5.4. Gasoline Blending#
The task is to determine the most profitable blend of gasoline products from given set of refinery streams.
# install Pyomo and solvers for Google Colab
import sys
on_colab = "google.colab" in sys.modules
if on_colab:
!wget "https://raw.githubusercontent.com/IDAES/idaes-pse/main/scripts/colab_helper.py"
import colab_helper
colab_helper.install_idaes()
colab_helper.install_ipopt()
# Set default font sizes for plots
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 18
plt.rcParams['lines.linewidth'] = 3.0
import pandas as pd
import pyomo.environ as pyo
# Set default font sizes for plots
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 18
5.4.1. Gasoline Product Specifications#
The gasoline products include regular and premium gasoline. In addition to the current price, the specifications include
octane the minimum road octane number. Road octane is the computed as the average of the Research Octane Number (RON) and Motor Octane Number (MON).
Reid Vapor Pressure Upper and lower limits are specified for the Reid vapor pressure. The Reid vapor pressure is the absolute pressure exerted by the liquid at 100°F.
benzene the maximum volume percentage of benzene allowed in the final product. Benzene helps to increase octane rating, but is also a treacherous environmental contaminant.
products = pd.DataFrame({
'Regular' : {'price': 2.75, 'octane': 87, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
'Premium' : {'price': 2.85, 'octane': 91, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
}).T
display(products)
price | octane | RVPmin | RVPmax | benzene | |
---|---|---|---|---|---|
Regular | 2.75 | 87.0 | 0.0 | 15.0 | 1.1 |
Premium | 2.85 | 91.0 | 0.0 | 15.0 | 1.1 |
5.4.2. Stream Specifications#
A typical refinery produces many intermediate streams that can be incorporated in a blended gasoline product. Here we provide data on seven streams that include:
Butane n-butane is a C4 product stream produced from the light components of the crude being processed by the refinery. Butane is a highly volatile of gasoline.
LSR Light straight run naptha is a 90°F to 190°F cut from the crude distillation column primarily consisting of straight chain C5-C6 hydrocarbons.
Isomerate is the result of isomerizing LSR to produce branched molecules that results in higher octane number.
Reformate is result of catalytic reforming heavy straight run napthenes to produce a high octane blending component, as well by-product hydrogen used elsewhere in the refinery for hydro-treating.
Reformate LB is a is a low benzene variant of reformate.
FCC Naphta is the product of a fluidized catalytic cracking unit designed to produce gasoline blending components from long chain hydrocarbons present in the crude oil being processed by the refinery.
Alkylate The alkylation unit reacts iso-butane with low-molecular weight alkenes to produce a high octane blending component for gasoline.
The stream specifications include research octane and motor octane numbers for each blending component, the Reid vapor pressure, the benzene content, cost, and availability (in gallons per day). The road octane number is computed as the average of the RON and MON.
streams = pd.DataFrame({
'Butane' : {'RON': 93.0, 'MON': 92.0, 'RVP': 54.0, 'benzene': 0.00, 'cost': 0.85, 'avail': 30000},
'LSR' : {'RON': 78.0, 'MON': 76.0, 'RVP': 11.2, 'benzene': 0.73, 'cost': 2.05, 'avail': 35000},
'Isomerate' : {'RON': 83.0, 'MON': 81.1, 'RVP': 13.5, 'benzene': 0.00, 'cost': 2.20, 'avail': 0},
'Reformate' : {'RON':100.0, 'MON': 88.2, 'RVP': 3.2, 'benzene': 1.85, 'cost': 2.80, 'avail': 60000},
'Reformate LB' : {'RON': 93.7, 'MON': 84.0, 'RVP': 2.8, 'benzene': 0.12, 'cost': 2.75, 'avail': 0},
'FCC Naphtha' : {'RON': 92.1, 'MON': 77.1, 'RVP': 1.4, 'benzene': 1.06, 'cost': 2.60, 'avail': 70000},
'Alkylate' : {'RON': 97.3, 'MON': 95.9, 'RVP': 4.6, 'benzene': 0.00, 'cost': 2.75, 'avail': 40000},
}).T
streams['octane'] = (streams['RON'] + streams['MON'])/2
display(streams)
RON | MON | RVP | benzene | cost | avail | octane | |
---|---|---|---|---|---|---|---|
Butane | 93.0 | 92.0 | 54.0 | 0.00 | 0.85 | 30000.0 | 92.50 |
LSR | 78.0 | 76.0 | 11.2 | 0.73 | 2.05 | 35000.0 | 77.00 |
Isomerate | 83.0 | 81.1 | 13.5 | 0.00 | 2.20 | 0.0 | 82.05 |
Reformate | 100.0 | 88.2 | 3.2 | 1.85 | 2.80 | 60000.0 | 94.10 |
Reformate LB | 93.7 | 84.0 | 2.8 | 0.12 | 2.75 | 0.0 | 88.85 |
FCC Naphtha | 92.1 | 77.1 | 1.4 | 1.06 | 2.60 | 70000.0 | 84.60 |
Alkylate | 97.3 | 95.9 | 4.6 | 0.00 | 2.75 | 40000.0 | 96.60 |
5.4.3. Questions We Want to Answer#
What is the maximum profit possible using the current product specifications and available streams?
What are the marginal values of each blending stream? That is, how much would you be willing to pay for each additional gallon of the blending streams?
A marketing team says there is an opportunity to create a mid-grade gasoline product with a road octane number of 89 that would sell for $2.82/gallon, and with all other specifications the same. Would an additional profit be created? What at what price point does the mid-grade product enhance profits?
New environmental regulations have reduced the allowable benzene levels from 1.1 vol% to 0.62 vol%, and the maximum Reid vapor pressure from 15.0 to 9.0. What is the impact on profits?
5.4.4. Blending Model#
This simplified blending model assumes the product attributes can be computed as linear volume weighted averages of the component properties. Let the decision variable \(x_{s,p} \geq 0\) be the volume, in gallons, of blending component \(s \in S\) used in the final product \(p \in P\).
5.4.4.1. Objective#
The objective is maximize profit, which is the difference between product revenue and stream costs.
5.4.4.2. Raw Materials#
The first constraints in any blending problem are normally the limits on available raw materials.
The blending constraint for octane can be written as
where \(\text{Octane}_s\) refers to the octane rating of stream \(s\), whereas \(\text{Octane}_p\) refers to the octane rating of product \(p\). Multiplying through by the denominator, and consolidating terms gives
The same assumptions and development apply to the benzene constraint
Reid vapor pressure, however, follows a somewhat different mixing rule. For the Reid vapor pressure we have
This model is implemented in the following cell.
5.4.5. Pyomo Implementation#
import pyomo.environ as pyo
from pyomo.environ import units as u
# Add USD as currency unit
# See https://pyomo.readthedocs.io/en/6.8.1/api/pyomo.core.base.units_container.PyomoUnitsContainer.html for details
u.load_definitions_from_strings(['USD = [currency]'])
milp_solver = 'cbc'
def gas_blending(products, streams):
''' Gasoline blending optimization problem
Arguments:
products: DataFrame with columns ['price', 'octane', 'RVPmin', 'RVPmax', 'benzene']
streams: DataFrame with columns ['RON', 'MON', 'RVP', 'benzene', 'cost', 'avail']
max_benzene: maximum benzene content in the final product (float)
max_RVP: maximum Reid vapor pressure in the final product (float)
Returns:
m: Pyomo model (solved)
'''
m = pyo.ConcreteModel("Gasoline Blending")
# Define sets
m.STREAMS = pyo.Set(initialize=streams.index)
m.PRODUCTS = pyo.Set(initialize=products.index)
# Define units for variables and parameters
m.x = pyo.Var(m.STREAMS, m.PRODUCTS, domain=pyo.NonNegativeReals, units=u.gallon)
# Define parameters (data) for products
m.price = pyo.Param(m.PRODUCTS, initialize=products['price'].to_dict(), units=u.USD/u.gallon)
m.octane_p = pyo.Param(m.PRODUCTS, initialize=products['octane'].to_dict())
m.RVPmin = pyo.Param(m.PRODUCTS, initialize=products['RVPmin'].to_dict())
m.RVPmax = pyo.Param(m.PRODUCTS, initialize=products['RVPmax'].to_dict())
m.benzene_p = pyo.Param(m.PRODUCTS, initialize=products['benzene'].to_dict())
# Define parameters (data) for streams
m.RON = pyo.Param(m.STREAMS, initialize=streams['RON'].to_dict())
m.MON = pyo.Param(m.STREAMS, initialize=streams['MON'].to_dict())
m.RVP_s = pyo.Param(m.STREAMS, initialize=streams['RVP'].to_dict())
m.benzene_s = pyo.Param(m.STREAMS, initialize=streams['benzene'].to_dict())
m.cost = pyo.Param(m.STREAMS, initialize=streams['cost'].to_dict(), units=u.USD/u.gallon)
m.avail = pyo.Param(m.STREAMS, initialize=streams['avail'].to_dict(), units=u.gallon)
m.octane_s = pyo.Param(m.STREAMS, initialize=streams['octane'].to_dict())
# Define the objective function with units
@m.Objective(sense=pyo.maximize)
def profit(m):
return sum(sum(m.x[s, p]*(m.price[p] - m.cost[s]) for s in m.STREAMS) for p in m.PRODUCTS)
# Define constraints with units
@m.Constraint(m.STREAMS)
def raw_material_available(m, s):
return sum(m.x[s, p] for p in m.PRODUCTS) <= m.avail[s]
@m.Constraint(m.PRODUCTS)
def octane(m, p):
return sum(m.x[s, p]*(m.octane_s[s] - m.octane_p[p]) for s in m.STREAMS) >= 0
@m.Constraint(m.PRODUCTS)
def benzene(m, p):
return sum(m.x[s, p]*(m.benzene_s[s] - m.benzene_p[p]) for s in m.STREAMS) <= 0
@m.Constraint(m.PRODUCTS)
def min_reid_vapor_pressure(m, p):
return sum(m.x[s, p]*(m.RVP_s[s]**1.25 - m.RVPmin[p]**1.25) for s in m.STREAMS) >= 0
@m.Constraint(m.PRODUCTS)
def max_reid_vapor_pressure(m, p):
return sum(m.x[s, p]*(m.RVP_s[s]**1.25 - m.RVPmax[p]**1.25) for s in m.STREAMS) <= 0
solver = pyo.SolverFactory(milp_solver)
solver.solve(m)
return m
m = gas_blending(products, streams)
def get_key_results(m):
# display results
total_volume = sum(m.x[s,p]() for s in m.STREAMS for p in m.PRODUCTS) # gallons
total_profit = m.profit() # dollars
unit_profit = 100*total_profit/total_volume # cents per gallon
print("Total Volume =", round(total_volume, 1), "gallons.")
print("Total Profit =", round(total_profit, 1), "dollars.")
print("Profit =", round(unit_profit,1), "cents per gallon.")
return total_volume, total_profit, unit_profit
base_volume, base_profit, base_unit_profit = get_key_results(m)
soln = pd.DataFrame({s: {p: m.x[s,p]() for p in m.PRODUCTS} for s in m.STREAMS}).T
display(soln)
Total Volume = 235000.0 gallons.
Total Profit = 100425.0 dollars.
Profit = 42.7 cents per gallon.
Regular | Premium | |
---|---|---|
Butane | 2.175457e+04 | 8245.428 |
LSR | 9.211560e+03 | 25788.439 |
Isomerate | 0.000000e+00 | 0.000 |
Reformate | 1.978387e+04 | 40216.132 |
Reformate LB | 0.000000e+00 | 0.000 |
FCC Naphtha | 7.000000e+04 | 0.000 |
Alkylate | -7.275958e-12 | 40000.000 |
5.4.6. Display Results (Baseline)#
5.4.6.1. Results for each Stream#
def get_stream_results(m, streams):
''' Extract stream results from Pyomo model
Argument:
m: Pyomo model
streams: DataFrame with columns ['RON', 'MON', 'RVP', 'benzene', 'cost', 'avail']
Returns:
stream_results: DataFrame with columns ['Total', 'Available', 'Unused (Slack)']
'''
# Create empty DataFrame
stream_results = pd.DataFrame()
# Loop over streams
for s in m.STREAMS:
# Loop over products
for p in m.PRODUCTS:
stream_results.loc[s,p] = round(m.x[s,p](), 1)
# Calculate total volume, copy available volume
stream_results.loc[s,'Total'] = round(sum(m.x[s,p]() for p in m.PRODUCTS), 1)
stream_results.loc[s,'Available'] = streams.loc[s,'avail']
# Calculate unused volume (slack)
stream_results['Unused (Slack)'] = stream_results['Available'] - stream_results['Total']
# Return DataFrame
return stream_results
sr = get_stream_results(m, streams)
display(sr)
Regular | Premium | Total | Available | Unused (Slack) | |
---|---|---|---|---|---|
Butane | 21754.6 | 8245.4 | 30000.0 | 30000.0 | 0.0 |
LSR | 9211.6 | 25788.4 | 35000.0 | 35000.0 | 0.0 |
Isomerate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Reformate | 19783.9 | 40216.1 | 60000.0 | 60000.0 | 0.0 |
Reformate LB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
FCC Naphtha | 70000.0 | 0.0 | 70000.0 | 70000.0 | 0.0 |
Alkylate | -0.0 | 40000.0 | 40000.0 | 40000.0 | 0.0 |
5.4.6.2. Results for each Product#
def get_product_results(m, streams, products):
product_results = pd.DataFrame()
for p in m.PRODUCTS:
product_results.loc[p,'Volume'] = round(sum(m.x[s,p]() for s in m.STREAMS), 1)
product_results.loc[p,'octane'] = round(sum(m.x[s,p]()*streams.loc[s,'octane'] for s in m.STREAMS)
/product_results.loc[p,'Volume'], 1)
product_results.loc[p,'RVP'] = round((sum(m.x[s,p]()*streams.loc[s,'RVP']**1.25 for s in m.STREAMS)
/product_results.loc[p,'Volume'])**0.8, 1)
product_results.loc[p,'benzene'] = round(sum(m.x[s,p]()*streams.loc[s,'benzene'] for s in m.STREAMS)
/product_results.loc[p,'Volume'], 1)
return product_results
pr = get_product_results(m, streams, products)
display(pr)
Volume | octane | RVP | benzene | |
---|---|---|---|---|
Regular | 120750.0 | 87.0 | 15.0 | 1.0 |
Premium | 114250.0 | 91.0 | 10.6 | 0.8 |
5.4.7. Exercise 1: Marginal Value of Each Feedstock#
What are the marginal blending rates of each stream?
Perturb the avail
of each stream and record the results. We can then calculate the partial derivative of profit with respect to each perturbation.
import matplotlib.pyplot as plt
sensitivity = {}
for s in streams.index:
epsilon = 1
streams_perturb = streams.copy()
streams_perturb.loc[s, 'avail'] += epsilon
print("\n1 gallon increase in ",s," availability:")
m_perturb = gas_blending(products, streams_perturb)
p_volume, p_proft, p_unit_profit = get_key_results(m_perturb)
sensitivity[s] = (p_proft - base_profit) / epsilon
sensitivity_series = pd.Series(sensitivity, name='sensitivity')
1 gallon increase in Butane availability:
Total Volume = 235001.0 gallons.
Total Profit = 100427.0 dollars.
Profit = 42.7 cents per gallon.
1 gallon increase in LSR availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.5 dollars.
Profit = 42.7 cents per gallon.
1 gallon increase in Isomerate availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.4 dollars.
Profit = 42.7 cents per gallon.
1 gallon increase in Reformate availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.1 dollars.
Profit = 42.7 cents per gallon.
1 gallon increase in Reformate LB availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.0 dollars.
Profit = 42.7 cents per gallon.
1 gallon increase in FCC Naphtha availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.1 dollars.
Profit = 42.7 cents per gallon.
1 gallon increase in Alkylate availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.2 dollars.
Profit = 42.7 cents per gallon.
These results are nice, but lets make a visualization we can present to management.
# Sort sensitivity for plotting
sensitivity_series = sensitivity_series.sort_values()
# Plot tornado diagram for sensitivity analysis
fig, ax = plt.subplots(figsize=(10, 6))
sensitivity_series.plot(kind='barh', ax=ax)
ax.set_title('How valuable is an additional gallon of each feedstock?')
ax.set_xlabel('Increase in Profit (dollars / gallon of feedstock)')
ax.set_ylabel('Feedstocks')
plt.show()

Which feed stream is most valuable and why? Someone with a business degree can make the plot above. You, with a chemical engineering degree, can answer the why.
5.4.8. Exercise 2: New Product#
The marketing team says there is an opportunity to create a mid-grade gasoline product with a road octane number of 89 that would sell for $2.82/gallon, and with all other specifications the same. Could an additional profit be created?
Create a new cell (or cells) below to compute a solution to this exercise.
products1 = pd.DataFrame({
'Regular' : {'price': 2.75, 'octane': 87, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
'Midgrade' : {'price': 2.82, 'octane': 89, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
'Premium' : {'price': 2.85, 'octane': 91, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
}).T
display(products1)
m1 = gas_blending(products1, streams)
sr1 = get_stream_results(m1, streams)
display(sr1)
pr1 = get_product_results(m1, streams, products1)
display(pr1)
price | octane | RVPmin | RVPmax | benzene | |
---|---|---|---|---|---|
Regular | 2.75 | 87.0 | 0.0 | 15.0 | 1.1 |
Midgrade | 2.82 | 89.0 | 0.0 | 15.0 | 1.1 |
Premium | 2.85 | 91.0 | 0.0 | 15.0 | 1.1 |
Regular | Midgrade | Premium | Total | Available | Unused (Slack) | |
---|---|---|---|---|---|---|
Butane | 849.5 | 29150.5 | 0.0 | 30000.0 | 30000.0 | 0.0 |
LSR | 2646.2 | 32353.8 | 0.0 | 35000.0 | 35000.0 | 0.0 |
Isomerate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Reformate | 2820.7 | 57179.3 | 0.0 | 60000.0 | 60000.0 | 0.0 |
Reformate LB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
FCC Naphtha | 0.0 | 70000.0 | 0.0 | 70000.0 | 70000.0 | 0.0 |
Alkylate | 183.6 | 39816.4 | 0.0 | 40000.0 | 40000.0 | 0.0 |
/var/folders/b1/m1_w6rrd109bgym0_8fsxw_80000gp/T/ipykernel_25401/2558176032.py:6: RuntimeWarning: invalid value encountered in scalar divide
product_results.loc[p,'octane'] = round(sum(m.x[s,p]()*streams.loc[s,'octane'] for s in m.STREAMS)
/var/folders/b1/m1_w6rrd109bgym0_8fsxw_80000gp/T/ipykernel_25401/2558176032.py:8: RuntimeWarning: invalid value encountered in scalar divide
product_results.loc[p,'RVP'] = round((sum(m.x[s,p]()*streams.loc[s,'RVP']**1.25 for s in m.STREAMS)
/var/folders/b1/m1_w6rrd109bgym0_8fsxw_80000gp/T/ipykernel_25401/2558176032.py:10: RuntimeWarning: invalid value encountered in scalar divide
product_results.loc[p,'benzene'] = round(sum(m.x[s,p]()*streams.loc[s,'benzene'] for s in m.STREAMS)
Volume | octane | RVP | benzene | |
---|---|---|---|---|
Regular | 6500.0 | 87.0 | 15.0 | 1.1 |
Midgrade | 228500.0 | 89.0 | 12.8 | 0.9 |
Premium | 0.0 | NaN | NaN | NaN |
5.4.9. Exercise 3: New Environmental Regulation#
New environmental regulations have reduced the allowable benzene levels from 1.1 vol% to 0.62 vol%, and the maximum Reid vapor pressure from 15.0 to 9.0.
Compared to the base case (i.e., without the midgrade product), how does this change profitability?
products2 = pd.DataFrame({
'Regular' : {'price': 2.75, 'octane': 87, 'RVPmin': 0.0, 'RVPmax': 9.0, 'benzene': 0.62},
'Premium' : {'price': 2.85, 'octane': 91, 'RVPmin': 0.0, 'RVPmax': 9.0, 'benzene': 0.62},
}).T
display(products2)
m2 = gas_blending(products2, streams)
sr2 = get_stream_results(m2, streams)
display(sr2)
pr2 = get_product_results(m2, streams, products2)
display(pr2)
price | octane | RVPmin | RVPmax | benzene | |
---|---|---|---|---|---|
Regular | 2.75 | 87.0 | 0.0 | 9.0 | 0.62 |
Premium | 2.85 | 91.0 | 0.0 | 9.0 | 0.62 |
Regular | Premium | Total | Available | Unused (Slack) | |
---|---|---|---|---|---|
Butane | 8187.5 | 0.0 | 8187.5 | 30000.0 | 21812.5 |
LSR | 28305.3 | 0.0 | 28305.3 | 35000.0 | 6694.7 |
Isomerate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Reformate | 0.0 | 0.0 | 0.0 | 60000.0 | 60000.0 |
Reformate LB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
FCC Naphtha | 60824.3 | 0.0 | 60824.3 | 70000.0 | 9175.7 |
Alkylate | 40000.0 | 0.0 | 40000.0 | 40000.0 | 0.0 |
/var/folders/b1/m1_w6rrd109bgym0_8fsxw_80000gp/T/ipykernel_25401/2558176032.py:6: RuntimeWarning: invalid value encountered in scalar divide
product_results.loc[p,'octane'] = round(sum(m.x[s,p]()*streams.loc[s,'octane'] for s in m.STREAMS)
/var/folders/b1/m1_w6rrd109bgym0_8fsxw_80000gp/T/ipykernel_25401/2558176032.py:8: RuntimeWarning: invalid value encountered in scalar divide
product_results.loc[p,'RVP'] = round((sum(m.x[s,p]()*streams.loc[s,'RVP']**1.25 for s in m.STREAMS)
/var/folders/b1/m1_w6rrd109bgym0_8fsxw_80000gp/T/ipykernel_25401/2558176032.py:10: RuntimeWarning: invalid value encountered in scalar divide
product_results.loc[p,'benzene'] = round(sum(m.x[s,p]()*streams.loc[s,'benzene'] for s in m.STREAMS)
Volume | octane | RVP | benzene | |
---|---|---|---|---|
Regular | 137317.1 | 87.0 | 9.0 | 0.6 |
Premium | 0.0 | NaN | NaN | NaN |
5.4.10. Exercise 4: Four Scenarios#
Given the new product specifications in Exercise 3, let’s consider using different refinery streams. In place of Reformate, the refinery could produce Reformate LB. (That is, one or the other of the two streams could be 60000 gallons per day, but not both). Same for LSR and Isomerate.
How should the refinery be operated to maximize profitability? Why is this the best solution? What intuition can you develop from the results?
5.4.10.1. Scenario A: Reformate and LSR (base)#
from dataclasses import dataclass
@dataclass
class SensitivityAnalysisResults:
scenario_name: str
reformate_LB: bool
isomerate: bool
total_volume: float
total_profit: float
unit_profit: float
stream_input_data: pd.DataFrame
stream_results: pd.DataFrame
products: pd.DataFrame
def exercise4(scenario_name, reformate_LB, isomerate):
''' Sensitivity analysis for gasoline blending problem replacement feedstocks
Arguments:
reformate_LB: replace Reformate with Reformate LB stream (boolean)
isomerate: replace LSR with Isomerate stream (boolean)
Returns:
results: SensitivityAnalysisResults object
'''
if reformate_LB:
reformate = 0
reformate_LB = 60000
else:
reformate = 60000
reformate_LB = 0
if isomerate:
LSR = 0
isomerate = 35000
else:
LSR = 35000
isomerate = 0
streams3 = pd.DataFrame({
'Butane' : {'RON': 93.0, 'MON': 92.0, 'RVP': 54.0, 'benzene': 0.00, 'cost': 0.85, 'avail': 30000},
'LSR' : {'RON': 78.0, 'MON': 76.0, 'RVP': 11.2, 'benzene': 0.73, 'cost': 2.05, 'avail': LSR},
'Isomerate' : {'RON': 83.0, 'MON': 81.1, 'RVP': 13.5, 'benzene': 0.00, 'cost': 2.20, 'avail': isomerate},
'Reformate' : {'RON':100.0, 'MON': 88.2, 'RVP': 3.2, 'benzene': 1.85, 'cost': 2.80, 'avail': reformate},
'Reformate LB' : {'RON': 93.7, 'MON': 84.0, 'RVP': 2.8, 'benzene': 0.12, 'cost': 2.75, 'avail': reformate_LB},
'FCC Naphtha' : {'RON': 92.1, 'MON': 77.1, 'RVP': 1.4, 'benzene': 1.06, 'cost': 2.60, 'avail': 70000},
'Alkylate' : {'RON': 97.3, 'MON': 95.9, 'RVP': 4.6, 'benzene': 0.00, 'cost': 2.75, 'avail': 40000},
}).T
streams3['octane'] = (streams3['RON'] + streams3['MON'])/2
display(streams3)
# Create and solve optimization problem
m3 = gas_blending(products2, streams3)
# Extract results (part 1)
total_volume, total_profit, unit_profit = get_key_results(m3)
# Extract results (part 2)
sr3 = get_stream_results(m3, streams3)
display(sr3)
# Extract results (part 3)
pr3 = get_product_results(m3, streams3, products2)
display(pr3)
return SensitivityAnalysisResults(scenario_name, reformate_LB, isomerate, total_volume, total_profit, unit_profit, streams3, sr3, pr3)
scenarionA = exercise4('A', reformate_LB=True, isomerate=True)
# Store results for scenario A
results = []
results.append(scenarionA)
RON | MON | RVP | benzene | cost | avail | octane | |
---|---|---|---|---|---|---|---|
Butane | 93.0 | 92.0 | 54.0 | 0.00 | 0.85 | 30000.0 | 92.50 |
LSR | 78.0 | 76.0 | 11.2 | 0.73 | 2.05 | 0.0 | 77.00 |
Isomerate | 83.0 | 81.1 | 13.5 | 0.00 | 2.20 | 35000.0 | 82.05 |
Reformate | 100.0 | 88.2 | 3.2 | 1.85 | 2.80 | 0.0 | 94.10 |
Reformate LB | 93.7 | 84.0 | 2.8 | 0.12 | 2.75 | 60000.0 | 88.85 |
FCC Naphtha | 92.1 | 77.1 | 1.4 | 1.06 | 2.60 | 70000.0 | 84.60 |
Alkylate | 97.3 | 95.9 | 4.6 | 0.00 | 2.75 | 40000.0 | 96.60 |
Total Volume = 217971.0 gallons.
Total Profit = 60022.2 dollars.
Profit = 27.5 cents per gallon.
Regular | Premium | Total | Available | Unused (Slack) | |
---|---|---|---|---|---|
Butane | 8480.9 | 4490.1 | 12971.0 | 30000.0 | 17029.0 |
LSR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Isomerate | 35000.0 | 0.0 | 35000.0 | 35000.0 | 0.0 |
Reformate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Reformate LB | 60000.0 | 0.0 | 60000.0 | 60000.0 | 0.0 |
FCC Naphtha | 45273.6 | 24726.4 | 70000.0 | 70000.0 | 0.0 |
Alkylate | 12943.9 | 27056.1 | 40000.0 | 40000.0 | 0.0 |
Volume | octane | RVP | benzene | |
---|---|---|---|---|
Regular | 161698.4 | 87.0 | 9.0 | 0.3 |
Premium | 56272.6 | 91.0 | 9.0 | 0.5 |
5.4.10.2. Scenario B: Reformate LB and LSR#
scenarioB = exercise4('B',reformate_LB=True, isomerate=False)
results.append(scenarioB)
RON | MON | RVP | benzene | cost | avail | octane | |
---|---|---|---|---|---|---|---|
Butane | 93.0 | 92.0 | 54.0 | 0.00 | 0.85 | 30000.0 | 92.50 |
LSR | 78.0 | 76.0 | 11.2 | 0.73 | 2.05 | 35000.0 | 77.00 |
Isomerate | 83.0 | 81.1 | 13.5 | 0.00 | 2.20 | 0.0 | 82.05 |
Reformate | 100.0 | 88.2 | 3.2 | 1.85 | 2.80 | 0.0 | 94.10 |
Reformate LB | 93.7 | 84.0 | 2.8 | 0.12 | 2.75 | 60000.0 | 88.85 |
FCC Naphtha | 92.1 | 77.1 | 1.4 | 1.06 | 2.60 | 70000.0 | 84.60 |
Alkylate | 97.3 | 95.9 | 4.6 | 0.00 | 2.75 | 40000.0 | 96.60 |
Total Volume = 219412.8 gallons.
Total Profit = 63791.2 dollars.
Profit = 29.1 cents per gallon.
Regular | Premium | Total | Available | Unused (Slack) | |
---|---|---|---|---|---|
Butane | 13290.3 | 1122.5 | 14412.8 | 30000.0 | 15587.2 |
LSR | 35000.0 | 0.0 | 35000.0 | 35000.0 | 0.0 |
Isomerate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Reformate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Reformate LB | 60000.0 | 0.0 | 60000.0 | 60000.0 | 0.0 |
FCC Naphtha | 63818.6 | 6181.4 | 70000.0 | 70000.0 | 0.0 |
Alkylate | 33236.2 | 6763.8 | 40000.0 | 40000.0 | 0.0 |
Volume | octane | RVP | benzene | |
---|---|---|---|---|
Regular | 205345.2 | 87.0 | 9.0 | 0.5 |
Premium | 14067.7 | 91.0 | 9.0 | 0.5 |
5.4.10.3. Scenario C: Reformate and Isomerate#
scenarioC = exercise4('C', reformate_LB=False, isomerate=True)
results.append(scenarioC)
RON | MON | RVP | benzene | cost | avail | octane | |
---|---|---|---|---|---|---|---|
Butane | 93.0 | 92.0 | 54.0 | 0.00 | 0.85 | 30000.0 | 92.50 |
LSR | 78.0 | 76.0 | 11.2 | 0.73 | 2.05 | 0.0 | 77.00 |
Isomerate | 83.0 | 81.1 | 13.5 | 0.00 | 2.20 | 35000.0 | 82.05 |
Reformate | 100.0 | 88.2 | 3.2 | 1.85 | 2.80 | 60000.0 | 94.10 |
Reformate LB | 93.7 | 84.0 | 2.8 | 0.12 | 2.75 | 0.0 | 88.85 |
FCC Naphtha | 92.1 | 77.1 | 1.4 | 1.06 | 2.60 | 70000.0 | 84.60 |
Alkylate | 97.3 | 95.9 | 4.6 | 0.00 | 2.75 | 40000.0 | 96.60 |
Total Volume = 171265.3 gallons.
Total Profit = 51312.5 dollars.
Profit = 30.0 cents per gallon.
Regular | Premium | Total | Available | Unused (Slack) | |
---|---|---|---|---|---|
Butane | 7447.5 | 1528.9 | 8976.4 | 30000.0 | 21023.6 |
LSR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Isomerate | 18754.0 | 16246.0 | 35000.0 | 35000.0 | 0.0 |
Reformate | 0.0 | 17288.9 | 17288.9 | 60000.0 | 42711.1 |
Reformate LB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
FCC Naphtha | 68754.2 | 1245.8 | 70000.0 | 70000.0 | 0.0 |
Alkylate | 22591.8 | 17408.2 | 40000.0 | 40000.0 | 0.0 |
Volume | octane | RVP | benzene | |
---|---|---|---|---|
Regular | 117547.4 | 87.0 | 9.0 | 0.6 |
Premium | 53717.9 | 91.0 | 9.0 | 0.6 |
5.4.10.4. Scenario D: Reformate LB and Isomerate#
resultsD = exercise4('D',reformate_LB=True, isomerate=True)
results.append(resultsD)
RON | MON | RVP | benzene | cost | avail | octane | |
---|---|---|---|---|---|---|---|
Butane | 93.0 | 92.0 | 54.0 | 0.00 | 0.85 | 30000.0 | 92.50 |
LSR | 78.0 | 76.0 | 11.2 | 0.73 | 2.05 | 0.0 | 77.00 |
Isomerate | 83.0 | 81.1 | 13.5 | 0.00 | 2.20 | 35000.0 | 82.05 |
Reformate | 100.0 | 88.2 | 3.2 | 1.85 | 2.80 | 0.0 | 94.10 |
Reformate LB | 93.7 | 84.0 | 2.8 | 0.12 | 2.75 | 60000.0 | 88.85 |
FCC Naphtha | 92.1 | 77.1 | 1.4 | 1.06 | 2.60 | 70000.0 | 84.60 |
Alkylate | 97.3 | 95.9 | 4.6 | 0.00 | 2.75 | 40000.0 | 96.60 |
Total Volume = 217971.0 gallons.
Total Profit = 60022.2 dollars.
Profit = 27.5 cents per gallon.
Regular | Premium | Total | Available | Unused (Slack) | |
---|---|---|---|---|---|
Butane | 8480.9 | 4490.1 | 12971.0 | 30000.0 | 17029.0 |
LSR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Isomerate | 35000.0 | 0.0 | 35000.0 | 35000.0 | 0.0 |
Reformate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Reformate LB | 60000.0 | 0.0 | 60000.0 | 60000.0 | 0.0 |
FCC Naphtha | 45273.6 | 24726.4 | 70000.0 | 70000.0 | 0.0 |
Alkylate | 12943.9 | 27056.1 | 40000.0 | 40000.0 | 0.0 |
Volume | octane | RVP | benzene | |
---|---|---|---|---|
Regular | 161698.4 | 87.0 | 9.0 | 0.3 |
Premium | 56272.6 | 91.0 | 9.0 | 0.5 |
5.4.10.5. Tabular and Graphical Visualization#
The detailed results above contain a ton of information. We need to distill them down into some visualizations that are easier to share with management.
results[0].products
Volume | octane | RVP | benzene | |
---|---|---|---|---|
Regular | 161698.4 | 87.0 | 9.0 | 0.3 |
Premium | 56272.6 | 91.0 | 9.0 | 0.5 |
import pandas as pd
# Initialize an empty list to store the data for each scenario
data = []
# Iterate over the results to extract the required information
for result in results:
total_volume = round(result.total_volume,1)
total_profit = round(result.total_profit, 1)
unit_profit = round(result.unit_profit,1)
regular_volume = result.products.loc['Regular', 'Volume']
premium_volume = result.products.loc['Premium', 'Volume']
data.append([result.scenario_name, result.reformate_LB, result.isomerate, regular_volume, premium_volume, total_volume, total_profit, unit_profit])
# Create a DataFrame from the data
df_results = pd.DataFrame(data, columns=['Scenario', 'LB Reformate (gal)', 'Isomerate (gal)', 'Regular (gal)', 'Premium (gal)', 'Total Volume (gal)', 'Total Profit (USD)', 'Unit Profit (cents/gal)'])
# Set the index of the DataFrame to 'Scenario'
df_results.set_index('Scenario', inplace=True)
# Display the DataFrame
display(df_results)
LB Reformate (gal) | Isomerate (gal) | Regular (gal) | Premium (gal) | Total Volume (gal) | Total Profit (USD) | Unit Profit (cents/gal) | |
---|---|---|---|---|---|---|---|
Scenario | |||||||
A | 60000 | 35000 | 161698.4 | 56272.6 | 217971.0 | 60022.2 | 27.5 |
B | 60000 | 0 | 205345.2 | 14067.7 | 219412.8 | 63791.2 | 29.1 |
C | 0 | 35000 | 117547.4 | 53717.9 | 171265.3 | 51312.5 | 30.0 |
D | 60000 | 35000 | 161698.4 | 56272.6 | 217971.0 | 60022.2 | 27.5 |
# Create a figure with 8 subplots (2 rows, 4 columns)
fig, axs = plt.subplots(2, 4, figsize=(20, 10))
# List of columns to plot
columns = df_results.columns
# Define colors for each scenario
colors = ['red', 'blue', 'green', 'purple']
# Plot each column in a separate subplot
for i, col in enumerate(columns):
ax = axs[i // 4, i % 4]
df_results[col].plot(kind='bar', ax=ax, color=colors)
ax.set_title(col)
ax.set_xticklabels(df_results.index, rotation=45)
# Remove the eighth subplot (bottom-right) and add the legend
fig.delaxes(axs[1, 3])
handles = [plt.Rectangle((0,0),1,1, color=color) for color in colors]
labels = ['A', 'B', 'C', 'D']
fig.legend(handles, labels, loc='center', title='Scenarios', title_fontsize=22, bbox_to_anchor=(0.875, 0.3), fontsize=22)
# Adjust layout
plt.tight_layout()
plt.show()

5.4.11. Recommended Extensions#
Use the analysis code developed in Exercise 4 to revisit the question in Exercise 1: why does butane have the most marginal value?
Teach yourself about KKT/Lagrange multipliers in optimization. Next, compare the multipliers from the base case to the sensitivities computed in Exercise 1. What is the interpretation of the multipliers?