cbe67701-uncertainty-quantification

Chapter 1.0 Introduction to Uncertainty Quantification and Predictive Sciences

1.1 Our First Notebook

Chapter 2.0 Probability-and-Statistics-Preliminaries

2.1 Multivariate Distributions: Example from Texbook

2.2 Rejection Sampling, Skewness, and Kurtosis

Chapter 3.0 Input Parameter Distributions

3.1 Copulas

3.2 Principal Component Analysis

Chapter 4.0 Local Sensitivity Analysis Based on Derivative Approximations

4.1 Local sensitivity analysis and difference approximation

4.2 Advection-Diffusion-Reaction (ADR) Example

- [4.2.1 **What do we want to know?**](https://ndcbe.github.io/cbe67701-uncertainty-quantification/04.02-Simple-ADR-Example.html#4.2.1-**What-do-we-want-to-know?**)
- [4.2.2 **Why do we want to know that?**](https://ndcbe.github.io/cbe67701-uncertainty-quantification/04.02-Simple-ADR-Example.html#4.2.2-**Why-do-we-want-to-know-that?**)
- [4.2.3 **4.3.1 Simple ADR Example**](https://ndcbe.github.io/cbe67701-uncertainty-quantification/04.02-Simple-ADR-Example.html#4.2.3-**4.3.1-Simple-ADR-Example**)


Chapter 5.0 Regression Approximations to Estimate Sensitivities

5.1 Ridge Regression

5.2 Lasso Regression

5.3 Elastic Net Regression

Chapter 6.0 Adjoint-Based Local Sensitivity Analysis

6.1 Nonlinear Diffusion-Reaction Equation

6.2 A Simple Example of Adjoint Sensitivity Analysis

6.3 Sensitivity Analysis with Adjoint Operators

6.4 Adjoint Sensitivity Notes on Numerical Computation

Chapter 7.0 Sampling-Based Uncertainty Quantification: Monte Carlo and Beyond

7.1 Latin Hypercube and Quasi-Monte Carlo Sampling

7.2 Latin Hypercube Sampling

7.3 Meaningful Title Goes Here

Chapter 8.0 Reliability Methods for Estimating the Probability of Failure

8.1 First-Order Second-Moment (FOSM) Method Example

8.2 Advanced First-Order Seccond-Momemt Methods (AFSOM)

8.3 Advanced First-Order Second-Moment Methods

Chapter 9.0 Stochastic Projection and Collocation

9.1 Hermite Expansion for Normally Distributed Parameters

9.2 Uniform Random Variables: Legendre Polynomials

Chapter 10.0 Gaussian Process Emulators and Surrogate Models

10.1 Using GPflow package for Gaussian Process Regression

10.2 A simple example of Bayesian quadrature

- [10.2.1 Bayesian quadrature uses Gaussian process regression as the approximation to the integrand](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.1-Bayesian-quadrature-uses-Gaussian-process-regression-as-the-approximation-to-the-integrand)
- [10.2.2 The procedures of Bayesian Quadrature](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.2-The-procedures-of-Bayesian-Quadrature)
- [10.2.3 Implementation](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.3-Implementation)
    - [10.2.3.1 Take the GPR model as the surrogate](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.3.1-Take-the-GPR-model-as-the-surrogate)
- [10.2.4 Result](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.4-Result)
    - [10.2.4.1 Find the next quadrature point by minimizing the posterior variance](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.4.1-Find-the-next-quadrature-point-by-minimizing-the-posterior-variance)

10.3 Using scikit-learn for Gaussian Process Regression

Chapter 11.0 Predictive Models Informed by Simulation, Measurement, and Surrogates

11.1 Gibbs Sampling to Approximate Bayes' Integral

- [11.1.1 Example: Multivariate distribution](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.01-Gibbs-Sampling.html#11.1.1-Example:-Multivariate-distribution)
- [11.1.2 When will the method break?](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.01-Gibbs-Sampling.html#11.1.2-When-will-the-method-break?)

11.2 Markov Chain Monte Carlo Examples

11.3 The Kennedy-O’Hagan Predictive Model

Chapter 12.0 Epistemic Uncertainties: Dealing with a Lack of Knowledge

12.1 Predictions under epistemic uncertainty with p-boxes

12.2 Epistemic Uncertainty Quantification