5.8. Recharging Strategy for an Electric Vehicle#

Whether it is to visit family, take a sightseeing tour or call on business associates, planning a road trip is a familiar and routine task. Here we consider a road trip on a pre-determined route for which need to plan rest and recharging stops. This example demonstrates use of Pyomo disjunctions to model the decisions on where to stop.

# Import Pyomo and solvers for Google Colab
import sys
if "google.colab" in sys.modules:
    !wget -N -q https://raw.githubusercontent.com/jckantor/MO-book/main/tools/install_on_colab.py 
    %run install_on_colab.py
installing pyomo . pyomo installed
installing and testing solvers ...
.. glpk installed
.. ipopt
.. gecode
.. couenne
.. bonmin
.. gurobi_direct installed
.. cbc installed
installation and testing complete
<Figure size 432x288 with 0 Axes>

5.8.1. Problem Statement#

The distances to the charging stations are measured relative to an arbitrary location. Given the current location \(x\), battery charge \(c\), and planning horizon \(D\), the task is to plan a series of recharging and rest stops. The objective is to drive from location \(x\) to location \(x + D\) in as little time as possible subject to the following constraints:

  • To allow for unforeseen events, the state of charge should never drop below 20% of the maximum capacity.

  • The the maximum charge is \(c_{max} = 80\) kwh.

  • For comfort, no more than 4 hours should pass between stops, and that a rest stop should last at least \(t^{rest}\).

  • Any stop includes a \(t^{lost} = 10\) minutes of “lost time”.

For this first model we make several simplifying assumptions that can be relaxed as a later time.

  • Travel is at a constant speed \(v = 100\) km per hour and a constant discharge rate \(R = 0.24\) kwh/km

  • The batteries recharge at a constant rate determined by the charging station.

  • Only consider stops at the recharging stations.

5.8.2. Charging Station Information#

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# specify number of charging stations
n_charging_stations = 20

# randomly distribute charging stations along a fixed route
np.random.seed(1842)
d = np.round(np.cumsum(np.random.triangular(20, 150, 223, n_charging_stations)), 1)

# randomly assign changing capacities
c = np.random.choice([50, 100, 150, 250], n_charging_stations, p=[0.2, 0.4, 0.3, 0.1])

# assign names to the charging stations
s = [f"S_{i:02d}" for i in range(n_charging_stations)]

stations = pd.DataFrame([s, d, c]).T
stations.columns=["name", "location", "kw"]
display(stations)
name location kw
0 S_00 191.6 150
1 S_01 310.6 100
2 S_02 516.0 50
3 S_03 683.6 50
4 S_04 769.9 50
5 S_05 869.7 100
6 S_06 1009.1 150
7 S_07 1164.7 100
8 S_08 1230.8 100
9 S_09 1350.8 250
10 S_10 1508.4 100
11 S_11 1639.8 100
12 S_12 1809.4 150
13 S_13 1947.3 250
14 S_14 2145.2 150
15 S_15 2337.5 100
16 S_16 2415.6 100
17 S_17 2590.0 100
18 S_18 2691.2 100
19 S_19 2896.2 100

5.8.3. Route Information#

# current location (km) and charge (kw)
x = 0

# planning horizon
D = 2000

# visualize
fig, ax = plt.subplots(1, 1, figsize=(15, 3))

def plot_stations(stations, x, D, ax=ax):
    
    for station in stations.index:
        xs = stations.loc[station, "location"]
        ys = stations.loc[station, "kw"]
        ax.plot([xs, xs], [0, ys], 'b', lw=10, solid_capstyle="butt")
        ax.text(xs, 0-30, stations.loc[station, "name"], ha="center")

    ax.plot([x, x+D], [0, 0], 'r', lw=5, solid_capstyle="butt", label="plan horizon")
    ax.plot([x, x+D], [0, 0], 'r.', ms=20)

    ax.axhline(0)
    ax.set_ylim(-50, 300)
    ax.set_xlabel('Distance')
    ax.set_ylabel('kw')
    ax.set_title("charging stations")
    ax.legend()

plot_stations(stations, x, D)
../../_images/ce2f1bf473bb96aec5081447eb138bd88b6aa76e21f30a2a979a64a1bc8fd798.png

5.8.4. Car Information#

# charge limits (kw)
c_max = 120
c_min = 0.2 * c_max
c = c_max

# velocity km/hr and discharge rate kwh/km
v = 100.0

# discharge rate in kwh/km
R = 0.24

# lost time at each stop
t_lost = 10/60

5.8.5. Model Development#

on_route = stations[(stations["location"] >= x) & (stations["location"] <= x + D)]

5.8.6. Modeling#

The problem statement identifies four state variables.

  • \(c\) the current battery charge

  • \(t\) elapsed time since the start of the trip

  • \(x\) the current location

The charging stations are located at positions \(d_i\) for \(i\in I\) with capacity \(C_i\). The arrival time at charging station \(i\) is given by

\[\begin{split} \begin{align*} c_i^{arr} & = c_{i-1}^{dep} - R (d_i - d_{i-1}) \\ t_i^{arr} & = t_{i-1}^{dep} + \frac{d_i - d_{i-1}}{v} \\ \end{align*} \end{split}\]

where the script \(t_{i-1}^{dep}\) refers to departure from the prior location. At each charging location there is a decision to make of whether to stop, rest, and rechange. If the decision is positive, then

\[\begin{split} \begin{align*} c_i^{dep} & \leq c^{max} \\ t_i^{dep} & \geq t_{i}^{arr} + t_{lost} + \frac{c_i^{dep} - c_i^{arr}}{C_i} \\ t_i^{dep} & \geq t_{i}^{arr} + t_{rest} \end{align*} \end{split}\]

which account for the battery charge, the lost time and time required for battery charging, and allows for a minimum rest time. On the other hand, if a decision is make to skip the charging and rest opportunity,

\[\begin{split} \begin{align*} c_i^{dep} & = c_i^{arr} \\ t_i^{dep} & = t_i^{arr} \end{align*} \end{split}\]

The latter sets of constraints have an exclusive-or relationship. That is, either one or the other of the constraint sets hold, but not both.

\[\begin{split} \begin{align*} \min t_{n+1}^{arr} & \\ \\ \text{subject to}\qquad\qquad& \\ \\ c_i^{arr} & \geq c^{min} & \forall i \in I \\ c_i^{arr} & = c_{i-1}^{dep} - R (d_i - d_{i-1}) & \forall i \in I \\ t_i^{arr} & = t_{i-1}^{dep} + \frac{d_i - d_{i-1}}{v} & \forall i \in I \\ \\ \begin{bmatrix} c_i^{dep} & \leq & c^{max} \\ t_i^{dep} & \geq & t_{i}^{arr} + t_{lost} + \frac{c_i^{dep} - c_i^{arr}}{C_i} \\ t_i^{dep} & \geq & t_{i}^{arr} + t_{rest} \end{bmatrix} & \veebar \begin{bmatrix} c_i^{dep} = c_i^{arr} \\ t_i^{dep} = t_i^{arr} \end{bmatrix}& \forall i \in I \end{align*} \end{split}\]

5.8.7. Pyomo Model#

5.8.8. Model Development#

import pyomo.environ as pyo
import pyomo.gdp as gdp

def ev_plan(stations, x, D):
    
    # find stations between x and x + D
    on_route = stations[(stations["location"] >= x) & (stations["location"] <= x + D)]

    m = pyo.ConcreteModel()

    m.n = pyo.Param(default=len(on_route))

    # locations and road segments between location x and x + D
    m.STATIONS = pyo.RangeSet(1, m.n)
    m.LOCATIONS = pyo.RangeSet(0, m.n + 1)
    m.SEGMENTS = pyo.RangeSet(1, m.n + 1)

    # distance traveled
    m.x = pyo.Var(m.LOCATIONS, domain=pyo.NonNegativeReals, bounds=(0, 10000))

    # arrival and departure charge at each charging station
    m.c_arr = pyo.Var(m.LOCATIONS, domain=pyo.NonNegativeReals, bounds=(c_min, c_max))
    m.c_dep = pyo.Var(m.LOCATIONS, domain=pyo.NonNegativeReals, bounds=(c_min, c_max))

    # arrival and departure times from each charging station
    m.t_arr = pyo.Var(m.LOCATIONS, domain=pyo.NonNegativeReals, bounds=(0, 100))
    m.t_dep = pyo.Var(m.LOCATIONS, domain=pyo.NonNegativeReals, bounds=(0, 100))

    # initial conditions
    m.x[0].fix(x)
    m.t_dep[0].fix(0.0)
    m.c_dep[0].fix(c)

    @m.Param(m.STATIONS)
    def C(m, i):
        return on_route.loc[i-1, "kw"]

    @m.Param(m.LOCATIONS)
    def location(m, i):
        if i == 0:
            return x
        elif i == m.n + 1:
            return x + D
        else:
            return on_route.loc[i-1, "location"]

    @m.Param(m.SEGMENTS)
    def dist(m, i):
        return m.location[i] - m.location[i-1]

    @m.Objective(sense=pyo.minimize)
    def min_time(m):
        return m.t_arr[m.n + 1]

    @m.Constraint(m.SEGMENTS)
    def drive_time(m, i):
        return m.t_arr[i] == m.t_dep[i-1] + m.dist[i]/v

    @m.Constraint(m.SEGMENTS)
    def drive_distance(m, i):
        return m.x[i] == m.x[i-1] + m.dist[i]

    @m.Constraint(m.SEGMENTS)
    def discharge(m, i):
        return m.c_arr[i] == m.c_dep[i-1] - R*m.dist[i]

    @m.Disjunction(m.STATIONS, xor=True)
    def recharge(m, i):
        # list of constraints thtat apply if there is no stop at station i
        disjunct_1 = [m.c_dep[i] == m.c_arr[i],
                      m.t_dep[i] == m.t_arr[i]]

        # list of constraints that apply if there is a stop at station i
        disjunct_2 = [m.t_dep[i] == t_lost + m.t_arr[i] + (m.c_dep[i] - m.c_arr[i])/m.C[i],
                      m.c_dep[i] >= m.c_arr[i]]

        # return a list disjuncts
        return [disjunct_1, disjunct_2]

    pyo.TransformationFactory("gdp.bigm").apply_to(m)
    pyo.SolverFactory('cbc').solve(m)
    
    return m

m = ev_plan(stations, 0, 1000)

results = pd.DataFrame({
    i : {"location": m.x[i](),
         "t_arr": m.t_arr[i](), 
         "t_dep": m.t_dep[i](),
         "c_arr": m.c_arr[i](),
         "c_dep": m.c_dep[i](),
        } for i in m.LOCATIONS
}).T

results["t_stop"] = results["t_dep"] - results["t_arr"]
    
display(results)
location t_arr t_dep c_arr c_dep t_stop
0 0.0 NaN 0.000000 NaN 120.000 NaN
1 191.6 1.916000 1.916000 74.016 74.016 0.000000
2 310.6 3.106000 4.018107 45.456 120.000 0.912107
3 516.0 6.072107 6.072107 70.704 70.704 0.000000
4 683.6 7.748107 8.678453 30.480 68.664 0.930347
5 769.9 9.541453 9.541453 47.952 47.952 0.000000
6 869.7 10.539453 11.018840 24.000 55.272 0.479387
7 1000.0 12.321840 NaN 24.000 NaN NaN
# visualize

def visualize(m, D):

    results = pd.DataFrame({
        i : {"location": m.x[i](),
             "t_arr": m.t_arr[i](), 
             "t_dep": m.t_dep[i](),
             "c_arr": m.c_arr[i](),
             "c_dep": m.c_dep[i](),
            } for i in m.LOCATIONS
    }).T

    fig, ax = plt.subplots(2, 1, figsize=(15, 8), sharex=True)

    for station in stations.index:
        xs = stations.loc[station, "location"]
        ys = stations.loc[station, "kw"]
        ax[0].plot([xs, xs], [0, ys], 'b', lw=10, solid_capstyle="butt")
        ax[0].text(xs, 0-30, stations.loc[station, "name"], ha="center")

    ax[0].plot([x, x+D], [0, 0], 'r', lw=5, solid_capstyle="butt", label="plan horizon")
    ax[0].plot([x, x+D], [0, 0], 'r.', ms=20)

    ax[0].axhline(0)
    ax[0].set_ylim(-50, 300)
    ax[0].set_ylabel('kw')
    ax[0].set_title("charging stations")
    ax[0].legend()

    for i in m.SEGMENTS:
        xv = [results.loc[i-1, "location"], results.loc[i, "location"]]
        cv = [results.loc[i-1, "c_dep"], results.loc[i, "c_arr"]]
        ax[1].plot(xv, cv, 'g')

    for i in m.STATIONS:
        xv = [results.loc[i, "location"]]*2
        cv = [results.loc[i, "c_arr"], results.loc[i, "c_dep"]]
        ax[1].plot(xv, cv, 'g')

    ax[1].axhline(c_max, c='g')
    ax[1].axhline(c_min, c='g')
    ax[1].set_ylim(0, 1.1*c_max)
    ax[1].set_ylabel('Charge')
    
visualize(ev_plan(stations, 0, 1000), 1000)
../../_images/33609b15b9b340e27aa0356e2256f53fa5fc8a93ec55ce8257a726d69044704c.png

5.8.9. Suggested Exercises#

  1. Does increasing the battery capacity \(c^{max}\) significantly reduce the time required to travel 2000 km? Explain what you observe.

  2. “The best-laid schemes of mice and men go oft awry” (Robert Burns, “To a Mouse”). Modify this model so that it can be used to update a plans in response to real-time measurements. How does the charging strategy change as a function of planning horizon \(D\)?