + dv)
            
            norm_dx = linalg.norm(dx)
            norm_dv = linalg.norm(dv)
        
        ## Print iteration information
        print(k,'  \t{0: 1.4e} \t{1:1.4e} \t{2:1.4e}'.format(f[k],linalg.norm(h[k]),norm_dL),end='')
        
        if flag:
            print(' \t{0: 1.4e} \t{1: 1.4e}'.format(norm_dx,norm_dv),end='\n')
        else:
            print(' \t -------  \t -------',end='\n')
         
        # Increment counter
        k = k + 1
        
        ## Check convergence criteria
        if(flag):
            flag = norm_dx > eps1 and norm_dv > eps1 and norm_dL > eps2
    
    if (not flag) and k >= max_iter:
        print("Reached maximum number of iterations.")
    
    return x,v,f,h,df,dL,A,W

7.7.3. Example Problem 1#

Consider:

\[\begin{split}\begin{align*} \min_{x} \quad & x_1^2 + 2 x_2^2 - x_3 \\ \mathrm{s.t.} \quad & x_1 + x_2 = 1 \\ & x_1 + x_2 - x_3 = 5 \end{align*} \end{split}\]

7.7.3.1. Define Functions#

def my_f(x):
    return x[0]**2 + 2*x[1]**2 - 1*x[2]

def my_h(x):
    h = np.zeros(2)
    
    h[0] = x[0] + x[1] - 1
    h[1] = x[0] + x[1] - x[2] - 5
    
    return h

7.7.3.2. Test Finite Difference Approximations#

## Define initial point
x0 = np.array([1,1,1])

## Calculate objective
print("f(x0) =",my_f(x0),"\n")

## Calculate constraints
print("h(x0) =",my_h(x0),"\n")

## Calculate objective gradient
print("df(x0) =",my_grad_approx(x0,my_f,1E-6),"\n")

## Calculate constraint Jacobian
print("dh(x0) =\n",my_jac_approx(x0,my_h,1E-6),"\n")
f(x0) = 2 

h(x0) = [ 1. -4.] 

df(x0) = [ 2.  4. -1.] 

dh(x0) =
 [[ 1.  1.]
 [ 1.  1.]
 [ 0. -1.]] 

7.7.3.3. Test Algorithm 5.1#

## Run Algorithm 5.1 on test problem
results = alg51(x0,my_f,my_h)

## Display results
xstar = results[0][-1]
print("\nx* =",xstar)

## Display results
vstar = results[1][-1]
print("\nv* =",vstar)
Iter. 	f(x) 		||h(x)|| 	||grad_L(x)|| 	||dx|| 		||dv||
0   	 2.0000e+00 	4.1231e+00 	7.4833e+00 	 5.0553e+00 	 2.4040e+00
1   	 4.6667e+00 	5.7632e-10 	8.2956e-04 	 1.5000e-04 	 6.2903e-04
2   	 4.6667e+00 	0.0000e+00 	1.4762e-08 	 1.9888e-09 	 8.1407e-09

x* = [ 0.66666667  0.33333333 -4.        ]

v* = [-0.33333333 -1.        ]

7.7.4. Example Problem 2#

Can we break Algorithm 5.1?

Probably. Let us try a model where \(\nabla h(x^k)^T\) is always rank-deficient.

Consider: $\(\begin{align}\min_x \quad & x_1^2 + 2 x_2^2 \\ \mathrm{s.t.} \quad & x_1 + x_2 = 1 \\ & x_1 + x_2 = 1 \end{align}\)$

7.7.4.1. Test Algorithm 5.1 with the redundant constraint#

def my_f2(x):
    return x[0]**2 + 2*x[1]**2

def my_h2(x):
    h = np.zeros(2)
    h[0] = x[0] + x[1] - 1
    h[1] = h[0]
    return h

x0 = np.array((1,1))

## Run Algorithm 5.1 on test problem
results = alg51(x0,my_f2,my_h2)

## Display results
xstar = results[0][-1]
print("\nx* =",xstar)

## Display results
vstar = results[1][-1]
print("\nv* =",vstar)
Iter. 	f(x) 		||h(x)|| 	||grad_L(x)|| 	||dx|| 		||dv||
KKT matrix is singular. Eigenvalues:

[-1.05145076+0.j  2.51704031+0.j  4.53361158+0.j  0.        +0.j] 

0   	 3.0000e+00 	1.4142e+00 	7.2111e+00 	 -------  	 -------

x* = [1 1]

v* = [1. 1.]

7.7.4.2. Trying Algorithm 5.1 again without the redundant constraint#

def my_h2b(x):
    return (x[0] + x[1] - 1)*np.ones(1)

x0 = np.array((1,1))

## Run Algorithm 5.1 on test problem
results = alg51(x0,my_f2,my_h2b)

## Display results
xstar = results[0][-1]
print("\nx* =",xstar)

## Display results
vstar = results[1][-1]
print("\nv* =",vstar)
Iter. 	f(x) 		||h(x)|| 	||grad_L(x)|| 	||dx|| 		||dv||
0   	 3.0000e+00 	1.0000e+00 	5.8310e+00 	 7.4537e-01 	 2.3335e+00
1   	 6.6667e-01 	1.3978e-10 	2.9473e-04 	 4.5326e-05 	 1.5285e-04
2   	 6.6667e-01 	0.0000e+00 	4.5431e-09 	 1.4393e-09 	 2.0170e-09

x* = [0.66666667 0.33333333]

v* = [-1.33333333]

7.7.5. Example Problem 3#

Can we break Algorithm 5.1 in another way?

Let us try a model where \(\nabla h(x^k)^T\) is full rank but there are multiple local optima.

Consider: $\(\begin{align}\min_x \quad & x_1^3 - x_2 -x_1 x_2 - x_2^2 \\ \mathrm{s.t.} \quad & x_1^2 + x_2^2 = 1 \end{align}\)$

def my_f3(x):
    return x[0]**3 - x[1] - x[0]*x[1] - x[1]**2

def my_h3(x):
    return (x[0]**2 + x[1]**2 - 1)*np.ones(1)

7.7.5.1. Visualize#

def visualize(xk=[]):
    n1 = 101
    n2 = 101
    x1eval = np.linspace(-2,2,n1)
    x2eval = np.linspace(-2,2,n2)
    
    X, Y = np.meshgrid(x1eval, x2eval)
    
    Z = np.zeros([n2,n1])
    
    for i in range(0,n1):
        for j in range(0,n2):
            Z[j,i] = my_f3((X[j,i], Y[j,i]))
            
    fig, ax = plt.subplots(1,1)
    CS = ax.contour(X, Y, Z)
    ax.clabel(CS, inline=1, fontsize=12)

    # Add grid
    plt.grid()
    
    # Add unit circle
    circ = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
    ax.add_patch(circ)
    
    # Plot iteration history
    if len(xk) > 0:
        for i in range(0,len(xk)):
            if i == len(xk) - 1:
                c = "red"
            else:
                c = "black"
            plt.scatter((xk[i][0]),(xk[i][1]),marker='o',color=c)
    
    plt.xlim([-2,2])
    plt.ylim([-2,2])
    
visualize()
../../_images/2301140fc766bc439398e86102fd3a0c5ff8876a8abac4391b101eddc9015bbe.png
nt = 200
theta = np.linspace(0,2*np.pi,nt)
obj = np.zeros(nt)


for i in range(0,nt):
    x_ = np.cos(theta[i])
    y_ = np.sin(theta[i])
    
    obj[i] = my_f3((x_,y_))


plt.figure()
plt.plot(theta,obj)
plt.xlabel('$\\theta$ [radians]')
plt.ylabel('Objective')
plt.grid()
../../_images/d29a370fff8ad2900fbed46c839e37102fa6ea1d0015f104e1d43e676039576b.png

7.7.5.2. Starting Point Near Global Min (\(\theta_0 = 1.0\))#

theta0 = 1.0
x0 = np.array((np.sin(theta0),np.cos(theta0)))

## Run Algorithm 5.1 on test problem
results = alg51(x0,my_f3,my_h3)

## Display results
xstar = results[0][-1]
print("\nx* =",xstar)

## Display results
vstar = results[1][-1]
print("\nv* =",vstar)

## Convert into theta
print("\ntheta* =",np.arccos(xstar[0]),"=",np.arcsin(xstar[1]))

## Visualize
visualize(results[0])
Iter. 	f(x) 		||h(x)|| 	||grad_L(x)|| 	||dx|| 		||dv||
0   	-6.9105e-01 	0.0000e+00 	3.7501e+00 	 1.1171e+00 	 1.1455e+00
1   	-4.0104e+00 	1.2480e+00 	2.1729e+00 	 4.2318e-01 	 3.9672e-01
2   	-2.4216e+00 	1.7908e-01 	3.3575e-01 	 8.3649e-02 	 1.0205e-01
3   	-2.1438e+00 	6.9971e-03 	1.7074e-02 	 3.5294e-03 	 6.5710e-03
4   	-2.1324e+00 	1.2457e-05 	4.6327e-05 	 6.3597e-06 	 1.9707e-05
5   	-2.1323e+00 	4.0446e-11 	1.4043e-09 	 2.8044e-10 	 3.3891e-11

x* = [0.24215301 0.97023807]

v* = [1.64012795]

theta* = 1.326212035697004 = 1.3262120356970035
../../_images/6c5c2a29b7b732d3f5a3fdb75664afe3402a1f9294774ecfd9c6f911843ed068.png

7.7.5.3. Starting Point Near Local Min (\(\theta_0 = \pi\))#

theta0 = np.pi
x0 = np.array((np.sin(theta0),np.cos(theta0)))

## Run Algorithm 5.1 on test problem
results = alg51(x0,my_f3,my_h3)

## Display results
xstar = results[0][-1]
print("\nx* =",xstar)

## Display results
vstar = results[1][-1]
print("\nv* =",vstar)

## Convert into theta
print("\ntheta* =",np.arccos(xstar[0]),"(using arccos)")
print("\ntheta* =",np.arcsin(xstar[1]),"(using arcsin)")

## Visualize
visualize(results[0])
Iter. 	f(x) 		||h(x)|| 	||grad_L(x)|| 	||dx|| 		||dv||
0   	 2.2204e-16 	0.0000e+00 	1.4142e+00 	 5.0002e-01 	 2.4998e-01
1   	-6.2504e-01 	2.5002e-01 	1.0000e+00 	 1.5691e+00 	 5.7493e-01
2   	 1.4168e+00 	2.4621e+00 	4.6902e+00 	 8.7011e-01 	 3.2838e-01
3   	-2.5316e-01 	7.5709e-01 	1.5056e+00 	 7.9530e-01 	 2.7969e-01
4   	-1.0868e+00 	6.3250e-01 	1.3374e+00 	 8.5429e-01 	 2.8370e-01
5   	-1.3530e-01 	7.2981e-01 	1.6069e+00 	 7.2946e-01 	 2.4685e-01
6   	-8.5883e-01 	5.3212e-01 	1.1571e+00 	 1.2138e+00 	 4.1547e-01
7   	 6.1712e-01 	1.4732e+00 	3.1780e+00 	 7.4184e-01 	 2.5345e-01
8   	-3.7711e-01 	5.5033e-01 	1.1886e+00 	 1.1024e+00 	 3.7605e-01
9   	-2.5016e+00 	1.2153e+00 	2.6283e+00 	 7.1193e-01 	 2.4266e-01
10   	-7.5418e-01 	5.0685e-01 	1.0966e+00 	 1.7975e+00 	 6.1304e-01
11   	 3.3538e+00 	3.2310e+00 	6.9879e+00 	 9.7525e-01 	 3.3253e-01
12   	 5.8930e-02 	9.5111e-01 	2.0572e+00 	 6.9821e-01 	 2.3817e-01
13   	-6.1495e-01 	4.8750e-01 	1.0543e+00 	 1.4259e+01 	 4.8624e+00
14   	 2.5068e+03 	2.0332e+02 	4.3978e+02 	 7.1129e+00 	 1.9921e+00
15   	 3.1998e+02 	5.0594e+01 	1.0966e+02 	 3.5283e+00 	 1.0103e+00
16   	 4.2333e+01 	1.2449e+01 	2.7524e+01 	 1.7008e+00 	 4.4931e-02
17   	 7.8208e+00 	2.8927e+00 	6.7410e+00 	 7.3461e-01 	 8.5778e-02
18   	 2.3007e+00 	5.3965e-01 	1.6085e+00 	 2.1789e-01 	 2.8153e-01
19   	 1.4550e+00 	4.7477e-02 	2.3141e-01 	 2.3326e-02 	 8.3222e-02
20   	 1.3796e+00 	5.4409e-04 	5.3572e-03 	 2.8876e-04 	 2.4477e-03
21   	 1.3787e+00 	8.3383e-08 	1.4706e-06 	 1.0427e-07 	 5.7736e-07

x* = [ 0.92828695 -0.37186469]

v* = [-1.59272661]

theta* = 0.3810169551495443 (using arccos)

theta* = -0.3810169551495601 (using arcsin)
../../_images/8b88945060e39d8c4eed94fb5b723124d3d582f34ccb9c71cd917361c5c4b79a.png

7.7.5.4. Starting Point Near Global Max (\(\theta_0 = 5.5\))#

theta0 = 5.5
x0 = np.array((np.sin(theta0),np.cos(theta0)))

## Run Algorithm 5.1 on test problem
results = alg51(x0,my_f3,my_h3)

## Display results
xstar = results[0][-1]
print("\nx* =",xstar)

## Display results
vstar = results[1][-1]
print("\nv* =",vstar)

## Convert into theta
print("\ntheta* =",np.arccos(xstar[0]),"(using arccos)")
print("\ntheta* =",np.arcsin(xstar[1]),"(using arcsin)")

## Visualize
visualize(results[0])
Iter. 	f(x) 		||h(x)|| 	||grad_L(x)|| 	||dx|| 		||dv||
0   	-1.0621e+00 	0.0000e+00 	6.9215e-01 	 3.0715e-01 	 5.4165e-02
1   	-1.0667e+00 	9.4343e-02 	1.2087e-01 	 5.8624e-02 	 5.2391e-02
2   	-9.6641e-01 	3.4368e-03 	6.8422e-03 	 5.8274e-03 	 6.8831e-03
3   	-9.6261e-01 	3.3959e-05 	8.0237e-05 	 9.3484e-05 	 8.7639e-05
4   	-9.6258e-01 	8.7393e-09 	2.1977e-08 	 2.1636e-08 	 2.4039e-08

x* = [-0.90194813  0.43184437]

v* = [1.11352685]

theta* = 2.6950559970723194 (using arccos)

theta* = 0.4465366565174743 (using arcsin)
../../_images/a1a301c079df459b2b1fb16e209326836f856d7f19b86780cb30bb9d15bfe571.png