- [4.2.1 **What do we want to know?**](https://ndcbe.github.io/cbe67701-uncertainty-quantification/04.02-Simple-ADR-Example.html#4.2.1-**What-do-we-want-to-know?**)
- [4.2.2 **Why do we want to know that?**](https://ndcbe.github.io/cbe67701-uncertainty-quantification/04.02-Simple-ADR-Example.html#4.2.2-**Why-do-we-want-to-know-that?**)
- [4.2.3 **4.3.1 Simple ADR Example**](https://ndcbe.github.io/cbe67701-uncertainty-quantification/04.02-Simple-ADR-Example.html#4.2.3-**4.3.1-Simple-ADR-Example**)
- 9.2.1 Generalized Polynomial Chaos
- 9.2.2 Example: $G \sim g(x) = cos(x)$ and $x \sim \mathcal{U}(0,2\pi)$-=-cos(x)$-and-$x-\sim-\mathcal{U}(0,2\pi)$)
- 9.2.3 Importing libraries
- 9.2.4 Functions to calculate exact and $n^{\mathrm{th}}$-order Legendre polynomial approximation of $g(x)$$)
- 9.2.5 Function to calculate $\mathrm{Var}(g(x))$, $E[G]$, and $\mathrm{Var}(G)$)$,-$E[G]$,-and-$\mathrm{Var}(G)$)
- 9.2.6 Generating samples from $\mathcal{U}[0,2\pi]$
- 9.2.7 Convergence of variance for $g(x) = cos(x)$, where $ x \sim \mathcal{U} (0, 2\pi )$-=-cos(x)$,-where-$-x-\sim-\mathcal{U}-(0,-2\pi-)$)
- 9.2.8 Approximate $g(x)$ using different orders of Legendre polynomials$-using-different-orders-of-Legendre-polynomials)
- 9.2.9 Plot PDF of the random variable $g(x) = \cos(x)$, where $x \sim \mathcal{U}(0, 2\pi)$, and various approximations-=-\cos(x)$,-where-$x-\sim-\mathcal{U}(0,-2\pi)$,-and-various-approximations)
- Markdown Figures
- Markdown Links
- [10.2.1 Bayesian quadrature uses Gaussian process regression as the approximation to the integrand](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.1-Bayesian-quadrature-uses-Gaussian-process-regression-as-the-approximation-to-the-integrand)
- [10.2.2 The procedures of Bayesian Quadrature](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.2-The-procedures-of-Bayesian-Quadrature)
- [10.2.3 Implementation](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.3-Implementation)
- [10.2.3.1 Take the GPR model as the surrogate](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.3.1-Take-the-GPR-model-as-the-surrogate)
- [10.2.4 Result](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.4-Result)
- [10.2.4.1 Find the next quadrature point by minimizing the posterior variance](https://ndcbe.github.io/cbe67701-uncertainty-quantification/10.02-Bayesian-quadrature.html#10.2.4.1-Find-the-next-quadrature-point-by-minimizing-the-posterior-variance)
- [11.1.1 Example: Multivariate distribution](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.01-Gibbs-Sampling.html#11.1.1-Example:-Multivariate-distribution)
- [11.1.2 When will the method break?](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.01-Gibbs-Sampling.html#11.1.2-When-will-the-method-break?)