CBE60499
¶
Index of Figures in this Repository
¶
4_1_questions.png
¶
4.1.1.3 Key Questions
active_constraints2.png
¶
4.3.2 Sensitivity Analysis
active_constraints.png
¶
4.3.1 Active Sets
alg2-1.png
¶
3.4.3 Algorithm 2.1: Basic Newton Method
alg3-1.png
¶
3.5.1 Unconstrained Optimization with Approximate Hessian
Alg3-2.png
¶
3.6.3 Line Search
Alg3-3.png
¶
3.6.4.1 Main Idea and General Algorithm
alg5-1.png
¶
4.7 Simple Netwon Method for Equality Constrained NLPs
alg5-2a.png
¶
4.8 Inertia-Corrected Netwon Method for Equality Constrained NLPs
alg5-2b.png
¶
4.8 Inertia-Corrected Netwon Method for Equality Constrained NLPs
apps_table.png
¶
2.0.2 Taxonomy of Optimization Problems
battery.png
¶
1.1 60 Minutes to Pyomo: An Energy Storage Model Predictive Control Example
1.1.1.3 Optimization Mathematical Model
casadi-error1.png
¶
2.4.3.1 Formulation 1: Index-3 DAE
casadi-error2.png
¶
2.4.3.1 Formulation 1: Index-3 DAE
classification.png
¶
2.0.2 Taxonomy of Optimization Problems
cone1.png
¶
4.5 Second Order Optimality Conditions
4.5.1 Helpful Cones
cone2.png
¶
4.5 Second Order Optimality Conditions
4.5.1 Helpful Cones
constrained_analysis.png
¶
4.2.3.7 Analysis without Constraints
4.2.3.8 Analysis with Constraints
dae_form1.png
¶
2.4.2 DAE Index Reduction
dae_form2.png
¶
2.4.2 DAE Index Reduction
dae_reduction.png
¶
2.4.2 DAE Index Reduction
def-4-6.png
¶
4.3.2 Sensitivity Analysis
def-4-12.png
¶
4.4.2.2 Linearly Independent Constraint Qualification (LICQ)
)
def-4-19.png
¶
4.5.4 Reduced Hessian
def_4_1_a.png
¶
4.1.1.2 Types of Constrained Optimal Solutions
def_4_1_b.png
¶
4.1.1.2 Types of Constrained Optimal Solutions
descent_direction.png
¶
3.6.2.5 Descent Properties
det.png
¶
3.1.2 Determinant
det_ex1.png
¶
3.1.2 Determinant
det_ex2.png
¶
3.1.2 Determinant
dynamic_optimization_strategies.png
¶
2.4.1 Dynamic Optimization Overview
eig.png
¶
3.1.7 Eigenvectors and Eigenvalues
eq_6_56.png
¶
4.9.1.1 Background
eq_6_57.png
¶
4.9.1.1 Background
eq_6_58.png
¶
4.9.1.1 Background
eq_6_59.png
¶
4.9.1.1 Background
eqn5-12.png
¶
4.8 Inertia-Corrected Netwon Method for Equality Constrained NLPs
errata_83.png
¶
4.5.5 Example
ex2-19.png
¶
3.3.4 Example 2.19 in Biegler (2010)
)
3.4.1 Test Problem: Example 2.19
3.5.3 Test Case: Example 2.19
3.9.3.4 Return of Example 2.19
ex-4-7.png
¶
4.3.2 Sensitivity Analysis
ex-4-7b.png
¶
4.3.2 Sensitivity Analysis
ex-4-20.png
¶
4.5.5 Example
feasible.png
¶
2.2 Integer Programs
2.2.2.4 Why rounding does not always work
general_nlp.png
¶
4.1.1.1 Canonical Nonlinear Program
imt1.png
¶
3.1.6 Invertable Matrix Theorem
imt2.png
¶
3.1.6 Invertable Matrix Theorem
imt3.png
¶
3.1.6 Invertable Matrix Theorem
imt4.png
¶
3.1.6 Invertable Matrix Theorem
inv.png
¶
3.1.4 Inverse
ip_bounds_G.png
¶
4.9.1.2 Problem Formulation
kkt_1.png
¶
4.2.2 Karush-Kuhn-Tucker (KKT) Necessary Conditions
-Necessary-Conditions)
kkt_2.png
¶
4.2.2 Karush-Kuhn-Tucker (KKT) Necessary Conditions
-Necessary-Conditions)
limiting_directions.png
¶
4.4.1.1 Concepts
linear-opt-4-3.png
¶
4.4.1.2 Linear Constrainted Optimization Problems
4.4.2.1 Nonlinear Constrained Optimization Problems
linesearch_conditions.png
¶
3.6.3 Line Search
LM-TR.png
¶
3.6.4.2.1 Levenburg-Marquardt
logical_modeling1.png
¶
2.3.1 Logical Modeling
logical_modeling2.png
¶
2.3.1 Logical Modeling
logical_rules.png
¶
2.3.1 Logical Modeling
mat_op1.png
¶
3.1.1 Notation (for textbook)
)
mat_op2.png
¶
3.1.1 Notation (for textbook)
)
minlp.png
¶
2.0.2 Taxonomy of Optimization Problems
nlp_book_cover.jpg
¶
2.0.1 Recommended Reading
nonlinear-opt-4-3.png
¶
4.4.2.1 Nonlinear Constrained Optimization Problems
nonlinear-opt-4-3b.png
¶
4.4.2.1 Nonlinear Constrained Optimization Problems
norm1.png
¶
3.1.9 Vector and Matrix Norms
norm2.png
¶
3.1.9 Vector and Matrix Norms
pack1.png
¶
2.1 Continuous Optimization
2.1.2 Nonlinear Programs: Circle Packing Example
4.1 Convexity Revisited
4.1.3 Circle Packing Example
pack2.png
¶
2.1 Continuous Optimization
2.1.2.1 Propose an Optimization Model
4.1 Convexity Revisited
4.1.3.1 Optimization Model and Pyomo Implementation
pack3.png
¶
2.1 Continuous Optimization
2.1.2.1 Propose an Optimization Model
4.1 Convexity Revisited
4.1.3.1 Optimization Model and Pyomo Implementation
PD-TR2.png
¶
3.6.4.2.2 Powell Dogleg
PD-TR.png
¶
3.6.4.2.2 Powell Dogleg
projected-reduced-Hessian1.png
¶
4.5.4 Reduced Hessian
projected-reduced-Hessian2.png
¶
4.5.4 Reduced Hessian
pyomo-table-4.1.png
¶
1.1 60 Minutes to Pyomo: An Energy Storage Model Predictive Control Example
1.1.2.3 Variables
pyomo-table-4.2.png
¶
1.1 60 Minutes to Pyomo: An Energy Storage Model Predictive Control Example
1.1.2.3 Variables
pyomo-table-4.3.png
¶
1.1 60 Minutes to Pyomo: An Energy Storage Model Predictive Control Example
1.1.2.5 Objectives
pyomo-table-4.4.png
¶
1.1 60 Minutes to Pyomo: An Energy Storage Model Predictive Control Example
1.1.2.6 Constraints
pyomo-table-4.6.png
¶
1.1 60 Minutes to Pyomo: An Energy Storage Model Predictive Control Example
1.1.2.4 Parameters (Constants / Data)
)
pyomo_book_cover.jpg
¶
2.0.1 Recommended Reading
quad1.png
¶
3.2.1 Eigenvalues and Quadratic Programs
rank.png
¶
3.1.3 Rank
sequential_dae_optimization.png
¶
2.4.1 Dynamic Optimization Overview
strip_packing.png
¶
2.3 Logical Modeling and Generalized Disjunctive Programs
2.3.2 Pyomo.GDP: Strip Packing Problem
Thm3-3.png
¶
3.6.3 Line Search
Thm3-4.png
¶
3.6.3 Line Search
thm-4-8.png
¶
4.4.1.1 Concepts
thm-4-9.png
¶
4.4.1.2 Linear Constrainted Optimization Problems
thm-4-11.png
¶
4.4.1.2 Linear Constrainted Optimization Problems
thm-4-14.png
¶
4.4.2.2 Linearly Independent Constraint Qualification (LICQ)
)
thm-4-15.png
¶
4.4.2.2 Linearly Independent Constraint Qualification (LICQ)
)
thm-4-16.png
¶
4.4.2.3 Mangasarian-Fromovitz Constraint Qualification (MFCQ)
)
thm-4-17.png
¶
4.5.2 Second Order Necessary Conditions
thm-4-18.png
¶
4.5.3 Second Order Sufficient Conditions
thm_4_2.png
¶
4.1.2 Convexity for Constrained Optimization
thm_4_3.png
¶
4.1.2 Convexity for Constrained Optimization
TR-visual.png
¶
3.6.4.2 Trust Region Variations
trust-region-intro.png
¶
3.6.4.1 Main Idea and General Algorithm
unconstrained_analysis.png
¶
4.2.3.7 Analysis without Constraints
unconstrained_opt.png
¶
4.2.1 Unconstrained Optimality Conditions