5.4. Gasoline Blending#

The task is to determine the most profitable blend of gasoline products from given set of refinery streams.

# install Pyomo and solvers for Google Colab
import sys
on_colab = "google.colab" in sys.modules
if on_colab:
    !wget "https://raw.githubusercontent.com/IDAES/idaes-pse/main/scripts/colab_helper.py"
    import colab_helper
    colab_helper.install_idaes()
    colab_helper.install_ipopt()
import pandas as pd
import pyomo.environ as pyo

# Set default font sizes for plots
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 18

5.4.1. Gasoline Product Specifications#

The gasoline products include regular and premium gasoline. In addition to the current price, the specifications include

  • octane the minimum road octane number. Road octane is the computed as the average of the Research Octane Number (RON) and Motor Octane Number (MON).

  • Reid Vapor Pressure Upper and lower limits are specified for the Reid vapor pressure. The Reid vapor pressure is the absolute pressure exerted by the liquid at 100°F.

  • benzene the maximum volume percentage of benzene allowed in the final product. Benzene helps to increase octane rating, but is also a treacherous environmental contaminant.

products = pd.DataFrame({
    'Regular'        : {'price': 2.75, 'octane': 87, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
    'Premium'        : {'price': 2.85, 'octane': 91, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
}).T

display(products)
price octane RVPmin RVPmax benzene
Regular 2.75 87.0 0.0 15.0 1.1
Premium 2.85 91.0 0.0 15.0 1.1

5.4.2. Stream Specifications#

A typical refinery produces many intermediate streams that can be incorporated in a blended gasoline product. Here we provide data on seven streams that include:

  • Butane n-butane is a C4 product stream produced from the light components of the crude being processed by the refinery. Butane is a highly volatile of gasoline.

  • LSR Light straight run naptha is a 90°F to 190°F cut from the crude distillation column primarily consisting of straight chain C5-C6 hydrocarbons.

  • Isomerate is the result of isomerizing LSR to produce branched molecules that results in higher octane number.

  • Reformate is result of catalytic reforming heavy straight run napthenes to produce a high octane blending component, as well by-product hydrogen used elsewhere in the refinery for hydro-treating.

  • Reformate LB is a is a low benzene variant of reformate.

  • FCC Naphta is the product of a fluidized catalytic cracking unit designed to produce gasoline blending components from long chain hydrocarbons present in the crude oil being processed by the refinery.

  • Alkylate The alkylation unit reacts iso-butane with low-molecular weight alkenes to produce a high octane blending component for gasoline.

The stream specifications include research octane and motor octane numbers for each blending component, the Reid vapor pressure, the benzene content, cost, and availability (in gallons per day). The road octane number is computed as the average of the RON and MON.

streams = pd.DataFrame({
    'Butane'       : {'RON': 93.0, 'MON': 92.0, 'RVP': 54.0, 'benzene': 0.00, 'cost': 0.85, 'avail': 30000},
    'LSR'          : {'RON': 78.0, 'MON': 76.0, 'RVP': 11.2, 'benzene': 0.73, 'cost': 2.05, 'avail': 35000},
    'Isomerate'    : {'RON': 83.0, 'MON': 81.1, 'RVP': 13.5, 'benzene': 0.00, 'cost': 2.20, 'avail': 0},
    'Reformate'    : {'RON':100.0, 'MON': 88.2, 'RVP':  3.2, 'benzene': 1.85, 'cost': 2.80, 'avail': 60000},
    'Reformate LB' : {'RON': 93.7, 'MON': 84.0, 'RVP':  2.8, 'benzene': 0.12, 'cost': 2.75, 'avail': 0},
    'FCC Naphtha'  : {'RON': 92.1, 'MON': 77.1, 'RVP':  1.4, 'benzene': 1.06, 'cost': 2.60, 'avail': 70000},
    'Alkylate'     : {'RON': 97.3, 'MON': 95.9, 'RVP':  4.6, 'benzene': 0.00, 'cost': 2.75, 'avail': 40000},
}).T

streams['octane'] = (streams['RON'] + streams['MON'])/2

display(streams)
RON MON RVP benzene cost avail octane
Butane 93.0 92.0 54.0 0.00 0.85 30000.0 92.50
LSR 78.0 76.0 11.2 0.73 2.05 35000.0 77.00
Isomerate 83.0 81.1 13.5 0.00 2.20 0.0 82.05
Reformate 100.0 88.2 3.2 1.85 2.80 60000.0 94.10
Reformate LB 93.7 84.0 2.8 0.12 2.75 0.0 88.85
FCC Naphtha 92.1 77.1 1.4 1.06 2.60 70000.0 84.60
Alkylate 97.3 95.9 4.6 0.00 2.75 40000.0 96.60

5.4.3. Questions we want to Answer#

  1. What is the maximum profit possible using the current product specifications and available streams?

  2. What are the marginal values of each blending stream? That is, how much would you be willing to pay for each additional gallon of the blending streams?

  3. A marketing team says there is an opportunity to create a mid-grade gasoline product with a road octane number of 89 that would sell for $2.82/gallon, and with all other specifications the same. Would an additional profit be created? What at what price point does the mid-grade product enhance profits?

  4. New environmental regulations have reduced the allowable benzene levels from 1.1 vol% to 0.62 vol%, and the maximum Reid vapor pressure from 15.0 to 9.0. What is the impact on profits?

5.4.4. Blending Model#

This simplified blending model assumes the product attributes can be computed as linear volume weighted averages of the component properties. Let the decision variable \(x_{s,p} \geq 0\) be the volume, in gallons, of blending component \(s \in S\) used in the final product \(p \in P\).

5.4.4.1. Objective#

The objective is maximize profit, which is the difference between product revenue and stream costs.

(5.1)#\[\begin{align} \text{profit} & = \max_{x_{s,p}}\left( \sum_{p\in P} \text{Price}_p \sum_{s\in S} x_{s,p} - \sum_{s\in S} \text{Cost}_s \sum_{p\in P} x_{s,p}\right) \\ & = \max_{x_{s,p}}\left(\sum_{p\in P}\sum_{s\in S}x_{s,p}(\text{Price}_p - \text{Cost}_s)\right) \end{align}\]

5.4.4.2. Raw Materials#

The first constraints in any blending problem are normally the limits on available raw materials.

The blending constraint for octane can be written as

(5.2)#\[\begin{align} \frac{\sum_{s \in S} x_{s,p} \text{Octane}_s}{\sum_{s \in S} x_{s,p}} & \geq \text{Octane}_p & \forall p \in P \end{align}\]

where \(\text{Octane}_s\) refers to the octane rating of stream \(s\), whereas \(\text{Octane}_p\) refers to the octane rating of product \(p\). Multiplying through by the denominator, and consolidating terms gives

(5.3)#\[\begin{align} \sum_{s \in S} x_{s,p}\left(\text{Octane}_s - \text{Octane}_p\right) & \geq 0 & \forall p \in P \end{align}\]

The same assumptions and development apply to the benzene constraint

(5.4)#\[\begin{align} \sum_{s \in S} x_{s,p}\left(\text{Benzene}_s - \text{Benzene}_p\right) & \leq 0 & \forall p \in P \end{align}\]

Reid vapor pressure, however, follows a somewhat different mixing rule. For the Reid vapor pressure we have

(5.5)#\[\begin{align} \sum_{s \in S} x_{s,p}\left(\text{RVP}_s^{1.25} - \text{RVP}_{min,p}^{1.25}\right) & \geq 0 & \forall p \in P \\ \sum_{s \in S} x_{s,p}\left(\text{RVP}_s^{1.25} - \text{RVP}_{max,p}^{1.25}\right) & \leq 0 & \forall p \in P \end{align}\]

This model is implemented in the following cell.

5.4.5. Pyomo Implementation#

import pyomo.environ as pyo

def gas_blending(products, streams):
    ''' Gasoline blending optimization problem

    Arguments:
        products: DataFrame with columns ['price', 'octane', 'RVPmin', 'RVPmax', 'benzene']
        streams: DataFrame with columns ['RON', 'MON', 'RVP', 'benzene', 'cost', 'avail']
        max_benzene: maximum benzene content in the final product (float)
        max_RVP: maximum Reid vapor pressure in the final product (float)
    
    Returns:
        m: Pyomo model (solved)

    '''

    m = pyo.ConcreteModel("Gasoline Blending")
    
    m.PRODUCTS = pyo.Set(initialize=products.index)
    m.STREAMS = pyo.Set(initialize=streams.index)
    
    m.x = pyo.Var(m.STREAMS, m.PRODUCTS, domain=pyo.NonNegativeReals)
    
    @m.Objective(sense=pyo.maximize)
    def profit(m):
        return sum(sum(m.x[s, p]*(products.loc[p, 'price'] - streams.loc[s, 'cost']) for s in m.STREAMS) for p in m.PRODUCTS)
    
    @m.Constraint(m.STREAMS)
    def raw_material_available(m, s):
        return sum(m.x[s, p] for p in m.PRODUCTS) <= streams.loc[s, 'avail']
    
    @m.Constraint(m.PRODUCTS)
    def octane(m, p):
        return sum(m.x[s, p]*(streams.loc[s, 'octane'] - products.loc[p, 'octane']) for s in m.STREAMS) >= 0
    
    @m.Constraint(m.PRODUCTS)
    def benzene(m, p):
        return sum(m.x[s, p]*(streams.loc[s, 'benzene'] - products.loc[p, 'benzene']) for s in m.STREAMS) <= 0
   
    @m.Constraint(m.PRODUCTS)
    def min_reid_vapor_pressure(m, p):
        return sum(m.x[s, p]*(streams.loc[s, 'RVP']**1.25 - products.loc[p, 'RVPmin']**1.25) for s in m.STREAMS) >= 0
 
    @m.Constraint(m.PRODUCTS)
    def max_reid_vapor_pressure(m, p):
        return sum(m.x[s, p]*(streams.loc[s, 'RVP']**1.25 - products.loc[p, 'RVPmax']**1.25) for s in m.STREAMS) <= 0

    solver = pyo.SolverFactory('cbc')
    solver.solve(m)
    
    # display results
    vol = sum(m.x[s,p]() for s in m.STREAMS for p in m.PRODUCTS)
    print("Total Volume =", round(vol, 1), "gallons.")
    print("Total Profit =", round(m.profit(), 1), "dollars.")
    print("Profit =", round(100*m.profit()/vol,1), "cents per gallon.")

    return m

m = gas_blending(products, streams)

    
soln = pd.DataFrame({s: {p: m.x[s,p]() for p in m.PRODUCTS} for s in m.STREAMS}).T
display(soln)
Total Volume = 235000.0 gallons.
Total Profit = 100425.0 dollars.
Profit = 42.7 cents per gallon.
Regular Premium
Butane 2.175457e+04 8245.428
LSR 9.211560e+03 25788.439
Isomerate 0.000000e+00 0.000
Reformate 1.978387e+04 40216.132
Reformate LB 0.000000e+00 0.000
FCC Naphtha 7.000000e+04 0.000
Alkylate -7.275958e-12 40000.000

5.4.6. Display Results#

5.4.6.1. Results for each Stream#

def get_stream_results(m, streams):
    ''' Extract stream results from Pyomo model

    Argument:
        m: Pyomo model
        streams: DataFrame with columns ['RON', 'MON', 'RVP', 'benzene', 'cost', 'avail']

    Returns:
        stream_results: DataFrame with columns ['Total', 'Available', 'Unused (Slack)']
    
    '''

    # Create empty DataFrame
    stream_results = pd.DataFrame()

    # Loop over streams
    for s in m.STREAMS:

        # Loop over products
        for p in m.PRODUCTS:
            stream_results.loc[s,p] = round(m.x[s,p](), 1)
        
        # Calculate total volume, copy available volume
        stream_results.loc[s,'Total'] = round(sum(m.x[s,p]() for p in m.PRODUCTS), 1)
        stream_results.loc[s,'Available'] = streams.loc[s,'avail']
    
    # Calculate unused volume (slack)
    stream_results['Unused (Slack)'] = stream_results['Available'] - stream_results['Total']
    
    # Return DataFrame
    return stream_results

sr = get_stream_results(m, streams)
display(sr)
Regular Premium Total Available Unused (Slack)
Butane 21754.6 8245.4 30000.0 30000.0 0.0
LSR 9211.6 25788.4 35000.0 35000.0 0.0
Isomerate 0.0 0.0 0.0 0.0 0.0
Reformate 19783.9 40216.1 60000.0 60000.0 0.0
Reformate LB 0.0 0.0 0.0 0.0 0.0
FCC Naphtha 70000.0 0.0 70000.0 70000.0 0.0
Alkylate -0.0 40000.0 40000.0 40000.0 0.0

5.4.6.2. Results for each Product#

def get_product_results(m, streams, products):

    product_results = pd.DataFrame()
    for p in m.PRODUCTS:
        product_results.loc[p,'Volume'] = round(sum(m.x[s,p]() for s in m.STREAMS), 1)
        product_results.loc[p,'octane'] = round(sum(m.x[s,p]()*streams.loc[s,'octane'] for s in m.STREAMS)
                                                /product_results.loc[p,'Volume'], 1)
        product_results.loc[p,'RVP'] = round((sum(m.x[s,p]()*streams.loc[s,'RVP']**1.25 for s in m.STREAMS)
                                                /product_results.loc[p,'Volume'])**0.8, 1)
        product_results.loc[p,'benzene'] = round(sum(m.x[s,p]()*streams.loc[s,'benzene'] for s in m.STREAMS)
                                                /product_results.loc[p,'Volume'], 1)

    return product_results

pr = get_product_results(m, streams, products)
display(pr)
Volume octane RVP benzene
Regular 120750.0 87.0 15.0 1.0
Premium 114250.0 91.0 10.6 0.8

5.4.7. Excercise 0.#

What are the marginal blending rates of each stream?

Perturb the avail of each stream and record the results. We can then calculate the partial derivative of profit with respect to each perturbation.

senstivity = {}

base_profit = m.profit()

for s in streams.index:
    epsilon = 1
    streams_perturb = streams.copy()
    streams_perturb.loc[s, 'avail'] += epsilon

    print("\n1 gallon increase in ",s," availability:")
    m_perturb = gas_blending(products, streams_perturb)
    perturb_profit = m_perturb.profit()
    senstivity[s] = (perturb_profit - base_profit)/epsilon

print("\nSensitivity of profit to stream availability, $/gallon:")
display(pd.Series(senstivity, name='sensitivity'))
1 gallon increase in  Butane  availability:
Total Volume = 235001.0 gallons.
Total Profit = 100427.0 dollars.
Profit = 42.7 cents per gallon.

1 gallon increase in  LSR  availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.5 dollars.
Profit = 42.7 cents per gallon.

1 gallon increase in  Isomerate  availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.4 dollars.
Profit = 42.7 cents per gallon.

1 gallon increase in  Reformate  availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.1 dollars.
Profit = 42.7 cents per gallon.

1 gallon increase in  Reformate LB  availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.0 dollars.
Profit = 42.7 cents per gallon.

1 gallon increase in  FCC Naphtha  availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.1 dollars.
Profit = 42.7 cents per gallon.

1 gallon increase in  Alkylate  availability:
Total Volume = 235001.0 gallons.
Total Profit = 100425.2 dollars.
Profit = 42.7 cents per gallon.

Sensitivity of profit to stream availability, $/gallon:
Butane          2.03903
LSR             0.45047
Isomerate       0.42595
Reformate       0.12836
Reformate LB    0.04665
FCC Naphtha     0.08971
Alkylate        0.24160
Name: sensitivity, dtype: float64

Which feed stream is most valuable and why?

5.4.8. Exercise 1.#

The marketing team says there is an opportunity to create a mid-grade gasoline product with a road octane number of 89 that would sell for $2.82/gallon, and with all other specifications the same. Could an additional profit be created?

Create a new cell (or cells) below to compute a solution to this exercise.

products1 = pd.DataFrame({
    'Regular'        : {'price': 2.75, 'octane': 87, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
    'Midgrade'       : {'price': 2.82, 'octane': 89, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
    'Premium'        : {'price': 2.85, 'octane': 91, 'RVPmin': 0.0, 'RVPmax': 15.0, 'benzene': 1.1},
}).T

display(products1)

m1 = gas_blending(products1, streams)

sr1 = get_stream_results(m1, streams)
display(sr1)

pr1 = get_product_results(m1, streams, products1)
display(pr1)
price octane RVPmin RVPmax benzene
Regular 2.75 87.0 0.0 15.0 1.1
Midgrade 2.82 89.0 0.0 15.0 1.1
Premium 2.85 91.0 0.0 15.0 1.1
Total Volume = 235000.0 gallons.
Total Profit = 104995.0 dollars.
Profit = 44.7 cents per gallon.
Regular Midgrade Premium Total Available Unused (Slack)
Butane 849.5 29150.5 0.0 30000.0 30000.0 0.0
LSR 2646.2 32353.8 0.0 35000.0 35000.0 0.0
Isomerate 0.0 0.0 0.0 0.0 0.0 0.0
Reformate 2820.7 57179.3 0.0 60000.0 60000.0 0.0
Reformate LB 0.0 0.0 0.0 0.0 0.0 0.0
FCC Naphtha 0.0 70000.0 0.0 70000.0 70000.0 0.0
Alkylate 183.6 39816.4 0.0 40000.0 40000.0 0.0
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:6: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'octane'] = round(sum(m.x[s,p]()*streams.loc[s,'octane'] for s in m.STREAMS)
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:8: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'RVP'] = round((sum(m.x[s,p]()*streams.loc[s,'RVP']**1.25 for s in m.STREAMS)
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:10: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'benzene'] = round(sum(m.x[s,p]()*streams.loc[s,'benzene'] for s in m.STREAMS)
Volume octane RVP benzene
Regular 6500.0 87.0 15.0 1.1
Midgrade 228500.0 89.0 12.8 0.9
Premium 0.0 NaN NaN NaN

5.4.9. Exercise 2.#

New environmental regulations have reduced the allowable benzene levels from 1.1 vol% to 0.62 vol%, and the maximum Reid vapor pressure from 15.0 to 9.0.

Compared to the base case (i.e., without the midgrade product), how does this change profitability?

products2 = pd.DataFrame({
    'Regular'        : {'price': 2.75, 'octane': 87, 'RVPmin': 0.0, 'RVPmax': 9.0, 'benzene': 0.62},
    'Premium'        : {'price': 2.85, 'octane': 91, 'RVPmin': 0.0, 'RVPmax': 9.0, 'benzene': 0.62},
}).T

display(products2)

m2 = gas_blending(products2, streams)

sr2 = get_stream_results(m2, streams)
display(sr2)

pr2 = get_product_results(m2, streams, products2)
display(pr2)
price octane RVPmin RVPmax benzene
Regular 2.75 87.0 0.0 9.0 0.62
Premium 2.85 91.0 0.0 9.0 0.62
Total Volume = 137317.1 gallons.
Total Profit = 44493.6 dollars.
Profit = 32.4 cents per gallon.
Regular Premium Total Available Unused (Slack)
Butane 8187.5 0.0 8187.5 30000.0 21812.5
LSR 28305.3 0.0 28305.3 35000.0 6694.7
Isomerate 0.0 0.0 0.0 0.0 0.0
Reformate 0.0 0.0 0.0 60000.0 60000.0
Reformate LB 0.0 0.0 0.0 0.0 0.0
FCC Naphtha 60824.3 0.0 60824.3 70000.0 9175.7
Alkylate 40000.0 0.0 40000.0 40000.0 0.0
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:6: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'octane'] = round(sum(m.x[s,p]()*streams.loc[s,'octane'] for s in m.STREAMS)
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:8: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'RVP'] = round((sum(m.x[s,p]()*streams.loc[s,'RVP']**1.25 for s in m.STREAMS)
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:10: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'benzene'] = round(sum(m.x[s,p]()*streams.loc[s,'benzene'] for s in m.STREAMS)
Volume octane RVP benzene
Regular 137317.1 87.0 9.0 0.6
Premium 0.0 NaN NaN NaN

5.4.10. Exercise 3.#

Given the new product specifications in Exercise 2, let’s consider using different refinery streams. In place of Reformate, the refinery could produce Reformate LB. (That is, one or the other of the two streams could be 60000 gallons per day, but not both). Same for LSR and Isomerate.

How should the refinery be operated to maximize profitability? Why is this the best solution? What intutition can you develop from the results?

5.4.10.1. Scenario A: Reformate and LSR (base)#

def exercise3(reformate_LB=True, isomerate=True):
    ''' Sensitivity analysis for gasoline blending problem replacement feedstocks

    Arguments:
        reformate_LB: replace Reformate with Reformate LB stream (boolean)
        isomerate: replace LSR with Isomerate stream (boolean)

    '''

    if reformate_LB:
        reformate = 0
        reformate_LB = 60000
    else:
        reformate = 60000
        reformate_LB = 0

    if isomerate:
        LSR = 0
        isomerate = 35000
    else:
        LSR = 35000
        isomerate = 0

    streams3 = pd.DataFrame({
        'Butane'       : {'RON': 93.0, 'MON': 92.0, 'RVP': 54.0, 'benzene': 0.00, 'cost': 0.85, 'avail': 30000},
        'LSR'          : {'RON': 78.0, 'MON': 76.0, 'RVP': 11.2, 'benzene': 0.73, 'cost': 2.05, 'avail': LSR},
        'Isomerate'    : {'RON': 83.0, 'MON': 81.1, 'RVP': 13.5, 'benzene': 0.00, 'cost': 2.20, 'avail': isomerate},
        'Reformate'    : {'RON':100.0, 'MON': 88.2, 'RVP':  3.2, 'benzene': 1.85, 'cost': 2.80, 'avail': reformate},
        'Reformate LB' : {'RON': 93.7, 'MON': 84.0, 'RVP':  2.8, 'benzene': 0.12, 'cost': 2.75, 'avail': reformate_LB},
        'FCC Naphtha'  : {'RON': 92.1, 'MON': 77.1, 'RVP':  1.4, 'benzene': 1.06, 'cost': 2.60, 'avail': 70000},
        'Alkylate'     : {'RON': 97.3, 'MON': 95.9, 'RVP':  4.6, 'benzene': 0.00, 'cost': 2.75, 'avail': 40000},
    }).T

    streams3['octane'] = (streams3['RON'] + streams3['MON'])/2

    display(streams3)

    m3 = gas_blending(products2, streams3)

    sr3 = get_stream_results(m3, streams3)
    display(sr3)

    pr3 = get_product_results(m3, streams3, products2)
    display(pr3)

    return None

exercise3(reformate_LB=False, isomerate=False)
RON MON RVP benzene cost avail octane
Butane 93.0 92.0 54.0 0.00 0.85 30000.0 92.50
LSR 78.0 76.0 11.2 0.73 2.05 35000.0 77.00
Isomerate 83.0 81.1 13.5 0.00 2.20 0.0 82.05
Reformate 100.0 88.2 3.2 1.85 2.80 60000.0 94.10
Reformate LB 93.7 84.0 2.8 0.12 2.75 0.0 88.85
FCC Naphtha 92.1 77.1 1.4 1.06 2.60 70000.0 84.60
Alkylate 97.3 95.9 4.6 0.00 2.75 40000.0 96.60
Total Volume = 137317.1 gallons.
Total Profit = 44493.6 dollars.
Profit = 32.4 cents per gallon.
Regular Premium Total Available Unused (Slack)
Butane 8187.5 0.0 8187.5 30000.0 21812.5
LSR 28305.3 0.0 28305.3 35000.0 6694.7
Isomerate 0.0 0.0 0.0 0.0 0.0
Reformate 0.0 0.0 0.0 60000.0 60000.0
Reformate LB 0.0 0.0 0.0 0.0 0.0
FCC Naphtha 60824.3 0.0 60824.3 70000.0 9175.7
Alkylate 40000.0 0.0 40000.0 40000.0 0.0
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:6: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'octane'] = round(sum(m.x[s,p]()*streams.loc[s,'octane'] for s in m.STREAMS)
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:8: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'RVP'] = round((sum(m.x[s,p]()*streams.loc[s,'RVP']**1.25 for s in m.STREAMS)
/var/folders/3w/vr4xmyqs451dg23xk88pqcg00000gq/T/ipykernel_97102/2558176032.py:10: RuntimeWarning: invalid value encountered in scalar divide
  product_results.loc[p,'benzene'] = round(sum(m.x[s,p]()*streams.loc[s,'benzene'] for s in m.STREAMS)
Volume octane RVP benzene
Regular 137317.1 87.0 9.0 0.6
Premium 0.0 NaN NaN NaN

5.4.10.2. Scenario B: Reformate LB and LSR#

exercise3(reformate_LB=True, isomerate=False)
RON MON RVP benzene cost avail octane
Butane 93.0 92.0 54.0 0.00 0.85 30000.0 92.50
LSR 78.0 76.0 11.2 0.73 2.05 35000.0 77.00
Isomerate 83.0 81.1 13.5 0.00 2.20 0.0 82.05
Reformate 100.0 88.2 3.2 1.85 2.80 0.0 94.10
Reformate LB 93.7 84.0 2.8 0.12 2.75 60000.0 88.85
FCC Naphtha 92.1 77.1 1.4 1.06 2.60 70000.0 84.60
Alkylate 97.3 95.9 4.6 0.00 2.75 40000.0 96.60
Total Volume = 219412.8 gallons.
Total Profit = 63791.2 dollars.
Profit = 29.1 cents per gallon.
Regular Premium Total Available Unused (Slack)
Butane 13290.3 1122.5 14412.8 30000.0 15587.2
LSR 35000.0 0.0 35000.0 35000.0 0.0
Isomerate 0.0 0.0 0.0 0.0 0.0
Reformate 0.0 0.0 0.0 0.0 0.0
Reformate LB 60000.0 0.0 60000.0 60000.0 0.0
FCC Naphtha 63818.6 6181.4 70000.0 70000.0 0.0
Alkylate 33236.2 6763.8 40000.0 40000.0 0.0
Volume octane RVP benzene
Regular 205345.2 87.0 9.0 0.5
Premium 14067.7 91.0 9.0 0.5

5.4.10.3. Scenario C: Reformate and Isomerate#

exercise3(reformate_LB=False, isomerate=True)
RON MON RVP benzene cost avail octane
Butane 93.0 92.0 54.0 0.00 0.85 30000.0 92.50
LSR 78.0 76.0 11.2 0.73 2.05 0.0 77.00
Isomerate 83.0 81.1 13.5 0.00 2.20 35000.0 82.05
Reformate 100.0 88.2 3.2 1.85 2.80 60000.0 94.10
Reformate LB 93.7 84.0 2.8 0.12 2.75 0.0 88.85
FCC Naphtha 92.1 77.1 1.4 1.06 2.60 70000.0 84.60
Alkylate 97.3 95.9 4.6 0.00 2.75 40000.0 96.60
Total Volume = 171265.3 gallons.
Total Profit = 51312.5 dollars.
Profit = 30.0 cents per gallon.
Regular Premium Total Available Unused (Slack)
Butane 7447.5 1528.9 8976.4 30000.0 21023.6
LSR 0.0 0.0 0.0 0.0 0.0
Isomerate 18754.0 16246.0 35000.0 35000.0 0.0
Reformate 0.0 17288.9 17288.9 60000.0 42711.1
Reformate LB 0.0 0.0 0.0 0.0 0.0
FCC Naphtha 68754.2 1245.8 70000.0 70000.0 0.0
Alkylate 22591.8 17408.2 40000.0 40000.0 0.0
Volume octane RVP benzene
Regular 117547.4 87.0 9.0 0.6
Premium 53717.9 91.0 9.0 0.6

5.4.10.4. Scenario D: Reformate LB and Isomerate#

exercise3(reformate_LB=True, isomerate=True)
RON MON RVP benzene cost avail octane
Butane 93.0 92.0 54.0 0.00 0.85 30000.0 92.50
LSR 78.0 76.0 11.2 0.73 2.05 0.0 77.00
Isomerate 83.0 81.1 13.5 0.00 2.20 35000.0 82.05
Reformate 100.0 88.2 3.2 1.85 2.80 0.0 94.10
Reformate LB 93.7 84.0 2.8 0.12 2.75 60000.0 88.85
FCC Naphtha 92.1 77.1 1.4 1.06 2.60 70000.0 84.60
Alkylate 97.3 95.9 4.6 0.00 2.75 40000.0 96.60
Total Volume = 217971.0 gallons.
Total Profit = 60022.2 dollars.
Profit = 27.5 cents per gallon.
Regular Premium Total Available Unused (Slack)
Butane 8480.9 4490.1 12971.0 30000.0 17029.0
LSR 0.0 0.0 0.0 0.0 0.0
Isomerate 35000.0 0.0 35000.0 35000.0 0.0
Reformate 0.0 0.0 0.0 0.0 0.0
Reformate LB 60000.0 0.0 60000.0 60000.0 0.0
FCC Naphtha 45273.6 24726.4 70000.0 70000.0 0.0
Alkylate 12943.9 27056.1 40000.0 40000.0 0.0
Volume octane RVP benzene
Regular 161698.4 87.0 9.0 0.3
Premium 56272.6 91.0 9.0 0.5