Error Propagation Example

CBE 20258 / CBE 40258 / CBE 60258
November 5, 2019

1 Experimental Setup

Imagine you want to measure the flow rate of water out of a faucet, but your flowmeter is broken. Quick on your feet, you devise a simple experiment using a graduate cylinder and wrist watch. The average flow rate is:

$$
\begin{equation*}
F=\frac{V_{f}-V_{0}}{t_{f}-t_{0}} \tag{1}
\end{equation*}
$$

where V_{0} is the volume in the cylinder at time t_{0}. You measure V_{f} and t_{f} after some time has elapsed.

2 Error Propagation

Your graduated cylinder only measures to the nearest 0.1 mL and holds a maximum of 50 mL . Your analog wristwatch has
 a seconds hand. Based on this, you reason that $\sigma_{V}=$ \qquad mL (same for both volume measurements), $\sigma_{t}=$ \qquad s (same for both time measurements), and $\sigma_{V, t}=\ldots$ (i.e., the measurement errors are NOT correlated). Although you could conduct many experiments to estimate σ_{V}, σ_{t}, and $\sigma_{V, t}$, you think it is wise to approximate the error level in F after taking only a few measurements. Here are the data for your first trial:

V_{0}	t_{0}	V_{f}	t_{f}
5.3 mL	$1: 01: 04$	49.2 mL	$1: 01: 56$

2.a Approach 1

Which error propagation formula to use? You decide to decompose (1) into two subtraction steps and one division step:

$$
\begin{equation*}
\Delta t:=t_{f}-t_{0}, \quad \Delta V:=V_{f}-V_{0}, \quad F=\frac{\Delta V}{\Delta t} \tag{2}
\end{equation*}
$$

where ΔV and Δt are intermediate variables. You then apply the subtraction error propagation formula to calculate $\sigma_{\Delta V}$ and $\sigma_{\Delta t}$.

Next, apply the division error propagation formula to estimate σ_{F} :

2.b Approach 2

What about the general error propagation formula,

$$
\begin{equation*}
\sigma_{Z}^{2} \approx\left|\frac{\partial g}{\partial X}\right|^{2} \cdot \sigma_{X}^{2}+\left|\frac{\partial g}{\partial Y}\right|^{2} \cdot \sigma_{Y}^{2}+2 \cdot \frac{\partial g}{\partial X} \cdot \frac{\partial g}{\partial Y} \cdot \sigma_{X, Y} \tag{3}
\end{equation*}
$$

where $Z=g(X, Y)$ and $g(\cdot)$ is a differentiable function? You apply this formula to (1). Start by calculating the partial derivatives $\frac{\partial F}{\partial V_{f}}, \frac{\partial F}{\partial V_{0}}, \frac{\partial F}{\partial t_{f}}, \frac{\partial F}{\partial t_{0}}$:

Next, apply the general formula, (3), and drop the covariance terms (assumed to be zero).

$$
\sigma_{F}^{2} \approx\left|\frac{\partial F}{\partial V_{f}}\right|^{2} \sigma_{V}^{2}+\left|\frac{\partial F}{\partial V_{0}}\right|^{2} \sigma_{V}^{2}+\left|\frac{\partial F}{\partial t_{f}}\right|^{2} \sigma_{t}^{2}+\left|\frac{\partial F}{\partial t_{0}}\right|^{2} \sigma_{t}^{2}
$$

Finally, substitute and simplify:

3 Calculation

Now that we have confirmed Approach 1 and Approach 2 yield the same error propagation formula, we can perform the calculation. Recall the data for the first trial:

V_{0}	t_{0}	V_{f}	t_{f}
5.3 mL	$1: 01: 04$	49.2 mL	$1: 01: 56$

and our assumptions $\sigma_{V}=0.1 \mathrm{~mL}$ and $\sigma_{t}=1 \mathrm{~s}$.

Calculate F and estimate σ_{F} :

$$
F=\frac{\Delta V}{\Delta t}, \quad \sigma_{F}^{2} \approx F^{2}\left[2\left(\frac{\sigma_{V}}{\Delta V}\right)^{2}+2\left(\frac{\sigma_{t}}{\Delta t}\right)^{2}\right]
$$

