{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "*This notebook contains material from [cbe67701-uncertainty-quantification](https://ndcbe.github.io/cbe67701-uncertainty-quantification);\n", "content is available [on Github](https://github.com/ndcbe/cbe67701-uncertainty-quantification.git).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [11.2 Markov Chain Monte Carlo Examples](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.02-Contributed-Example.html) | [Contents](toc.html) | [12.0 Epistemic Uncertainties: Dealing with a Lack of Knowledge](https://ndcbe.github.io/cbe67701-uncertainty-quantification/12.00-Epistemic-Uncertainties.html)

\"Open

\"Download\"" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[11.3 The Kennedy-O’Hagan Predictive Model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3-The-Kennedy-O’Hagan-Predictive-Model)", "section": "11.3 The Kennedy-O’Hagan Predictive Model" } }, "source": [ "# 11.3 The Kennedy-O’Hagan Predictive Model" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[11.3 The Kennedy-O’Hagan Predictive Model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3-The-Kennedy-O’Hagan-Predictive-Model)", "section": "11.3 The Kennedy-O’Hagan Predictive Model" } }, "source": [ "Created by Jiale Shi (jshi1@nd.edu)\n", "These examples and codes were adapted from:\n", "* McClarren, Ryan G (2018). *Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers*, *Chapter 11 : Predictive Models Informed by Simulation, Measurement, and Surrogates*, Springer, https://link.springer.com/chapter/10.1007/978-3-319-99525-0_11\n", " and its supplementary material **Calibration Simple with Discrep.ipynb**\n", " " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "nbpages": { "level": 1, "link": "[11.3 The Kennedy-O’Hagan Predictive Model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3-The-Kennedy-O’Hagan-Predictive-Model)", "section": "11.3 The Kennedy-O’Hagan Predictive Model" } }, "outputs": [], "source": [ "## import all needed Python libraries here\n", "from pyDOE import *\n", "import matplotlib.pyplot as plt\n", "\n", "from mpl_toolkits.mplot3d import Axes3D\n", "%matplotlib inline\n", "\n", "import math\n", "from scipy.stats import multivariate_normal\n", "from scipy.stats import norm\n", "import numpy as np\n", "np.random.seed(1000)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "nbpages": { "level": 1, "link": "[11.3 The Kennedy-O’Hagan Predictive Model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3-The-Kennedy-O’Hagan-Predictive-Model)", "section": "11.3 The Kennedy-O’Hagan Predictive Model" } }, "outputs": [], "source": [ "#covariance function\n", "def cov(x,y,beta,l,alpha):\n", " exponent = np.sum(beta*np.abs(x-y)**alpha)\n", " return 1/l * math.exp(-exponent)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "nbpages": { "level": 1, "link": "[11.3 The Kennedy-O’Hagan Predictive Model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3-The-Kennedy-O’Hagan-Predictive-Model)", "section": "11.3 The Kennedy-O’Hagan Predictive Model" } }, "outputs": [], "source": [ "#likelihood function\n", "def likelihood(z,x,beta,lam,alpha, beta_t, lam_t, alpha_t, meas_cov, N,M):\n", " Sig_z = np.zeros((N+M,N+M))\n", " #fill in matrix with sim covariance\n", " for i in range(N+M):\n", " for j in range(i+1):\n", " tmp = cov(x[i,:],x[j,:],beta,lam,alpha)\n", " if (i < N):\n", " tmp += cov(x[i,0], x[j,0], beta_t, lam_t, alpha_t)\n", " Sig_z[i,j] = tmp\n", " Sig_z[j,i] = tmp\n", " #add in measurement error cov\n", " Sig_z[0:N,0:N] += meas_cov\n", " #print(Sig_z)\n", " likelihood = multivariate_normal.logpdf(z,mean=0*z, cov=Sig_z,allow_singular=True)\n", " return likelihood" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[11.3.1 Toy example of KOH model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.1-Toy-example-of-KOH-model)", "section": "11.3.1 Toy example of KOH model" } }, "source": [ "## 11.3.1 Toy example of KOH model\n", "To demonstrate the behavior of the predictive model, we consider a simple simulation code\n", "\n", "$$\\eta (x,t) = \\sin xt$$\n", "\n", "We also consider measurement generated from the function\n", "\n", "$$y(x) = \\sin 1.2 x + 0.1 x + \\epsilon =\\eta(x,1.2)+0.1 x + \\epsilon$$\n", "\n", "where $\\epsilon$ is a measurement error that is normally distributed with mean 0 and standard deviation 0.005.\n", "We will use the Kennedy-O'Hagan model to estimate the calibration parameter, which in this case has a true value of $t=1.2$, and fit **a discrepancy function**. We know that the true discrepancy function is linear, and we can compare our estimate to the true function.\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "nbpages": { "level": 2, "link": "[11.3.1 Toy example of KOH model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.1-Toy-example-of-KOH-model)", "section": "11.3.1 Toy example of KOH model" }, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2MHPV9x/HPp4fBpybi0uAk+ICatugaFydxdSIPRkIkpOdEET5cSIA+kJYIRQlKkNprfaJKSZTqHFlqURXUxilpHhSeRI6zG9xeIXZApUnK0SMYG65yKYS7Q8GBHG3SdWM73/5xu7C37D3s7ezM7M77JZ12d3Y881slfHb2+3sYR4QAAMXyC1k3AACQPsIfAAqI8AeAAiL8AaCACH8AKCDCHwAKiPAHgAIi/IEqtl9j+2nbV1dte63tH9i+vGbfM22/YPvCmu1fs/21tNoMrIaZ5AUsZPu3JH1d0saIOGr7byS9MSK219n3DyTtkPTWiDhW/rdflfQbEfFCqg0HGkD4A3XY/rKk0yR9QdI3JJ0fEc8tsu8/SZqU9FlJj0saioi7U2oqsCqEP1CH7ddJOixpjebD/O+X2PccSY9K+hdJP4uIyxfbF8gLwh9YhO37Jb1L0pkR8dIy+35S0l9I+tWI+GEa7QOaQYcvUIft35W0QdL9kj5X3naO7Z9U/mr+ySFJPyL40S5OyboBQN7YfoOkv5L0QUlPSjpk+7aIeFDSazJtHJAQrvyBV/u8pLGIOFDu5P0TSV+0fVrG7QISQ/gDVWwPSrpQ0lBlW0T8naRpSZ/Kql1A0ujwBYAC4sofAAqI8AeAAiL8AaCACH8AKKDcjvM/44wzYsOGDVk3AwDayiOPPPKjiFi33H65Df8NGzZoYmIi62YAQFux/cxK9qPsAwAFRPgDQAER/gBQQIQ/ABRQIuFv+0u2n7f9+CLv2/Zf2z5i+zHbv5nEeQEAq5PUaJ8va34lxK8u8v77JJ1X/nu7pL8pPwJowNjkjHaNT2l2rqT1Pd0aGujT4OberJuFNpTIlX95nfMXl9hlm6SvxrzvSuqxfWYS5waKYmxyRsOjBzUzV1JImpkraXj0oMYmZ7JuGtpQWjX/XknPVr2eLm9bwPZ1tidsTxw9ejSlpgHtYdf4lErHTy7YVjp+UrvGpzJqEdpZWuHvOttetZZ0ROyOiP6I6F+3btkJakChzM6VGtoOLCWt8J+WdHbV67MkzaZ0bqAjrO/pbmg7sJS0wn+vpN8vj/p5h6SXyrfHA7BCQwN96l7TtWBb95ouDQ30SQdGkj1Z0sdD7iQ11PN2Sd+R1Gd72va1tj9q+6PlXfZJekrSEUlflPSxJM4LFMng5l6NbN+k3p5uWVJvT7dGtm+aH+3zwM6VH2glwd7I8dCWEhnqGRFXLfN+SPp4EucCimxwc+/KhnYeGJEuHq7/3gM7F38PhZHbVT0BLOPAyMIr9JtOn3+8aMfqAn6p4/Fl0XFyewP3/v7+YElnYIVuOl266aXFX9cGe8ViwV7779E2bD8SEf3L7ceVP9Aplrtyr4Q8wQ4R/kBnSDrgL9qRTLuQW6zqCXSCRmryKwl2avwdj/AHOtFSAZ9msDNfILcIf6AT5eXKnfkCuUX4A0AB0eELIFnMF2gLhD+AZDGstC1Q9gHSQucncoTwB9JSxM5P5gvkFuEPoHWo8ecWNX+glRbp/Hyy72P69asoAyE7XPkDrXTxsMa2HdabT94pSdpw7DZtOHabLjt8ETdeR6YIf6DFuPF6dsYmZ7Rl536du+Nebdm5v32+cFMYHED4Ay1WucH6zSe2192O1hibnNHw6EHNzJUUkmbmShoePdgeXwApDA4g/IEWq9xg/eYTl9fdjtbgF9fSCH+gxZa88TpaZrFfVrn9xXVgpDwprjwjuvK8RSUgRvsALVa55+6u8SnNzpW0vqdbQwN9K7sXL1ZtfU+3ZuoEfW5/caU8M5rwB1Kw4huvIzFDA30aHj24oPTDL65XEP4AOlJb/+JKYWY0N3AH8uzAyHwpoPIILGOlN3CnwxfIs8qQvyKuC4SWIvwBoICo+QN5s9jNULgpChLElT+QNxcPzw/zqwz1q3686aXOD37ue5AKwh9oFUJsdejfSAXhD7RKEiFWGfLHTVGQMGr+QJ5VSjxFKPVw0/dUMc4faFb1GPzaEKsgxFaOm743ZaXj/LnyB5r1wM6FV+gprs8CrBY1fwD5Qv9GKrjyB1ZjJTVqQmx1KI+lgpo/0CzKO8gR1vYBACyK8AeaRXkHbYjwB5pFjRptKJHwt73V9pTtI7ZfdRlk+8O2j9p+tPz3kSTOCwBYnaZH+9juknSLpPdKmpb0sO29EXG4Ztc7I+L6Zs8HAGheElf+F0g6EhFPRcTPJN0haVsCxwXyjYXb0MaSCP9eSc9WvZ4ub6v127Yfs3237bPrHcj2dbYnbE8cPXo0gaYBLcTqk2hjSYS/62yrnTzwD5I2RMRbJN0v6Sv1DhQRuyOiPyL6161bl0DTAAD1JDHDd1pS9ZX8WZJmq3eIiBeqXn5R0ucSOC+QPlafRIdIIvwflnSe7XMlzUi6UtLV1TvYPjMiniu/vFTSEwmcF0hfqxZuq14ZFEhB02WfiDgh6XpJ45oP9bsi4pDtz9i+tLzbJ2wfsv19SZ+Q9OFmzwt0FPoPkLJEFnaLiH2S9tVs+1TV82FJXNagszCzF22MVT2B1Wq2TEP/ATJE+ANZ4cYvyBBr+wBAARH+QB7Qf4CUEf5AHlDjR8oIf2AlWMcHHYbwBySNTc5oy879OnfHvdqyc7/GJmcW7sA4fHQYRvug8MYmZzQ8elCl4yclSTNzJQ2PHpQkDW6ut0Yh0P648kfh7Rqfejn4JemGU+5W6fhJvfDNT5eHYJbH31eeUwJCByD8UXizc6UFr284ZVSS9Nmfbpsfe18Zf195TucsOgDhj8Jb39Pd0HagExD+KLyhgT798amjenrt1Xp67fyCtE+vvVoPHbvslRIP4/DRYejwReENbu7VmD6jLeO/o9m5kv5r7dUa23Z4YWcvpR50GMIf0PwXwMthfxOjfND5KPsAtSjxoAAIf6AWJR4UAOEPAAVE+ANAARH+ADN2UUCEP8CibSggwh8ACohx/igmbp6OgiP8UUzcPB0FR9kHAAqI8Efx1I7uYUYvCojwR/HUju6hxo8CIvwBoIDo8EUxMLoHWIDwRzEwugdYgLIPABQQ4Y/iYXQPQNkHnWdscka7xqc0O1fSn/3iHr3+A3/OLRmBGoQ/OsrY5IyGRw+qdPykJOnak3fqzaPbJXFrRqAaZR90lF3jUy8Hf0Xp+EntGp/KqEVAPnHlj44yO1fSDafcrRtOGX1529Nrr5aOSTrAsE6ggvBHR1nf0y39RNpw7DZJ88G/4dht6u3p1kMXvzvj1gH5QdkHHWVooG/BVb8kda/p0tBAX0YtAvIpkfC3vdX2lO0jtl81js72abbvLL//PdsbkjgvUKvSqdvb0y1LurXrQxrZvonOXqBG02Uf212SbpH0XknTkh62vTciDlftdq2kH0fEr9m+UtLnJH2o2XMDL6tZvuGhY5dJayVduEMi+IFXSaLmf4GkIxHxlCTZvkPSNknV4b9N0k3l53dL+rxtR0QkcH6A5RuABiVR9umV9GzV6+nytrr7RMQJSS9Jen0C5wbm1a7RD2BJSYS/62yrvaJfyT6yfZ3tCdsTR48eTaBpKIzqFTtZvgFYVhLhPy3p7KrXZ0maXWwf26dIOl3Si7UHiojdEdEfEf3r1q1LoGnodGOTM9qyc78kacvO/RqbnGEsP7ACSYT/w5LOs32u7VMlXSlpb80+eyVdU35+uaT91PvRrCdvH9bgno3znbua7+Qd3LNRT95O+APLabrDNyJO2L5e0rikLklfiohDtj8jaSIi9kq6VdLXbB/R/BX/lc2eF7j2mfdq5tiFkl6ZzCVJvc9066EsGwa0gURm+EbEPkn7arZ9qur5MUlXJHEuQJJ0YESzc2+p+9bsXCnlxgDthxm+aE8P7JxfyqHs5hPbX35evR1AfYQ/2tbQQJ+613RJkm4+cbkklnIAVoqF3dAeKuP4q4Z0Du7ZqMEu6dZTP6TP/nSb1vd0a2igj6UcgBUg/NEeHtg5P2u3zizea8t/AFaOsg8AFBBX/sivmsXadNPp848X7WAWL9Akwh/5xWJtQMtQ9gGAAiL80R4o8wCJIvzRHlisDUgU4Q8ABUT4I1+4KQuQCsIf+VI9tBNAyxD+AFBAjPNH9paazEVHL9AShD+yx2QuIHWUfQCggAh/pGu50TxM5gJSQfgjXUuN5jkwQo0fSAnhj/xgmCeQGjp80XqM5gFyxxGRdRvq6u/vj4mJiaybgaTVjuap/WKo4IsBWBXbj0RE/3L7ceWPbDHME8gENX+ki9E8QC4Q/kjXUqUcvhiA1BD+yA9q/EBqCH8AKCDCHwAKiPAHgAIi/AGggAh/pIPbMwK5QvgjHazbA+QK4Q8ABUT4I3mVEs+BkfKSDeWF3CrPKQEBmWNhNySv3ho9rNsDpGKlC7tx5Q8ABcSqnkjGcmv2s24PkCuUfZA8SjxAZlJZz9/2L0m6U9IGSU9L+mBE/LjOficlHSy//EFEXNrMedFexiZntGt8SrNzJa3v6dbQQJ8GN/dm3Syg0Jqt+e+Q9K2IOE/St8qv6ylFxNvKfwR/p6sq8YxNzmh49KBm5koKSTNzJQ2PHtTY5Ex27QPQdPhvk/SV8vOvSBps8njoBFVLM+8an1Lp+MkFb5eOn9Su8am0WwWgSrPh/8aIeE6Syo9vWGS/tbYnbH/X9qJfELavK+83cfTo0SabhjyYnSs1tB1AOpat+du+X9Kb6rx1YwPnOSciZm3/iqT9tg9GxH/W7hQRuyXtluY7fBs4PnJqfU+3ZuoE/fqe7gxaA6Bi2Sv/iLgkIs6v87dH0g9tnylJ5cfnFznGbPnxKUnflrQ5sU+AXBsa6FP3mq4F27rXdGlooC+jFgGQmi/77JV0Tfn5NZL21O5g+3W2Tys/P0PSFkmHmzwv8maRJRsGN/dqZPsm9fZ0y5J6e7o1sn0To32AjDU1zt/26yXdJekcST+QdEVEvGi7X9JHI+Ijtt8l6QuSfq75L5ubI+LW5Y7NOP82w9h+IBdSGecfES9Iek+d7ROSPlJ+/q+SNjVzHgBAsljeAau33JIOAHKL8MfqXTz8SshT9gHaCqt6Fhnr6gOFRfgXWZK3VmTVTqCtEP5IBjV+oK1Q8y8aOmkBiPAvnoQ7aVmuGWhPhD9WrbJcc2XVzspyzZL4AgByjpp/kTXZSctyzUD7IvyLrMkaP8s1A+2L8MeqLbYsM8s1A/lH+KO+pSaAld9juWagfRH+qG+pCWDl91iuGWhfjPZBUwY39xL2QBsi/PGKpSaASUwOAzpIUzdzaSVu5pKxpSaAsYInkFsrvZkLNf+8anTFTVboBNAAwj+vGl1xM8kVOqWlJ4CxgifQ9gh/1LdUHZ8aP9D26PDNk0ZX3GSFTgCrRIdvXjXaqUonLADR4QsAWALhn1eNdqrSCQugAYR/XjVas6fGD6ABhD8AFBDhX1RMCgMKjfAvqqQnhQFoK4Q/ABQQ4b8a7VoyOTBSng9QngxWed6unwfAqhH+q9FOJZPqYL94eH4iWGUyWOU5I4WAwiH8O107fVEBSA1r+6xUp62jw6QwoNBY22c18r6OTu0XVUW7flEBWLGVru3DlX8WDoy0NoQvHn7l+Hn/ogKQCWr+q9FsyYQ6PICMEf6r0U6lE2r7AOro3PDP29j1rMbYt9MXFYDUdG6Hb55r3XluG4C2lsrNXGxfYfuQ7Z/bXvRktrfanrJ9xHZ71yHy9osCAFah2bLP45K2S3pwsR1sd0m6RdL7JG2UdJXtjU2et740SitJdNZShweQsaaGekbEE5Jke6ndLpB0JCKeKu97h6Rtkg43c+662mWII3V4ABlLY5x/r6Rnq15PS3p7vR1tXyfpOkk655xzWt+yleq02b0ACm/Z8Ld9v6Q31XnrxojYs4Jz1PtZULeXOSJ2S9otzXf4ruDYi0uytNIuvygAYIWWDf+IuKTJc0xLOrvq9VmSZps85vK4IgeARaUxzv9hSefZPtf2qZKulLQ3hfO2Bp21ADpAs0M9L7M9Lemdku61PV7evt72PkmKiBOSrpc0LukJSXdFxKHmmp0hflEA6ADNjva5R9I9dbbPSnp/1et9kvY1cy4AQHI6d3kHAMCiCH8AKCDW88+hsckZ7Rqf0uxcSet7ujU00KfBzb1ZNwtAByH8E5REaI9Nzmh49KBKx09KkmbmShoePShJfAEASAxln4RUQntmrqTQK6E9NjnT0HF2jU+9HPwVpeMntWt8KsHWAig6wj8hSYX27Fypoe0AsBqEf0KSCu31Pd0NbQeA1SD8E5JUaA8N9Kl7TdeCbd1rujQ00LfqtgFALcI/IUmF9uDmXo1s36Tenm5ZUm9Pt0a2b6KzF0CiGO2TkEo4JzFEc3BzL2EPoKUI/wQR2gDaBWUfACggwh8ACojwB4ACIvwBoIAIfwAoIEc0d5/0VrF9VNIzTRziDEk/Sqg57YbPXjxF/dxScT/7Yp/7lyNi3XL/OLfh3yzbExHRn3U7ssBnL95nL+rnlor72Zv93JR9AKCACH8AKKBODv/dWTcgQ3z24inq55aK+9mb+twdW/MHACyuk6/8AQCLIPwBoIA6Ovxt77L9pO3HbN9juyfrNqXF9hW2D9n+ue2OHwZne6vtKdtHbO/Iuj1psf0l28/bfjzrtqTJ9tm2D9h+ovz/809m3aa02F5r+99sf7/82T+9muN0dPhLuk/S+RHxFkn/IWk44/ak6XFJ2yU9mHVDWs12l6RbJL1P0kZJV9nemG2rUvNlSVuzbkQGTkj6o4h4s6R3SPp4gf43/z9J746It0p6m6Sttt/R6EE6Ovwj4p8j4kT55XclnZVle9IUEU9ERGN3j29fF0g6EhFPRcTPJN0haVvGbUpFRDwo6cWs25G2iHguIv69/Px/JD0hqRA304h5Pym/XFP+a3jkTkeHf40/lPSPWTcCLdEr6dmq19MqSBBAsr1B0mZJ38u2Jemx3WX7UUnPS7ovIhr+7G1/Jy/b90t6U523boyIPeV9btT8z8Svp9m2VlvJZy8I19nGGOYCsP0aSd+QdENE/HfW7UlLRJyU9LZyP+Y9ts+PiIb6fdo+/CPikqXet32NpA9Iek902KSG5T57gUxLOrvq9VmSZjNqC1Jie43mg//rETGadXuyEBFztr+t+X6fhsK/o8s+trdK+lNJl0bE/2bdHrTMw5LOs32u7VMlXSlpb8ZtQgvZtqRbJT0REX+ZdXvSZHtdZeSi7W5Jl0h6stHjdHT4S/q8pNdKus/2o7b/NusGpcX2ZbanJb1T0r22x7NuU6uUO/WvlzSu+Y6/uyLiULatSoft2yV9R1Kf7Wnb12bdppRskfR7kt5d/m/7Udvvz7pRKTlT0gHbj2n+wue+iPhmowdheQcAKKBOv/IHANRB+ANAARH+AFBAhD8AFBDhDwAFRPgDQAER/gBQQP8P72dNaBisarUAAAAASUVORK5CYII=\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFT9JREFUeJzt3X2MZXV9x/HPx3HVmyZlrGBlB7YLCU7EYrtmilaSWiJ2gT/YlaoF2/oQKKEUTZp2KquNov/M2v3HGm3tosSHpKKh67jEbaZBtphUMQyZwrJrxqwUZWaIjOLQWMe4jN/+MffCzOy9O/fOPfc8/d6vZLL3nnu457dnls859/t7uI4IAQDS8oKiGwAAyB/hDwAJIvwBIEGEPwAkiPAHgAQR/gCQIMIfABJE+AMd2H7c9hUdXvuY7f/YsO1Vtv/X9sX5tBDYOsIf2JoPS9ph+z2SZNuS7pD0DxFxotCWAV0g/IE2bH9R0g5J99j+me2/W/t6RPxC0g2SDth+haRbJP2apP25NxbYArO8A9Ce7ccl3RgR955hn3+U9GpJuyRdEREzOTUP6MsLi24AUHEfkDQr6U6CH1VC2Qfogu1PN8s/P7P9gdb2iPg/SY9LOl5Y44At4M4f6Oy5mmhE3Czp5gLbAmSKO3+gsx9JurDoRgCDQPgDnU1I+nvbS7b/tujGAFlitA8AJIg7fwBIEOEPAAki/AEgQYQ/ACSotOP8zz777Ni5c2fRzQCASnnooYd+HBHnbLZfacN/586dmp6eLroZAFAptn/QzX6UfQAgQYQ/ACSI8AeABBH+AJCgTMLf9p22n7L9aIfXbfsTtk/afsT2a7M4LgBga7Ia7fM5SZ+U9IUOr18l6aLmz+sk/XPzTwAlMTkzrwNTs1pYWtb24YbGd49q766RopuFAcnkzj8ivinp6TPsskfSF2LVA5KGbZ+bxbEB9G9yZl77Dh3T/NKyQtL80rL2HTqmyZn5opuGAcmr5j8i6Yk1z+ea29axfZPtadvTi4uLOTUNwIGpWS2fWlm3bfnUig5MzRbUIgxaXuHvNttOW0s6Ig5GxFhEjJ1zzqYT1ABkZGFpuaftqL68wn9O0vlrnp8naSGnYwPYxPbhRk/bUX15hf9hSe9sjvp5vaRnIuLJnI6NKjg6UXQLkja+e1SNbUPrtjW2DWl892j7/4DfV+VlNdTzS5K+LWnU9pztG2zfbLv1hddHJD0m6aSkOyTdksVxUSP37y+6Bc9LMNj27hrRxLWXaGS4IUsaGW5o4tpLOo/2KdPvC1uSyVDPiLh+k9dD0l9lcSxg4O7fL12+L/v3PToxmPfNyN5dIwztTAgzfFGcoxPS7Wet/kjPP67rnXfV75ZT+33VXGm/wH1sbCxY0jkht58l3f5Mccc/OtE+nN94W3Z360X/HbNUp79Lzdh+KCLGNtuvtOv5A7m6fN/zIZ9lsG28qLTumrO8qABbQPijHN54W9EtGIxBXVSKVtffV0Ko+aMcynQXTLBtrky/L2wJ4d9CpxVaBhVsXFRQIoR/S9VHYqD8uFtGiRD+AJCgtDt8GYkBIFFph39dR2IAwCYo+wBA2eQwAIXwb2EkBoCyyGEACuHfQo0fQELSrvkDeA5f4F6wnAegEP4AnvsC99b3+La+wF0SF4C85DwAhbJPapjJjDb4Avf0EP6pYSYz2pjv8EXtnbZjwHIYgEL4A9CQ3dN2DFgOA1Co+aeAmczYxEqHL3XqtB3VR/ingJnM2MTIcKNtiWdkuFFAa5AHyj4ANL57VI1tQ+u2NbYNaXz3aEEtwqBx558aZjKjjdZwTsb5p4MvcEd7Ryf67w/I4j0A9KTbL3Cn7IP2shgSyrBSoLQIfwBIEDV/PC+LIaEMKwUqgZo/2stiSCjDSlEmifRBUfMHUsX6Te3RB7UO4Y/2shgSyrDSYhBy6AI1f7SXxcfjBD5io+Tog+qImj9QBxtDrqXqIZdlnT6RPqhua/7c+QN1UNf1m+7fX+2LV4lR8weQBvqg1uHOH6ibqofcoOr0fIJYh5o/gPKqUwkrJ4zzBwB0RPgDKK+ql7BKjPAHUF7U6Qcmk/C3faXtWdsnbZ92qbb9btuLtv+7+XNjFscFAGxN36N9bA9J+pSkN0uak/Sg7cMRcWLDrl+OiFv7PR4AoH9Z3PlfKulkRDwWEb+UdJekPRm8LwAWacOAZBH+I5KeWPN8rrltoz+2/Yjtu22f3+6NbN9ke9r29OLiYgZNAyqORdowIFmEv9ts2zh54B5JOyPiNZLulfT5dm8UEQcjYiwixs4555wMmgYAaCeLGb5zktbeyZ8naWHtDhHxkzVP75D0sQyOC9QTK1EiB1mE/4OSLrJ9gaR5SddJesfaHWyfGxFPNp9eI+m7GRz3zBL51h7UUF0XaUOp9F32iYhnJd0qaUqrof6ViDhu+6O2r2nu9j7bx20/LOl9kt7d73E3Ra0UADrKZGG3iDgi6ciGbR9a83ifJG7DgV4xwxUDUq9VPamVom74d4sBqVf4UysFgK6wtg8AJKi+4U+tFAA6qm/4UysFgI7qG/7AmbBmDhJH+CNNzAM5zeTMvC7bf58uuO3rumz/fZqcmS+6SRigeo32AbAlkzPz2nfomJZPrUiS5peWte/QMUnS3l3t1mlE1XHnj3QcnWgOAW7O/2g9rkMJqM+/w4Gp2eeCv2X51IoOTM329b4oL+78kY46zwO5f39fgxwWlpZ72o7q484fgLYPN3rajuoj/JGmOswDybCMNb57VI1tQ+u2NbYNaXz3aBYtRQk5YuP3rpTD2NhYTE9PF90MoBoyKGNNzszrwNSsFpaWtX24ofHdo3T2VpDthyJibLP9qPkDkLQ6qoewTwdlH6AO6lDGQq4If6AOWM4EPSL8ASBBhD8AJIjwR7XVYXYuUADCH9XGAm3AlhD+AJAgxvmjeo5OrL/jb81wfeNtjHoBukT4o3rqvEAbkBPKPgCQIMIf1ZbXzFZGFaFmCH9UW141fkYVoWYIfwBIEB2+QCeMKkKNEf5AJ4wqQo1R9gGABBH+QDdYLx81Q/ijXgY1JDOBGv/kzLwu23+fLrjt67ps/32anJkvukkYIMIf9cKQzC2ZnJnXvkPHNL+0rJA0v7SsfYeOcQGoMcIfgA5MzWr51Mq6bcunVnRgaragFmHQGO2D6mNIZt8WlpZ72o7qI/xRfWUZknl0orIXm+3DDc23Cfrtw40CWoM8UPYBslLh/obx3aNqbBtat62xbUjju0cLahEGLZPwt32l7VnbJ22fNibO9ottf7n5+nds78ziuMBpGJK5JXt3jWji2ks0MtyQJY0MNzRx7SXau2uk6KZhQBwR/b2BPSTpe5LeLGlO0oOSro+IE2v2uUXSayLiZtvXSXpLRPzJmd53bGwspqen+2obMHAb+xta6G9AQWw/FBFjm+2XRc3/UkknI+Kx5oHvkrRH0ok1++yRdHvz8d2SPmnb0e+VByhaWfobgB5lUfYZkfTEmudzzW1t94mIZyU9I+llGRwbODPW4QfayiL83Wbbxjv6bvaR7ZtsT9ueXlxczKBpSF6enbD0N6BCsij7zEk6f83z8yQtdNhnzvYLJZ0l6emNbxQRByUdlFZr/hm0DchPxWv8kzPzOjA1q4WlZW0fbmh89ygdvjWWRfg/KOki2xdImpd0naR3bNjnsKR3Sfq2pLdKuo96PwaGSV89ay3v0Jrl21reQRIXgJrqO/wj4lnbt0qakjQk6c6IOG77o5KmI+KwpM9K+qLtk1q947+u3+MCHdEJ27MzLe9A+NdTJjN8I+KIpCMbtn1ozeNfSHpbFsdCgio8c7YqWN4hPczwRfn102lLJ2xXOi3jwPIO9UX4o974xNAVlndID+FfZimPUT860azXNztrW49TPicDxPIO6el7eYdBYXkH0VnZwnkAutbt8g7c+QNAgljPv2wYo346Om2BzFH2KTPKHQB6RNkHANAR4V9mlDsADAjhX2ap1vgBDBzhDwAJIvzRGyZZAbVA+KM3eX45CoCBIfwBIEFM8sLmmHgG1A7hj83x5ShA7VD2AYAEEf5lUoWRNEw8A2qB8C+TKoykocafvSpc9FE7hD9QtCpc9FE7dPgWjZE0AArAks5lwkiadGy86Ldw0Ueful3SmTt/oAgMn0XBqPmXCSNpAOSE8C8TPu6niYs+CkD4A0Xjoo8CEP4AkCDCHwASRPgDQIIIfwBIEOEPbBVr8qDCCH9gq1iTBxVG+ANAggh/VENZSixHJ5rLMTQX4Gs9Lkv7gC6xsBuqoYzr35SxTUhetwu7cecPAAliVU+UV9m/64A1eVBhlH1QDZRYgK7ksp6/7d+Q9GVJOyU9LuntEfHTNvutSDrWfPrDiLimn+MCyN7kzLwOTM1qYWlZ24cbGt89qr27RopuFgak35r/bZK+EREXSfpG83k7yxHxu80fgh+9o8QyUJMz89p36Jjml5YVkuaXlrXv0DFNzswX3TQMSL/hv0fS55uPPy9pb5/vB7RXhhp/jR2YmtXyqZV125ZPrejA1GxBLcKg9Rv+vxkRT0pS88+Xd9jvJbanbT9gu+MFwvZNzf2mFxcX+2wagG4tLC33tB3Vt2nN3/a9kl7R5qUP9nCcHRGxYPtCSffZPhYR39+4U0QclHRQWu3w7eH9AfRh+3BD822Cfvtwo4DWIA+b3vlHxBUR8dttfr4m6Ue2z5Wk5p9PdXiPheafj0n6T0m7MvsbAOjb+O5RNbYNrdvW2Dak8d2jBbUIg9Zv2eewpHc1H79L0tc27mD7pbZf3Hx8tqTLJJ3o87hAmga0jMTeXSOauPYSjQw3ZEkjww1NXHsJo31qrK9x/rZfJukrknZI+qGkt0XE07bHJN0cETfafoOkf5H0K61ebD4eEZ/d7L0Z5w+0wXwHbCKXcf4R8RNJb2qzfVrSjc3H35J0ST/HAQBki+UdgLIr+zIXqCTCHyi7y/c9H/KUfZARVvWsI9aWB7AJwr+O+HrB+mKZC2SE8AeqhBo/MkLNvy7oFATQA8K/LugURJ9Y0jkthD+A55Z0bq3s2VrSWRIXgJqi5l9HdAqiRyzpnB7Cv46o8aNHLOmcHsIfQMelm1nSub4IfyAPJZ94l/uSziU/Hykg/IE8lHziXe5LOpf8fKSA0T4AJK1eABjZkw7CHxgUJt6tx/kolb6+zGWQ+DIX1AoT79bjfAxMt1/mQs0/T1Xo5KpCGwH0jfDPUxU6uarQxipi4t16nI/CEf5AHqhpr8f5KBwdvoNWhU6uKrQRQKbo8M1TFTq5qtBGAB3R4QsA6Ijwz1MVOrmq0EYAfSP881SF+nkV2gigb4Q/ACSI8AfQHhP+ao3wB9AeE/5qjfAHgAQR/gCed3SiOdejOdGv9biXEhDlokog/IHUrQ3ry/etTvJrTfRrPe5lFBjlokog/IHUEdZJYm0fAO31MuGP9aEqh7V9gBRtDOuWLMKa9aEK1e3aPtz5Iz9HJ7gLLIvL9z3/uyCsk0TNH/mhtpwG1oeqBMIfSF3WYc2nu0og/JGdduO7sxg3jsEirJNEhy+ys1ntmNoyMHC5fJmL7bfZPm77V7Y7Hsz2lbZnbZ+0TUEQ5cEnECSq37LPo5KulfTNTjvYHpL0KUlXSbpY0vW2L+7zuCiLXso6ZewIpBMaieprqGdEfFeSbJ9pt0slnYyIx5r73iVpj6QT/RwbJdHLkEFqy0Bp5DHOf0TSE2uez0l6Xbsdbd8k6SZJ2rFjx+BbhjQxGxXYPPxt3yvpFW1e+mBEfK2LY7T7WNC2lzkiDko6KK12+Hbx3iiTMpZ12mGCE7B5+EfEFX0eY07S+Wuenydpoc/3RBlx1wxURh7j/B+UdJHtC2y/SNJ1kg7ncFxgc1X5tAJkrN+hnm+xPSfp9yV93fZUc/t220ckKSKelXSrpClJ35X0lYg43l+zgYzwaQWJ6ne0z1clfbXN9gVJV695fkTSkX6OBQDIDss7AECCCH8ASBDr+QOQJE3OzOvA1KwWlpa1fbih8d2j2rtrpOhmYUAIfwCanJnX+N0P69TK6vSa+aVljd/9sCRxAagpyj4A9JF7jj8X/C2nVkIfuYeBeXVF+APQT39+qqftqD7CHwASRPgD0HBjW0/bUX2EPwDdfs2rte0F69dg3PYC6/ZrXl1QizBojPYB8NyIHoZ6poPwByBp9QJA2KeDsg8AJIjwB4AEEf4AkCDCHwASRPgDQIIcUc7vSbe9KOkHW/hPz5b044ybUwecl/Y4L6fjnLRXlfPyWxFxzmY7lTb8t8r2dESMFd2OsuG8tMd5OR3npL26nRfKPgCQIMIfABJUx/A/WHQDSorz0h7n5XSck/ZqdV5qV/MHAGyujnf+AIBNEP4AkKDKhr/tK23P2j5p+7YO+7zd9gnbx23/a95tLMJm58X2DttHbc/YfsT21UW0M0+277T9lO1HO7xu259onrNHbL827zYWoYvz8qfN8/GI7W/Z/p2825i3zc7Jmv1+z/aK7bfm1bbMRUTlfiQNSfq+pAslvUjSw5Iu3rDPRZJmJL20+fzlRbe7JOfloKS/bD6+WNLjRbc7h/PyB5JeK+nRDq9fLenfJVnS6yV9p+g2l+S8vGHN/z9XpXBeNjsnzX2GJN0n6Yiktxbd5q3+VPXO/1JJJyPisYj4paS7JO3ZsM9fSPpURPxUkiLiqZzbWIRuzktI+vXm47MkLeTYvkJExDclPX2GXfZI+kKsekDSsO1z82ldcTY7LxHxrdb/P5IekHReLg0rUBf/ViTpvZL+TVKlM6Wq4T8i6Yk1z+ea29Z6paRX2v4v2w/YvjK31hWnm/Nyu6Q/sz2n1TuX9+bTtFLr5ryl7gatfjpKmu0RSW+R9Omi29Kvqoa/22zbOGb1hVot/fyhpOslfcb28IDbVbRuzsv1kj4XEedptdzxRdtV/XeQlW7OW7JsX67V8H9/0W0pgY9Len9ErBTdkH5V9Wsc5ySdv+b5eTq9fDEn6YGIOCXpf2zPavVi8GA+TSxEN+flBklXSlJEfNv2S7S6YFWlP8L2qZvzliTbr5H0GUlXRcRPim5PCYxJusu2tPr/zdW2n42IyWKb1buq3vE9KOki2xfYfpGk6yQd3rDPpKTLJcn22VotAz2Wayvz1815+aGkN0mS7VdJeomkxVxbWT6HJb2zOern9ZKeiYgni25U0WzvkHRI0p9HxPeKbk8ZRMQFEbEzInZKulvSLVUMfqmid/4R8aztWyVNabXn/c6IOG77o5KmI+Jw87U/sn1C0oqk8brfuXR5Xv5G0h22/1qrpY13R3MIQ13Z/pJWy39nN/s6PixpmyRFxKe12vdxtaSTkn4u6T3FtDRfXZyXD0l6maR/at7pPhs1WtWynS7OSW2wvAMAJKiqZR8AQB8IfwBIEOEPAAki/AEgQYQ/ACSI8AeABBH+AJCg/wdlg1ALM7LX9wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAD1NJREFUeJzt3XuspHV9x/H3RxaiFhRhT70A45EKRNKokFO0muAFa7h4iQ1pIZVWQ3rSi0RbWt02bW2tTe0ljdVicWuF1qrUCxhl1apRopaLsoKEizZAV1lFARUBsQLrt3/MbDyendl5zu6Zmf2d834lk5055zfP8zm/7PnkOb95nplUFZKkdjxs1gEkSStjcUtSYyxuSWqMxS1JjbG4JakxFrckNcbi1j4hyXOTbN/N989P8qfTzCTtqyxuTUWSbUlesKfPr6rfqqq/nPR+pBZY3FJHSTbMOoMEFremIMm7gB7wkST3JXntbsaem+SOJLcneeWSr1+Y5I2D+xuTXJrk7iTfTfK5JA8btZ8kL0lyw2D8ZUmesmS7xye5Jsm9Sd6f5D+X7Oe5SbYneV2SbwEXJHnMYN93Jvne4P7hS7Z3WZI3Jrl8kOEjSQ5N8u4k9yT5YpL5VZ1grTsWtyauqs4Cvg68uKoOrKq/HTH0ccCjgcOAs4HzkjxmyLhzge3AHPBY4I/7u9l1P0mOBt4LvGYw/qP0i/2AJAcAlwAXAocMxr1sSKZDgCcCi/R/Zy4YPO4BPwT+adlzzgDOGvwcPwdcMXjOIcBNwOtHTpbUgcWtfcmDwBuq6sGq+ihwH3DMiHGPB544GPu5Gv2mO78KbKmqT1bVg8DfA48AngU8E9gAvGWwnYuBLyx7/o+B11fVj6rqh1X1nar6YFXdX1X3An8FPGfZcy6oqluq6vvAx4BbqupTVfUQ8H7guJVNi/TTLG7tS74zKLed7gcOHDLu74CbgU8kuTXJpt1s8wnA13Y+qKofA7fRPxp+AvCNZaV/27Ln31lV/7fzQZJHJnl7kq8luQf4LHBwkv2WPOfbS+7/cMjjYT+T1JnFrWlZtbehrKp7q+rcqjoSeDHw+0lOGrGfb9Jf1gAgSYAjgG8AtwOHDb620xFjcp9L/6+AZ1TVo4ATd256T38eaaUsbk3Lt4EjV2NDSV6U5MmDwr0H2DG4DdvP+4DTkpyUZH/6xfsj4HL6a887gFcl2ZDkpcAJY3Z/EP2j5ruTHILr1ZoBi1vT8tfAnwzO7PiDvdzWUcCn6K+BXwG8raouG7afqvoq8HLgrcBd9I/QX1xVD1TVA8Av038h9O7BuEvpF/sob6a/Rn4XcCXw8b38WaQVix+kIP1EkquA86vqgllnkUbxiFvrWpLnJHncYKnkN4Cn4lG09nFeCab17hj66+AHArcAp1fV7bONJO2eSyWS1BiXSiSpMRNZKtm4cWPNz89PYtOStCZt3br1rqqa6zJ2IsU9Pz/P1VdfPYlNS9KalORr40f1uVQiSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGjO2uJMck+TaJbd7krxmGuEkSbsaex734G0xnw4w+JSPb9D/nD5J0gysdKnkJPqfn9f5RHFJ0upa6ZWTZ9D/JOxdJFmk/ynY9Hq9vYyltW5+05ZZR5iqbW86bdYRtIZ0PuJOcgDwEvqfUr2LqtpcVQtVtTA31+lye0nSHljJUskpwJeq6ttjR0qSJmYlxX0mI5ZJJEnT06m4kzwS+CXg4snGkSSN0+nFyaq6Hzh0wlkkSR145aQkNcbilqTGWNyS1BiLW5IaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUGItbkhrT9VPeD07ygSRfSXJTkl+cdDBJ0nCdPuUd+Efg41V1epIDgEdOMJMkaTfGFneSRwEnAq8AqKoHgAcmG0uSNEqXI+4jgTuBC5I8DdgKvLqqfrB0UJJFYBGg1+utdk5NwPymLbOOIGkPdFnj3gAcD/xzVR0H/ADYtHxQVW2uqoWqWpibm1vlmJKknboU93Zge1VdNXj8AfpFLkmagbHFXVXfAm5LcszgSycBN040lSRppK5nlZwDvHtwRsmtwCsnF0mStDudiruqrgUWJpxFktSBV05KUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUGItbkhpjcUtSYyxuSWqMxS1JjbG4JakxFrckNabTp7wn2QbcC+wAHqoqP/FdkmakU3EPPK+q7ppYEklSJy6VSFJjuh5xF/CJJAW8vao2Lx+QZBFYBOj1equXcB2Y37Rl1hEkNaTrEfezq+p44BTgd5OcuHxAVW2uqoWqWpibm1vVkJKkn+hU3FX1zcG/dwCXACdMMpQkabSxxZ3kZ5IctPM+8ELg+kkHkyQN12WN+7HAJUl2jn9PVX18oqkkSSONLe6quhV42hSySJI68HRASWqMxS1JjbG4JakxFrckNcbilqTGWNyS1BiLW5IaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1pnNxJ9kvyTVJLp1kIEnS7q3kiPvVwE2TCiJJ6qZTcSc5HDgNeMdk40iSxtnQcdybgdcCB40akGQRWATo9Xp7n0xaQ+Y3bZl1hKnb9qbTZh1hzRp7xJ3kRcAdVbV1d+OqanNVLVTVwtzc3KoFlCT9tC5LJc8GXpJkG3AR8Pwk/zHRVJKkkcYWd1X9UVUdXlXzwBnAp6vq5RNPJkkayvO4JakxXV+cBKCqLgMum0gSSVInHnFLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUGItbkhpjcUtSYyxuSWqMxS1JjbG4JakxFrckNWZscSd5eJIvJPlykhuS/MU0gkmShtvQYcyPgOdX1X1J9gc+n+RjVXXlhLNJkoYYW9xVVcB9g4f7D241yVCSpNG6HHGTZD9gK/Bk4LyqumrImEVgEaDX661mxqmY37Rl1hEkqZNOL05W1Y6qejpwOHBCkp8fMmZzVS1U1cLc3Nxq55QkDazorJKquhu4DDh5ImkkSWN1OatkLsnBg/uPAF4AfGXSwSRJw3VZ43488G+Dde6HAe+rqksnG0uSNEqXs0quA46bQhZJUgdeOSlJjbG4JakxFrckNcbilqTGWNyS1BiLW5IaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMaMLe4kRyT5TJKbktyQ5NXTCCZJGm7sp7wDDwHnVtWXkhwEbE3yyaq6ccLZJElDjD3irqrbq+pLg/v3AjcBh006mCRpuBWtcSeZB44DrppEGEnSeF2WSgBIciDwQeA1VXXPkO8vAosAvV5vjwPNb9qyx8+VpPWg0xF3kv3pl/a7q+riYWOqanNVLVTVwtzc3GpmlCQt0eWskgD/CtxUVf8w+UiSpN3pcsT9bOAs4PlJrh3cTp1wLknSCGPXuKvq80CmkEWS1IFXTkpSYyxuSWqMxS1JjbG4JakxFrckNcbilqTGWNyS1BiLW5IaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1ZmxxJ3lnkjuSXD+NQJKk3etyxH0hcPKEc0iSOhpb3FX1WeC7U8giSepgw2ptKMkisAjQ6/VWa7OSGjW/acusI0zdtjedNpX9rNqLk1W1uaoWqmphbm5utTYrSVrGs0okqTEWtyQ1psvpgO8FrgCOSbI9ydmTjyVJGmXsi5NVdeY0gkiSunGpRJIaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUGItbkhpjcUtSYyxuSWqMxS1JjbG4JakxnYo7yclJvprk5iSbJh1KkjTa2OJOsh9wHnAKcCxwZpJjJx1MkjRclyPuE4Cbq+rWqnoAuAh46WRjSZJG2dBhzGHAbUsebweesXxQkkVgcfDwviRfXWGWjcBdK3zOeuC8DOe8DOe87Gpqc5K/2aunP7HrwC7FnSFfq12+ULUZ2Nx1x7vsJLm6qhb29PlrlfMynPMynPOyq7U4J12WSrYDRyx5fDjwzcnEkSSN06W4vwgcleRJSQ4AzgA+PNlYkqRRxi6VVNVDSV4F/BewH/DOqrphAln2eJlljXNehnNehnNedrXm5iRVuyxXS5L2YV45KUmNsbglqTFTL+4ul88n+ZUkNya5Icl7pp1xFsbNS5Jeks8kuSbJdUlOnUXOaUryziR3JLl+xPeT5C2DObsuyfHTzjgLHebl1wbzcV2Sy5M8bdoZp23cnCwZ9wtJdiQ5fVrZJqKqpnaj/+LmLcCRwAHAl4Fjl405CrgGeMzg8c9OM+Msbh3nZTPw24P7xwLbZp17CvNyInA8cP2I758KfIz+tQbPBK6adeZ9ZF6eteT355T1MC/j5mQwZj/g08BHgdNnnXlvbtM+4u5y+fxvAudV1fcAquqOKWechS7zUsCjBvcfzTo4l76qPgt8dzdDXgr8e/VdCRyc5PHTSTc74+alqi7f+fsDXEn/2os1rcP/FYBzgA8CzXfKtIt72OXzhy0bczRwdJL/TnJlkpOnlm52uszLnwMvT7Kd/hHDOdOJtk/rMm/r3dn0/ypZ15IcBrwMOH/WWVbDtIu7y+XzG+gvlzwXOBN4R5KDJ5xr1rrMy5nAhVV1OP0lgnclWe8vLnd6O4b1Ksnz6Bf362adZR/wZuB1VbVj1kFWQ5f3KllNXS6f3w5cWVUPAv87eLOqo+hfwblWdZmXs4GTAarqiiQPp//mOc3/2bcXfDuGEZI8FXgHcEpVfWfWefYBC8BFSaD/e3Nqkoeq6kOzjbVnpn3E1uXy+Q8BzwNIspH+0smtU005fV3m5evASQBJngI8HLhzqin3PR8Gfn1wdskzge9X1e2zDjVrSXrAxcBZVfU/s86zL6iqJ1XVfFXNAx8AfqfV0oYpH3HXiMvnk7wBuLqqPjz43guT3AjsAP5wrR8xdJyXc4F/SfJ79JcDXlGDl8rXqiTvpb9ktnGwtv96YH+Aqjqf/lr/qcDNwP3AK2eTdLo6zMufAYcCbxscYT5Ua+zd8ZbrMCdripe8S1Jj1vuLW5LUHItbkhpjcUtSYyxuSWqMxS1JjbG4JakxFrckNeb/AdwYrabmTjisAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAD8VJREFUeJzt3X2QXXV9x/H3hwDy2KKybXlaV2snU4cqMis+oNYCttE4OnashalWre1OO9pK64yE+gfqHxanrVWrrcbnGRHwAabWjApOZaxWsQQjBQItYJSAGihSQSsU/PaPe9Ouy+7es8mee/PLvl8zO7n3nt8953NC8snhPKaqkCS144BJB5AkrYzFLUmNsbglqTEWtyQ1xuKWpMZY3JLUGItb+5QkO5KcscS0ZyS5cdyZpH2Nxa1mVNU/V9X6UeOSvCHJR8aRSZoEi1tagSQHTjqDZHGrV0l+McldSU4evj82yZ1JnrXM105Kck2S/0pycZJDht99VpKd8+Z9TpLbktyT5MYkpyfZAPw58NtJ7k3yjXnL/dQwy01J/mDefA5N8uEk30+yPcnrFixnx3BZ1wA/THJgkk1Jbh4u+/okL5w3/uVJvpzkb5LcneSWJE8bfn5rkl1JXrZKv8Vagyxu9aqqbgbOAS5IchjwQeBDVXXFMl97MbABeDTweODlCwckWQ+8GnhSVR0J/Aawo6o+C7wZuLiqjqiqJwy/ciGwEzgWeBHw5iSnD6edB8wAjwGeDbxkkUxnARuBo6rqAeBm4BnAzwJvBD6S5Jh5458MXAM8EvgocBHwJOCxw/m/M8kRy/weSEuyuNW7qnov8B/AlcAxwOtHfOUdVXV7Vd0F/CNw0iJjHgQeBjwuyUFVtWP4j8RDJDkBeDpwTlX9uKq2Ae8DXjoc8mLgzVX1/araCbxjiUy3VtV/D9fp48OMP6mqi4frd8q88d+sqg9W1YPAxcAJwJuq6r6qugy4n0GJSytmcWtc3gucCPxtVd03Yux3573+EfCQLdOqugk4G3gDsCvJRUmOXWJ+xwJ3VdU98z77FnDcvOm3zps2//WinyX53STbhrtC7mawbkfPG/K9ea93l/3Cz9zi1h6xuNW74S6BtwHvB96Q5BGrMd+q+mhVPR14FFDAW3ZPWjD0duARSY6c99k0cNvw9XeA4+dNO2Gxxe1+keRRDP4hejXwyKo6CrgWyB6uirQiFrfG4e3A1qr6fWAL8O69nWGS9UlOS/Iw4McMtmAfHE7+HjCT5ACAqroV+BfgL5IckuTxwCuBC4bjPwacm+ThSY5jUMjLOZxBkd8xzPIKBlvc0lhY3OpVkhcwOND4h8OP/gw4Ocnv7OWsHwacD9zJYNfKzzE4mwTg48Nf/zPJ1cPXZzE4AHk7cClwXlVdPpz2JgYHLr8JfB74BLDk7pyquh74a+ArDP6R+BXgy3u5PlJn8UEK0k9L8kfAmVX1q5POIi3GLW6teUmOSXJqkgOGpxm+lsFWubRP8iowCQ4G3sPgvPG7GZxz/XcTTSQtw10lktQYd5VIUmN62VVy9NFH18zMTB+zlqT90tatW++sqqkuY3sp7pmZGa666qo+Zi1J+6Uk3+o61l0lktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTGdijvJnya5Lsm1SS7c/QxASdL4jSzu4f2J/wSYraoTgXXAmX0HkyQtruuukgOBQ5McCBzG4J7GkqQJGHnlZFXdluSvgG8zeMrIZcOHnf6UJHPAHMD09PRq51QPZjZtmdiyd5y/cWLLllrXZVfJw4EXMLjl5bHA4UlesnBcVW2uqtmqmp2a6nS5vSRpD3TZVXIG8M2quqOq/ge4BHhav7EkSUvpUtzfBp6S5LAkAU4HtvcbS5K0lJHFXVVXMnh46tXAvw2/s7nnXJKkJXS6rWtVnQec13MWSVIHXjkpSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUGItbkhpjcUtSYyxuSWpMl4cFr0+ybd7PD5KcPY5wkqSHGvkEnKq6ETgJIMk64Dbg0p5zSZKWsNJdJacDN1fVt/oII0kabaXFfSZwYR9BJEnddHpYMECSg4HnA+cuMX0OmAOYnp5elXDaf81s2jLpCGO14/yNk46g/chKtrifA1xdVd9bbGJVba6q2aqanZqaWp10kqSHWElxn4W7SSRp4joVd5LDgGcDl/QbR5I0Sqd93FX1I+CRPWeRJHXglZOS1BiLW5IaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUmK6PLjsqySeS3JBke5Kn9h1MkrS4To8uA94OfLaqXpTkYOCwHjNJkpYxsriT/AzwTODlAFV1P3B/v7EkSUvpsqvkMcAdwAeTfD3J+5IcvnBQkrkkVyW56o477lj1oJKkgS7FfSBwMvD3VfVE4IfApoWDqmpzVc1W1ezU1NQqx5Qk7daluHcCO6vqyuH7TzAocknSBIws7qr6LnBrkvXDj04Hru81lSRpSV3PKvlj4ILhGSW3AK/oL5IkaTmdiruqtgGzPWeRJHXglZOS1BiLW5IaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUmE5PwEmyA7gHeBB4oKp8Go4kTUjXZ04C/FpV3dlbEklSJ+4qkaTGdN3iLuCyJAW8p6o2LxyQZA6YA5ienl69hGvAzKYtk44gqSFdt7hPraqTgecAr0ryzIUDqmpzVc1W1ezU1NSqhpQk/b9OxV1Vtw9/3QVcCpzSZyhJ0tJGFneSw5Mcufs18OvAtX0HkyQtrss+7p8HLk2ye/xHq+qzvaaSJC1pZHFX1S3AE8aQRZLUgacDSlJjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUGItbkhpjcUtSYyxuSWqMxS1JjbG4JakxFrckNcbilqTGWNyS1BiLW5IaY3FLUmM6F3eSdUm+nuTTfQaSJC1vJVvcrwG29xVEktRNp+JOcjywEXhfv3EkSaN0eco7wNuA1wFHLjUgyRwwBzA9Pb33yaT9yMymLRNb9o7zN05s2erHyC3uJM8DdlXV1uXGVdXmqpqtqtmpqalVCyhJ+mlddpWcCjw/yQ7gIuC0JB/pNZUkaUkji7uqzq2q46tqBjgT+KeqeknvySRJi/I8bklqTNeDkwBU1RXAFb0kkSR14ha3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTEWtyQ1xuKWpMZY3JLUGItbkhpjcUtSYyxuSWqMxS1JjbG4JakxFrckNabLU94PSfK1JN9Icl2SN44jmCRpcV0eXXYfcFpV3ZvkIOBLST5TVV/tOZskaREji7uqCrh3+Pag4U/1GUqStLRODwtOsg7YCjwWeFdVXbnImDlgDmB6enqPA81s2rLH35WktaDTwcmqerCqTgKOB05JcuIiYzZX1WxVzU5NTa12TknS0IrOKqmqu4ErgA29pJEkjdTlrJKpJEcNXx8KnAHc0HcwSdLiuuzjPgb48HA/9wHAx6rq0/3GkiQtpctZJdcATxxDFklSB145KUmNsbglqTEWtyQ1xuKWpMZY3JLUGItbkhpjcUtSYyxuSWqMxS1JjbG4JakxFrckNcbilqTGWNyS1BiLW5IaY3FLUmMsbklqjMUtSY3p8szJE5J8Icn2JNclec04gkmSFtflmZMPAK+tqquTHAlsTXJ5VV3fczZJ0iJGbnFX1Xeq6urh63uA7cBxfQeTJC2uyxb3/0kyw+DBwVcuMm0OmAOYnp5ehWiSVsPMpi0TWe6O8zdOZLlrQeeDk0mOAD4JnF1VP1g4vao2V9VsVc1OTU2tZkZJ0jydijvJQQxK+4KquqTfSJKk5XQ5qyTA+4HtVfXW/iNJkpbTZYv7VOClwGlJtg1/nttzLknSEkYenKyqLwEZQxZJUgdeOSlJjbG4JakxFrckNcbilqTGWNyS1BiLW5IaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGmNxS1JjLG5JaozFLUmN6fLMyQ8k2ZXk2nEEkiQtr8sW94eADT3nkCR1NLK4q+qLwF1jyCJJ6mDkw4K7SjIHzAFMT0+v1mwlacVmNm2ZyHJ3nL9xLMtZtYOTVbW5qmaranZqamq1ZitJWsCzSiSpMRa3JDWmy+mAFwJfAdYn2Znklf3HkiQtZeTByao6axxBJEnduKtEkhpjcUtSYyxuSWqMxS1JjbG4JakxFrckNcbilqTGWNyS1BiLW5IaY3FLUmMsbklqjMUtSY2xuCWpMRa3JDXG4pakxljcktQYi1uSGtOpuJNsSHJjkpuSbOo7lCRpaV2eObkOeBfwHOBxwFlJHtd3MEnS4rpscZ8C3FRVt1TV/cBFwAv6jSVJWsrIhwUDxwG3znu/E3jywkFJ5oC54dt7k9y4F7mOBu7ci++3aq2uN6zddd9v1ztvGTlkv1v3DusMS6/3o7oup0txZ5HP6iEfVG0GNndd8LILTK6qqtnVmFdL1up6w9pd97W63rB213011rvLrpKdwAnz3h8P3L43C5Uk7bkuxf2vwC8leXSSg4EzgU/1G0uStJSRu0qq6oEkrwY+B6wDPlBV1/Wca1V2uTRora43rN11X6vrDWt33fd6vVP1kN3VkqR9mFdOSlJjLG5Jasw+WdxJ/jLJDUmuSXJpkqMmnWlckvxWkuuS/CTJfn+q1Fq9nUKSDyTZleTaSWcZpyQnJPlCku3DP+evmXSmcUlySJKvJfnGcN3fuKfz2ieLG7gcOLGqHg/8O3DuhPOM07XAbwJfnHSQvq3x2yl8CNgw6RAT8ADw2qr6ZeApwKvW0H/z+4DTquoJwEnAhiRP2ZMZ7ZPFXVWXVdUDw7dfZXDu+JpQVduram+uOm3Jmr2dQlV9Ebhr0jnGraq+U1VXD1/fA2xncHX2fq8G7h2+PWj4s0dnh+yTxb3A7wGfmXQI9WKx2ymsib/EgiQzwBOBKyebZHySrEuyDdgFXF5Ve7TuXS5570WSzwO/sMik11fVPwzHvJ7B/1pdMM5sfeuy7mtEp9spaP+T5Ajgk8DZVfWDSecZl6p6EDhpeNzu0iQnVtWKj3NMrLir6ozlpid5GfA84PTaz042H7Xua4i3U1iDkhzEoLQvqKpLJp1nEqrq7iRXMDjOseLi3id3lSTZAJwDPL+qfjTpPOqNt1NYY5IEeD+wvareOuk845RkavcZckkOBc4AbtiTee2TxQ28EzgSuDzJtiTvnnSgcUnywiQ7gacCW5J8btKZ+jI8AL37dgrbgY+N4XYK+4QkFwJfAdYn2ZnklZPONCanAi8FThv+3d6W5LmTDjUmxwBfSHINg42Wy6vq03syIy95l6TG7Ktb3JKkJVjcktQYi1uSGmNxS1JjLG5JaozFLUmNsbglqTH/C5zi1WNHyUzAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#pick x points\n", "N = 10\n", "M = 40\n", "x = np.zeros((N+M,2))\n", "\n", "#10 measurement by sampling x from a standard normal distribution\n", "x[0:N,0] = np.reshape(norm.ppf(lhs(1, N)),N)\n", "\n", "#sample the simulation with 40 points usng 2D lhs of \n", "#standard normal for x and a normal variable with mean 1 \n", "#and standard deviation 0.2 for the t variable\n", "x[N:(N+M),:] = lhs(2, M)\n", "x[N:(N+M),0] = norm.ppf(x[N:(N+M),0] ) # for x \n", "x[N:(N+M),1] = norm.ppf(x[N:(N+M),1], loc=1,scale=0.2 ) # for t variable\n", "\n", "z = np.zeros(N+M)\n", "sd_meas = 0.005\n", "simfunc_n = lambda x,t: np.sin(t*x)\n", "simfunc = lambda x: simfunc_n(x,1.2)\n", "truefunc = lambda x: simfunc(x) + 0.1*x\n", "z[0:N] = truefunc(x[0:N,0]) + np.random.normal(size=N,loc=0,scale=sd_meas)\n", "z[N:(M+N)] = simfunc_n(x[N:(N+M),0], x[N:(M+N),1])\n", "\n", "\n", "plt.title(\"X-Y\")\n", "plt.plot(x[0:N,0], z[0:N],'o')\n", "plt.plot(x[N:(N+M),0], z[N:(M+N)],'+')\n", "plt.show()\n", "\n", "plt.title(\"t-Y\")\n", "plt.plot(1.2*np.ones(N), z[0:N],'o')\n", "plt.plot(x[N:(N+M),1], z[N:(M+N)],'+')\n", "plt.show()\n", "\n", "plt.title(\"t histogram\")\n", "plt.hist(x[N:(N+M),1])\n", "plt.show()\n", "\n", "plt.title(\"x histogram\")\n", "plt.hist(x[N:(N+M),0])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[11.3.2 Prior for hyperparameters](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.2-Prior-for-hyperparameters)", "section": "11.3.2 Prior for hyperparameters" } }, "source": [ "## 11.3.2 Prior for hyperparameters" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "nbpages": { "level": 2, "link": "[11.3.2 Prior for hyperparameters](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.2-Prior-for-hyperparameters)", "section": "11.3.2 Prior for hyperparameters" }, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4XFed5vHvKe37LluSZcv7Hu8mgRCSdAIJTWIIkKVZEraE7mG6mQEaupluGnr6mZ5hGpjuGRrSHRhoEkJIAlmGkGUIIQSy2I73fZFtWbKsfS9Vqer0H7fkKLZsS1ZV3Tql9/M8em4tV/f+ru/j18fnnnuPsdYiIiLpI+B3ASIiEl8KdhGRNKNgFxFJMwp2EZE0o2AXEUkzCnYRkTSjYBcRSTMKdhGRNKNgFxFJM5l+7LSystI2NDT4sWsREWdt2bKl3VpbdbH1fAn2hoYGNm/e7MeuRUScZYw5NpH11BUjIpJmFOwiImlGwS4ikmYU7CIiaUbBLiKSZhTsIiJpRsEuIpJmfBnHLiKSrqy1DIQidA2E6BwI0TkYonswRNdAmK7BEB9YN4s5FQUJrUHBLiJyAcFwhK7BEB39IboGY2E9EPKCOxbYnQPed12x96FIdNxtGQNr55Qp2EVE4mkwNEJHf4iOgRCdA8O0978R1h393mejLe3O/hADoci42zEGSvOyKC/Iprwgm/ryfFbNKqWsIJuy/CzKCrIpz8+mrCCLsnxvneLcLAIBk/BjVLCLiNPCkSidAyHa+72Q7ugfpqM/RPuAt+zoH459H6JjYJhgePzWdHZmgMqCbMoLsykvyGFeVeGZ0B4N5opCL7TLC3IoycsiIwkhfSkU7CKSckIjUdr7h2nrG44FthfaZ79v7x+mezA87jayMwJUFHphXF6Qw/yqwjOvKwqzqYiFdkVBDuWF2RRkZ2BMagb1ZCnYRSQpolFL12CI031eYLf1DdPWP+b1mPc9Q+OHdVFOJpVFOVQUZLOgqpDL55VTUZBDZVEOVYXZVBTmUFnoBXdRTmbaBPVkKdhFZEpGIlE6BkK09gY53TtMa5+39AI8yOm+YU73eq3skag95/cLsjOoLMqhuiiHhdWFXDGvgqqiHKqKvJCuLMw+8zo3K8OHI3SPgl1ExmWtpWswzKmeIK19QVp7grTGgrt19LPeYTr6hxknr6ko8AK5ujiXRTOKqI6FdXVRLtXFOVQVeu8LchRD8aY/UZFpaCQS5XTfMC09QU71BGnpGaK1N0hLT5DW3iCner3QDo2ce6GxoiCb6uJcZhTnsKK2xAvs4lxmFOUwo9gL7crCHLIydP+jXxTsImkmErW09Q1zsnuIlp4hWrq9wG7pGTqzbOs7t5WdkxmgpiSXGcW5rJ1dxsxi7/XM2Gczir3WdnamAjvVKdhFHNMXDNPcHeRk9yAnu4M0dw+N+fFa3Gf3ZednZ1BTkkttaR4Lq6uoKc2jpiSXmbHgrinJpSQva9pebEw3CnaRFGKtpXswTFPXEE1dgzR1DXGy+43Xzd1D9AZH3vQ7WRmGmSW51JbksXFuObWlXoDXluRRU5pLTUkexbnTd4TIdKRgF0myvmCYE51DnOga5ETn4JkQP9HpLc++07EwJ5O60jzqyvLY0FBOXVnemfd1pXlUFeYk5W5GcYeCXSTOIlFLS88QxzsHOd4x6C07vRA/3jlI11k31BTmZDKrLI/68nyumF9BfXk+s2KhXV+WT3GeWtsyOQp2kUsQjkRp6hqisWOAxvYBjnUMcqzDWzZ1Db3pIVCZAUNdmRfSN66sYXZ5PvVl+dSXe5+V5qtvW+LLrWD/xZ/D3sfhc/v8rkSmgUjU0tw9xNH2gTf9NHYM0NQ1RGTMBcqC7AxmVxSweGYR1y+fwZzyAuZU5DO7PJ+aklwyNfRPksitYMdCeMjvIiTN9AyFOdzWz5G2AY6MLtv7aewYfNM47oLsDBoqC1hRV8JNl9UypyKfuZUFzKkooLIwW61uSRluBXsgC6IjF19P5CzWWk71BjnY2s+h0/0cbhtdDtDeP3xmvcyAYXZFPvMqC7lmcTVzKwtoqCxgXmUBVUU5Cm9xglvBnpEJkfEfDiQCXoC39AQ50NrHwdZ+b3naC/H+4TcaBcW5mSyoLuTaJVXMrypkXlUh86sKqC/P1x2T4jy3gj2QBVEFu3i6BkLsPdXLgVN97G/tY/8pL8z7xgR4ZWE2C6uLuGVtHQurC5lfXciC6kKqCtX6lvTlVrBnZIGNQjQKAbWqpotwJMrR9gH2tvSyp6WXfS197DvVS2vvG10opflZLJ5RxPvW1rFwRhGLqgtZOKOI8oJsHysX8YdbwR6IlRsNQyDH31okIQaGR9jb0svu5l72NHtBvr+178xFzOyMAPOrC3nbgkqWzixm8cwilswsUv+3yBhuBXtGlreMhCFTwe66vmCYXSd72XWyh13NPew62cOR9gFsbBRhWX4Wy2tLuOutDSytKWJZTQnzqgrUBy5yEW4FeyAW7Opnd04wHGF3cw/bT/Swo6mbHSd7ONI2cOb72pJclteVcNOqWlbUlrC8rpiZxblqhYtcAreC/UyLXUMeU5m1liPtA7x+vJvXj3ex7UQ3+071nbmhZ0ZxDivrSnnf6jpWziphRV0JlYX6H5hIvLgV7GP72CVlDAyPsL2pm63HuthyrIutx7vPzFlZlJPJZfUlfPod81g1q5RV9aXMKM71uWKR9OZWsI/tYxfftPUN81pjJ681drK5sYs9Lb1nWuOLZhRy44qZrJ1dxurZpSyoKtSTB0WSzK1gP9PHrq6YZGrpGeLlIx28cqSTV492cqTd6xvPzQqwur6UP37HfNY3lLFmdhkleVk+VysibgV7RqxctdgT6nRfkN8f7uDlIx387nAHxzoGAe9uzQ0N5dy2oZ4Nc8tZUVuiadJEUpBbwa5RMQkxMDzCq0c7efFgOy8damd/ax8ARbmZvGVuBR+9ooHL55WzZGYxGepWEUl5Uw52Y0w98ENgJhAF7rXW/q+pbndc6mOPC2ste1v6eOFAG7850MbmY52EI5bszAAbG8rZtKaWKxdUsry2REEu4qB4tNhHgM9Za7caY4qALcaYZ621e+Kw7TdTH/slGxge4cWD7Ty/7zS/PnD6zO34S2YW8fG3zeXtC6tY31BGblaGz5WKyFRNOdittS1AS+x1nzFmL1AHxD/Y1cc+KS09Qzy3p5Vn957m5cMdhCJRinIzefvCSq5eXM07FlVp6KFIGoprH7sxpgFYA7wSz+2eoT72izp0up9f7mrhmT2t7GjqAWBuZQEfvWIOf7B0BusbynRLvkiai1uwG2MKgUeAz1pre8f5/m7gboDZs2df2k505+m4DrT28eSOFp7a2cLB0/0ArK4v5Ys3LOH6ZTNYUF3oc4UikkxxCXZjTBZeqN9vrX10vHWstfcC9wKsX7/ejrfORenO0zOOdQzw+LZmntjRzIHWfoyBjQ3lfPXm5bxr+UxmlqiLRWS6iseoGAPcB+y11n5j6iVdwDQfFdM5EOKJ7c38fNtJXj/eDXhh/rVNy7lhxUyqixTmIhKfFvvbgI8AO40x22Kf/aW19hdx2PabTcM+9nAkyq/3t/HwlhP8at9pwhHLkplFfOnGJdy8qpba0jy/SxSRFBOPUTG/BZIz2Hka9bE3tg/wk80neHhLE219w1QW5nDnFQ28f90sltYU+12eiKQwx+48Te8+9pFIlOf2nub+V47x4sF2MgKGaxZXc9uGeq5ZXEWmRrOIyAS4Fexp2sfeNRDigVeP86OXj9HSE6S2JJfPXb+IWzfUa5y5iEyaW8GeZneeHjrdz32/PcqjW5sYHoly5YJKvnrzcq5dUq3WuYhcMreCPSvWeg0P+VvHFG051sV3XzjMs3tbyc4IcMvaWXzsbQ0smlHkd2kikgYcC/YCbxnq97eOS2Ct5fdHOvjH/3+Ql490UpqfxX+8diF3XjGHCk0LJyJx5FawBwKQXQTDfX5XMim/O9zON589wGuNXVQX5fBX71nGHRvryc92649fRNzgXrLkFMHwOU8sSEk7mrr5+tP7efFgOzOLc/nqzcu5bUO9nqAoIgnlaLCndov9ROcg//2X+3hyRwtl+Vn8lz9cyocvn6NAF5GkcDTYU7OPvS8Y5tu/Psx9vz1KwMCfXruAT101j6JczQMqIsnjaLCnVovdWsuTO1r42yf3cLpvmFvW1PGFGxZTU6Lb/UUk+RwM9kLoO+V3FWc0tg/wV4/t4sWD7ayoK+a7H1nHmtllfpclItOYg8FenBIt9kjU8v2XjvL1p/eTnRHga5uW86G3zNEcoSLiOweD3f9RMUfa+vnCwzvYcqyL65ZW83fvW6lb/0UkZbgX7PkVXrCPhCAzO6m7ttby081NfOXx3WRnBvjWbavZtLoW75H0IiKpwb1gL6j0loPtUFybtN32BsN8+We7eGJ7M1fMq+Bbt69WK11EUpJ7wZ4fC/aB5AX7vlO93PNvW2jqGuIL71rMp98xX33pIpKy3Av2gipvOdielN39YmcLn//pdgpzMnnonstZN6c8KfsVEblUDgb7mBZ7Allr+cazB/inXx1izexSvvPhdep6EREnOBzsbQnbRTgS5YuP7ODRrSe5df0s/va9K8jJ1OMARMQN7gV7bilk5kJfS0I2PzA8wp/cv5UXDrTxuesX8ZlrF2jUi4g4xb1gNwaKaqA3/sHeMxTmzu+9yo6mbv7+lpXcvnF23PchIpJo7gU7QHEd9DbHdZN9QS/Udzf38J0Pr+Ody2fGdfsiIsni5sSaxbXQezJum+sfHuGu77/GrpM9fPtDCnURcZvDwd4M0ciUNxUMR/j4919j24lu/umONVy/bEYcChQR8Y+bwV7WANHwlC+gRqOWz/90O682dvLN21Zz48qa+NQnIuIjR4N9jrfsapzSZr713AGe3NHCl25cws2rkvd4AhGRRHI02Bu85RSC/dGtTfzjrw5x6/pZ3HPVvLiUJSKSCtwM9pJ6MBnQeeSSfn1nUw9femQnV8yr4L++d6XGqYtIWnEz2DOyvFZ7+8FJ/+rA8Ah/+uDrlBdk8+0PrSU7080/AhGR83FzHDtA5ULoODTpX/vqE7tp7BjggU9eTllBcp/nLiKSDO42VysXQsfhSQ15fHJHMw9tbuJPrp7PFfMrEliciIh/3A32qqUQGYbOoxNa/VRPkL94dCer60v57HWLElyciIh/3A326qXe8vSeCa3+357ay/BIlG/dtpqsDHcPW0TkYtxNuKolgJlQsL/W2Mlj25r59FXzaKgsSHxtIiI+cjfYs/OhYgGc2nnB1SJRy1ce201tSS5/fPWCJBUnIuIfd4MdYOZKOLXjgqs88Opx9rT08uU/XEZetibLEJH053aw11wG3cdhsHPcr7sHQ/zDM/u5Yl4F716pJzaKyPTgdrDXrvGWLdvG/fr7LzXSPRjmr29aprtLRWTaiEuwG2NuMMbsN8YcMsZ8KR7bnJCa1d7y5NZzvhoKRfjh7xu5bmk1S2uKk1aSiIjfphzsxpgM4P8ANwLLgDuMMcumut0JySuFykXQtPmcrx7ecoKuwTB3XzU/KaWIiKSKeLTYNwKHrLVHrLUh4EFgUxy2OzGzNkDTq2DtmY8iUcu//vYoq+tL2dBQlrRSRERSQTyCvQ44MeZ9U+yz5Ji1AQY73vSkx6d3n+JYxyD3XDVPfesiMu3EI9jHS057zkrG3G2M2WyM2dzW1haH3cbMvsJbHn/Z27G1fPc3R2ioyNfcpSIyLcUj2JuA+jHvZwHNZ69krb3XWrveWru+qqoqDruNqVwEeWVw/HcAbD7WxfYT3Xzy7fPICKi1LiLTTzyC/TVgoTFmrjEmG7gdeDwO252YQABmvxUaXwLg56+fJD87g/evnZW0EkREUsmUg91aOwJ8Bnga2As8ZK3dPdXtTkrD26DrKJHuJp7e3co1i6t1l6mITFtxmWjDWvsL4Bfx2NYlaXg7AI2bf0l7fw03rFDfuohMX27feTpqxgrIK6dvz3PkZAa4Zkm13xWJiPgmPYI9EMDOvYrazle4amElhTnuzvgnIjJV6RHswImyy6mmk1sbBvwuRUTEV2kT7E/0LwHgSrb7XImIiL/SItittTx40HIyazZ5x573uxwREV+lRbDvbu7lROcQfbOugWMvQUjdMSIyfaVFsL9wwHtEQc2GmyESgiMv+FyRiIh/0iLYdzf3MKcin5JFV0FOMRx4yu+SRER8kybB3svy2mLIzIb518KBpyEa9bssERFfOB/svcEwxzoGWV5b4n2w+N3Q3wrNr/tbmIiIT5wP9r3NvQAsq41Nf7fwejAZsO9JH6sSEfGP88G+KxbsK0Zb7Pnl3kPBFOwiMk05H+y7m3uoLsqhqijnjQ+X3ATtB6Btv3+FiYj4xPlg3zN64XSspe/xlnuT91h4EZFU4XSwB8MRDp7uf+PC6ajiWpi1EfYo2EVk+nE62A+09hGJ2nNb7ADLNsGpHdBxOPmFiYj4yOlg33UyduG0ruTcL5dt8pZ7fp7EikRE/Od0sO9u7qE4N5NZZXnnflla73XH7P5Z8gsTEfGR48Hey7LaYowx46+w4hY4tRPaDya3MBERHzkb7CORKPtO9Z574XSsZe8FDOx8OGl1iYj4zdlgP9I+QDAcZUXdOBdORxXXQMOVsOsRsDZ5xYmI+MjZYN/d3ANw4RY7wIr3Q8dBaNHMSiIyPTgb7EfaBggYmFdZcOEVl22CQBbs/GlyChMR8ZmzwT4YipCfnUlmxkUOIb8cFr7T62ePRpJTnIiIj5wN9qFwhNysCZZ/2a3QfwqOamYlEUl/zgZ7MBwhNytjYisvugFySmD7TxJblIhICnA62PMmGuxZubB8E+x9QhNdi0jaczbYh0KTaLEDrLoDwgNeuIuIpDFngz0Yjk68xQ5QfzmUzoFtDySuKBGRFOBssA+FI+RmTyLYAwGv1X70N9B9InGFiYj4zNlgD4Yj5GZOsvxVtwMWdugiqoikL6eDPW8yLXaA8rkw50rYdr8eMSAiacvZYB+azKiYsVb/EXQegeMvx78oEZEU4G6wT3ZUzKhlmyC7EF7/UfyLEhFJAc4Ge3AkemnBnlMIy9/nTcAx3B//wkREfOZksEeiltDIJIc7jrXmI96Yds2uJCJpyMlgD4a9h3lN+FkxZ6vfCJWL4PV/i2NVIiKpwelgn/SomFHGeK32E69A2/44ViYi4r8pBbsx5uvGmH3GmB3GmJ8ZY0rjVdiFDJ1psV9isIN3s1IgE7b+ME5ViYikhqm22J8FVlhrLwMOAH8x9ZIuLhiPYC+sgsXvhu0/hpFQnCoTEfHflILdWvuMtXYk9vZlYNbUS7q4YDgKcOkXT0etvRMGO2D//4tDVSIiqSGefewfB56K4/bOa7QrZsrBPv8aKKmHLT+IQ1UiIqnhosFujHnOGLNrnJ9NY9b5MjAC3H+B7dxtjNlsjNnc1tY2paKHQlMcFTMqkOFdRD3yPHQ1Tm1bIiIp4qLJaK29zlq7YpyfxwCMMXcC7wE+ZO35H8Birb3XWrveWru+qqpqSkXHpY991JoPgwmo1S4iaWOqo2JuAL4I3GytHYxPSRc3NNXhjmOV1HmTXW+7HyLhqW9PRMRnU+1j/99AEfCsMWabMeY7cajpouLaYgdYdxf0t8KBX8ZneyIiPsqcyi9baxfEq5DJiNuomFELrofiOtj8fVh6U3y2KSLiEyfvPI3bqJhRGZneRdTDv9JFVBFxnpvBHhsVkzPZGZQuZO1HvUcN6CKqiDjOyWAPjkTIyQwQCJj4bbSkDhbd4D2nXXeiiojD3Az20CVMizcR6z4GA6dh35Px37aISJI4GexD4Qi5mQkI9gV/ACWzYfP34r9tEZEkcTLYg+FoYlrsgQxYdyc0vgjtB+O/fRGRJHAy2IfClzjf6USs/SgEsryhjyIiDnIy2IPhyNSfE3M+hdWw9D3enajhocTsQ0QkgZwN9riNYR/P+k9AsBt2PZq4fYiIJIiTwT6U6GBvuBIqF8Pm+xK3DxGRBHEz2EMJ7GMH70al9R+Hk1ugeVvi9iMikgBOBnswHE1ssAOsuh2y8uG1f03sfkRE4szRYI+Ql53g0vNKYeUHYefDMNSV2H2JiMSRk8GesBuUzrbhEzAyBNt+nPh9iYjEiXPBbq2NtdiTEOw1q2DWBu8i6vknhxIRSSnOBXsoEiVq4zjJxsVs+CR0HIKjLyRnfyIiU+RcsAdD3iQbSQv2Ze+F/Ap49V+Ssz8RkSlyLtjjPsnGxWTlepNw7H8Kek4mZ58iIlPgXLAHz0xkncTS138MbBS26PkxIpL6nAv20RZ7UkbFjCprgEXv8mZX0iQcIpLi3A32ZIyKGWvDp7xJOPY+ntz9iohMknPBHkx2H/uo+ddC+TxdRBWRlOdssCdtVMyoQMB76uOJl+HUzuTuW0RkEpwL9qHYcMekt9gB1nwIMvPUaheRlOZcsPvWFQOQVwaXfRB2/lTPjxGRlOVcsJ+5eJqoGZQuZsOnIDwIr9/vz/5FRC7CuWAP+jUqZlTNZVB/ufc432jUnxpERC7A2WD3pStm1MZPQddROPwr/2oQETkP54J9KBwhI2DIyvCx9KU3Q+EMePVe/2oQETkP94I9FPW3tQ6QmQ3r7oKDz0DnUX9rERE5i3PBHhxJ8HynE7XuY2ACmjpPRFKOe8Eeivg3Imas4hpYehO8/iMIDfpdjYjIGSmQkJMzFI743xUzauPdEOyGXQ/7XYmIyBnOBXvSpsWbiDlvhRkr4JV7NXWeiKQM54I9aRNZT4Qx3tDH1p1w/Pd+VyMiAjgZ7FH/bk4az8oPQm6Jhj6KSMpwLtiHwxHyUuHi6ajsAm/qvL1PQG+z39WIiLgX7EPhFBnuONaGT0I0Aps1dZ6I+M+9YA+l0KiYUeVzYeE7vTlRR4b9rkZEprm4BLsx5vPGGGuMqYzH9i4kmIotdoC33A0DbbDnMb8rEZFpbsrBboypB64Hjk+9nIsLhqOpGezzroXy+fDKd/2uRESmuXi02L8J/DmQ8IHckaglFEmBZ8WMJxDwblg6uRlObvW7GhGZxqYU7MaYm4GT1trtE1j3bmPMZmPM5ra2tkvaX9DvSTYuZvUfQXahhj6KiK8umpDGmOeMMbvG+dkEfBn464nsyFp7r7V2vbV2fVVV1SUVOzp7UsrceXq23GJYdQfsegQG2v2uRkSmqYsGu7X2OmvtirN/gCPAXGC7MaYRmAVsNcbMTFSxQ6HRFnuKBjt43TGREGz5v35XIiLT1CX3aVhrd1prq621DdbaBqAJWGutPRW36s4yPOJAsFctgnlXw2v3QWTE72pEZBpK0c7q8Q2FvDlGU/Li6Vgb74G+Ztj3pN+ViMg0FLdgj7XcE9qxPJQK851OxKJ3QekcXUQVEV841WJP+VExowIZ3mMGjr0Ep3b6XY2ITDMpnpBvNhR2oI991NqPQFa+Wu0iknROBXsw1Yc7jpVXBpfdCjsegsFOv6sRkWnEyWB3osUO3tDHkSBs/aHflYjINOJUsI+OY0/5i6ejZiyHhrd7Qx+jEb+rEZFpwq1gDzsy3HGsjXdDz3HY/5TflYjINOFUsI92xeRkOlT24ndD8Sx45Tt+VyIi04RDCekFe05mgEDA+F3KxGVkwoZPQOOL0LrH72pEZBpwKtiHwhE3RsScbe2dkJmroY8ikhROBfs7l83kP123yO8yJq+gAlZ8AHb8BIa6/K5GRNKcU8F+5cJK7nxrg99lXJq33A3hQXj9fr8rEZE051SwO61mFcy+wuuO0dBHEUkgBXsyveUe6D4GB5/xuxIRSWMK9mRa8h4oqtWE1yKSUAr2ZMrI8oY+Hnke2vb7XY2IpCkFe7KtuwsyctRqF5GEUbAnW0ElrPwAbH8Qhrr9rkZE0pCC3Q8b74bwAGx7wO9KRCQNKdj9ULsaLrvNa72LiMRZpt8FTFu36PECIpIYarGLiKQZBbuISJpRsIuIpBkFu4hImlGwi4ikGQW7iEiaUbCLiKQZBbuISJox1trk79SYNuDYJf56JdAex3L8pGNJPelyHKBjSVVTOZY51tqqi63kS7BPhTFms7V2vd91xIOOJfWky3GAjiVVJeNY1BUjIpJmFOwiImnGxWBPp6dn6VhST7ocB+hYUlXCj8W5PnYREbkwF1vsIiJyAU4FuzHmBmPMfmPMIWPMl/yu51IZYxqNMTuNMduMMZv9rmcyjDHfM8acNsbsGvNZuTHmWWPMwdiyzM8aJ+o8x/I3xpiTsXOzzRjzbj9rnAhjTL0x5nljzF5jzG5jzJ/FPnfuvFzgWFw8L7nGmFeNMdtjx/LV2OdzjTGvxM7LT4wx2XHftytdMcaYDOAAcD3QBLwG3GGt3eNrYZfAGNMIrLfWOjcu1xhzFdAP/NBauyL22f8AOq21fx/7B7fMWvtFP+uciPMcy98A/dba/+lnbZNhjKkBaqy1W40xRcAW4L3AXTh2Xi5wLLfi3nkxQIG1tt8YkwX8Fvgz4D8Dj1prHzTGfAfYbq3953ju26UW+0bgkLX2iLU2BDwIbPK5pmnHWvsboPOsjzcBP4i9/gHeX8SUd55jcY61tsVauzX2ug/YC9Th4Hm5wLE4x3r6Y2+zYj8WuBZ4OPZ5Qs6LS8FeB5wY874JR0843sl9xhizxRhzt9/FxMEMa20LeH8xgWqf65mqzxhjdsS6alK++2IsY0wDsAZ4BcfPy1nHAg6eF2NMhjFmG3AaeBY4DHRba0diqyQkx1wKdjPOZ270I53rbdbatcCNwH+IdQlIavhnYD6wGmgB/sHfcibOGFMIPAJ81lrb63c9UzHOsTh5Xqy1EWvtamAWXq/D0vFWi/d+XQr2JqB+zPtZQLNPtUyJtbY5tjwN/AzvhLusNdY3OtpHetrnei6ZtbY19pcxCvwLjpybWB/uI8D91tpHYx87eV7GOxZXz8soa2038GvgcqDUGJMZ+yohOeZSsL8GLIxdUc4Gbgce97mmSTPGFMQuCmGMKQDeCey68G+lvMeBO2Ov7wQe87GWKRkNwpj34cC5iV2kuw/Ya639xpivnDsv5zsWR89LlTGmNPY6D7gO75rB88AHYqsl5Lw4MyoGIDbnGuJ3AAAAtklEQVTE6VtABvA9a+3f+VzSpBlj5uG10gEygQdcOg5jzI+Bq/GeUNcKfAX4OfAQMBs4DnzQWpvyFyXPcyxX4/133wKNwD2j/dSpyhhzJfAisBOIxj7+S7y+aafOywWO5Q7cOy+X4V0czcBrRD9krf1aLAMeBMqB14EPW2uH47pvl4JdREQuzqWuGBERmQAFu4hImlGwi4ikGQW7iEiaUbCLiKQZBbuISJpRsIuIpBkFu4hImvl3iW1JJpGyYdYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "beta_prior = lambda beta: np.sum(-0.5*np.log(1-np.exp(-beta))-beta)\n", "lambda_prior = lambda lam: (5-1)*np.log(lam) - 5*lam\n", "\n", "\n", "beta_t_prior = lambda beta: (-0.6*np.log(1-np.exp(-beta))-beta)\n", "lambda_t_prior = lambda lam: np.log(lam) - 0.001*lam\n", "\n", "plt.plot(np.linspace(0.01,30-1e-3,100),lambda_t_prior(np.linspace(0.01,30-1e-3,100)))\n", "plt.plot(np.linspace(0.01,5-1e-3,100),beta_t_prior(np.linspace(0.01,5-1e-3,100)))\n", "plt.show()\n", "\n", "t_0 = np.array([1.2])\n", "t_curr = t_0.copy()\n", "t_sd = np.array([0.05])\n", "beta_curr = np.array([.95,.95])\n", "beta_t_curr = np.array([.95])\n", "lam_curr = [0.5,1]\n", "lam_sd = 0.1\n", "beta_sd = 0.05\n", "meas_cov = sd_meas**2*np.identity(N)\n", "x[0:N,1] = t_curr.copy()\n", "old_like = (likelihood(z,x,beta_curr,lam_curr[0],2,\n", " beta_t_curr,lam_curr[1],2,meas_cov, N,M) + beta_prior(beta_curr) + lambda_prior(lam_curr[0]) +\n", " beta_t_prior(beta_t_curr) + lambda_t_prior(lam_curr[1]))\n", "beta_hist = np.resize(beta_curr.copy(),(1,2))\n", "beta_t_hist = np.resize(beta_t_curr.copy(),(1,1))\n", "lam_hist = np.resize(lam_curr.copy(),(1,2))\n", "t_hist = np.resize(t_curr.copy(),(1,1))\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[11.3.3 Generate $10^4$ MCMC chain](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.3-Generate-$10^4$-MCMC-chain)", "section": "11.3.3 Generate $10^4$ MCMC chain" } }, "source": [ "## 11.3.3 Generate $10^4$ MCMC chain\n", "We generate $10^4$ MCMC samples after a burn-in period of $10^4$ samples to fit the prediction model for this data.\n", "In this problem the chain centers on the correct value of $t$ in a small number of samples." ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[11.3.3 Generate $10^4$ MCMC chain](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.3-Generate-$10^4$-MCMC-chain)", "section": "11.3.3 Generate $10^4$ MCMC chain" } }, "source": [ "*Note*: This cell takes several minutes to run." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "nbpages": { "level": 2, "link": "[11.3.3 Generate $10^4$ MCMC chain](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.3-Generate-$10^4$-MCMC-chain)", "section": "11.3.3 Generate $10^4$ MCMC chain" }, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztnXeYFFXWxt8zPTkCwxAHGEDJSBoRRQkGJKiYFXPY5VN3jWtARQyrrq7u6roGVl1Mq2KOIEYkgwxhyGEGEIY0w8AwpGFC3++Pruqprq6qro5V1XN+zzPPdFdXV52+deu9p849914SQoBhGIaJLxKsNoBhGIaJPCzuDMMwcQiLO8MwTBzC4s4wDBOHsLgzDMPEISzuDMMwcQiLO8MwTBzC4s4wDBOHsLgzDMPEIYlWnbhly5aioKDAqtMzDMM4kmXLlu0TQuQF2s8ycS8oKEBRUZFVp2cYhnEkRPS7mf04LMMwDBOHsLgzDMPEISzuDMMwcYhlMXeGYRirqaurQ1lZGWpqaqw2xY/U1FTk5+cjKSkppO+zuDMM02QpKytDVlYWCgoKQERWm+NFCIHKykqUlZWhc+fOIR2DwzIMwzRZampqkJubaythBwAiQm5ublhPFCzuDMM0aewm7DLh2uVYcXe7BT4u2oG6BrfVpjAMw9gOx4r7lyt34v5PV2Hqr6VWm8IwDBMSVVVVePXVV6NybMeKe9XROgBA5ZFaiy1hGIYJDRZ3DRKkcJQQwlpDGIZhQmTSpEkoLS1F//79cd9990X02I5NhZQ7G9ys7QzDRIDHv1mLdbuqI3rMXu2y8ej5vXU/f+aZZ7BmzRqsXLkyoucFHOy5yx3JAqzuDMMwagJ67kQ0DcB5AMqFEH0M9jsZwGIAVwghPo2ciTrni/YJGIZpUhh52E7EjOf+NoDRRjsQkQvAswC+j4BNQcEhd4ZhnEpWVhYOHToUlWMHFHchxFwA+wPsdjuAzwCUR8IoU0hxGdZ2hmGcSm5uLoYOHYo+ffrYr0OViNoDuAjAmQBODtsis+eV/rPnzjCMk/nggw+ictxIdKi+COABIURDoB2JaCIRFRFRUUVFRVgnlTtUG9w8QpVhGEZNJMS9EMB0ItoG4FIArxLRhVo7CiFeF0IUCiEK8/ICLgFoSH2Dx2X/uKgsrOMwDMPEI2GHZYQQ3vkoiehtAN8KIb4M97iB4DllGIaJBEIIW04eFu4ATTOpkB8CGAGgJRGVAXgUQJJ08qlhnT0M7HgxGIZxFqmpqaisrLTdtL/yfO6pqakhHyOguAshJgRh0A0hWxIk9rkMDMM4lfz8fJSVlSHcPsBoIK/EFCqOnX6AYRgmXJKSkkJe6cjuOHb6AYZhGEYfx4q7jcJjDMMwtsOx4s4wDMPo41hxZ8edYRhGH8eKO8MwDKMPizvDMEwc4lhxz0xNstoEhmEY2+JYcc9vngYAaJ2dYrElDMMw9sOx4i53qHZqkWGpHQzDMHbEseIuT6lTUx9wpmEmDIQQOPP5X/H58jKUlB/Cf+aUWm0SwzAmcOz0A7LnXl593FI7mgJb9h3BPR8XIzs1EdU19bhxaGckJzrDL/ht635sqzyCyws7WG0Kw8QU54q7NEQ1J407VmPFsTrnPSVd8foiCAEMOzEPrbJSkJDAIySYpoEz3C8DBK+iGjNIel566IvVOFRTZ7E15pCnxB7yt5/xGoeUmCaEY8U93InsmRCQnN5Pl5VhqgOFckHJPtP77th/FOXVNVG0hmGii2PFXYY1PrrolW+8L4Q17qV5uOa/S6w2g2FCxvnibrUBTQhltNrtwFZ1YWkl/vXTZlP7VtfUY9Pew1G2iGGih/PF3YEi41SU0yy73c4s9xd+2mS1CQwTE5wv7lYb0ESJpba73QJfrtiJBoc2KAxjBY4Vd77NY4OynEkRmIllWGb60h2466OV+N/i32N2ToZxOo4Vdy+s8jFDGZaJZThs6z5P7PtIbX1Q3ztW67y8fIaJFI4Xd9b22OHboRq78+4+6ElJTEtyBfW92hBTeoJJmWQYu+J8cecO1ZihFMvKI7Gb9iE92eXz3yx6g1Fnrt5t+L03520J6jwMY0ecL+5WG9CE6Nk22/t6455DFlpiDr268dz3G0P6HsM4CceKu+yws+MeXZRPRsqwSFqQXrQVCJ2oTKCnPZ59hokHHCvu8lS/PLeMNdQ3xK7cQ23A9TJ6tLa63QI10sRoCRQ7ef98eRkWSjH+2RvL8eWKnTE7NxPfOFbcX/mlBACwY/8xiy1pmtRYMEMkBelTB5Ouef9nq9DjkVmoOlqLGGo77vm4GFe96Znm4Ma3luKuj1bG7uRMXONYcS/6/YDVJkSMRaWVmPhukaNGfWam2n+2aL3i1NL8T5eVAQD28voAUeeZ7zbgM6m8mejhWHFX0+AWWLvroCOzZ+7/rBg/rNuLQ8e187jHvzwff3p/eYyt8qAsTaUnnJ7kBHHXC8s0bt9ScRiDn/rJ+76uwe1dK8BOfLVyJ65+c7Ej67eSw8frMXVOKf7ySXHAfauO1mJRaaXPNiEEKg9zA2yGuBH36Uu3Y9xL87GgpDLwzjaj6qhnbvSVO6o0Py8uO4gZAdL3YsHxekUPpf30zw9dcVdsfm/x7yg/1CgWDW6BH9ftjbZpQXPn9JVYUFIZ0/EFkWbT3kPo8+j3pvd/8PPVmPDGYhw4Uuvd9t/5WzHoyZ9QUn4Ih3WcIcZD3Ij76rKDAIDt+49abEnwyDp5/bTfHO+ZBcOi0sqoemFmhNCnwQIw/pUFUbImMoRbP8755xxca9FUxut3Vwe1/7zNno5m5fiK2RvLAQCjXpgbsKH4auVOFEya4dM4RAIhhCPu07gQ9zfmbvEun9bggEJXowwDqMUmnpnwxmJc8friqB2/+pj2alHKKpKZYhxekp0GuxBu7d5cftgrmrFG69Zc9vt+bNhjLPrKJzC3W94W+HzTFmwDAMzdXGHWRENW7qiCEAJn/WMOrn9rqenv1dQ1YPbGcrw5b0tM61NciPtTM9fDJQmkkzolZZQh3mBmPlyzM7Z9DEanqqlrwNn/nINfNgQX0igpNz9n+k/r9+JvM9eb3r/WoKEsrThsaiTqwlJ7TUXgBN/lk6IdqDjk/0SmlbZ8yWuLMPrFeYbHU/7mYDKg6iWP/87p4Wcg/bJhLy58ZQH+8cMmbNl3BHM3mW8w3l20DTe+tRRPzliP81+eH7YtZokLcQcAl+y5O1HcFa+nzinFN8W7An5nUWklzvv3fAx/7teoCrzy0Mqbs2Vmss9+O6uOoaT8MP4+y3j0Z7D8vH4vPpEyK35Ytxf/mWt+agAjIbjolQV4csZ61AWYfyaafatmrpu6gTIa13GstsFy52ZvdQ3u+3QVbn7H37N1h/hQqryOwfy6SBaFnHL98uySoL+784A16dpxI+7ywBO38AxGuWv6ioiugfnjur14f0l0ppxVhmX+/UsJbv9wRcAbf8cBT9/C9v1HsS7IWGYwKBvLNTsbz5OTluSznzyoSQjg46IdAT1eLc9Oi9s/XGHWVACexqBg0gysKqvSvbl3Vh3zdsYFyp0PNrc+GEY8/6vm9uP1DVhUWok1Ow+i15RZ3kFOgL7nfry+AT2nzMKTM/yfbG55bxmemrFO1461uw5izc7IhAvkxmhVmf8x1Y1tvUbDeuBILV7+ZbNPI+XztSAEWx3jf2PuFkybvxWAZ43ckx77Hlv3HTF1LJfeREUG1De48frcUstCxXEj7i7plzS4Bb4p3oUvV+7CswZe5Prd1SiYNANrd/lWwLmbKnDjW7/5PQH88d0iPPzFGqwq085oCQetavP5cuORispRlHVRHC0qNyJq1PX1oBTfTkok3P/pKlz1hnan3fH6BhyrbTA98Viixk1VMGmG7v43v1MEwFN+Rg2kfHm/XGlczkrPfd/h4xF9Mvy9Urtsn/x2PSa8sRjvLNyGerfAj+sbQ11HjtejxyPf4dGv1vh0FMrTG3+23D9/fNbaPXhj3lafbQ99sRrrd1fjaG09xr00H+f9O7hwgVbZ1tQ14IUfG1e6WlCyD9U1dSiYNAPXvLnET5dv+Z9/eu/kL9fg+R824bppv3kb4HpFmZsJy7jdAr9X+op2+aEaPDVzPZ74dh027jmED37bjuqaeny0dEfA4wGhifuny8rw9MwN+N/i7UF/NxLEjbjLHao7Dhz1Co/R9RjzL0+c7/FvfD2ayV+uweyNFThwVLuH/e2F23DwaB3KD9Wg/FCNj4dx4EgtvlgRmcEZxWVVcLsFPvytsWJcP+03b3aJS3HlAlU7t1vgqRnrvKmW63ZV40/vLzclVMrzK1HfY58UeW6SLRWNN9WhGv8OzaHPzEbPKbNMP6Lr5f4HgsjcY/l+k5kUv24sR+GTP+Gej/3jt7sPHsOkz1bhSBipea/9Wup9vXHvIR/bXIoWZtCTP6Gmzo13Fv2OCW80dkbLT28HdTqRAWDAEz94X3+wZDvG/GseLng5+Oyg1+eWovDJn1Bb78YXK8rwudSgzNlUgc8V0yfUuwXeljo155fs82sQflI0Wm63wIxVu7Hr4DHv/jIjn/8VP0v7qsVdq1/ltTmlGP7crz7bznp+jvf1uS/O9Zb3oi2VWFCyT7ej84FPV2H8y/NxVGNtgKlzPMf4aOl2zWmitZIjsmM4+C/gmYhoGoDzAJQLIfpofH41gAekt4cB3CqECDxCIUSO1zfgvUX+4ZHsVE+Y4H+Lt+P2Mz3xYDNzhFSpRFy+iDV1DXh9bilmb6hAdlpjMf2yodzHqx7ZPQ9v3TgYAHDH9BWYt3kfXvhxMzq3zMDd53RD/w7N/M5ZW+/Gd2t249SuuWiVlaoZ100gwoOfr8ZHRY2exZxNFZi5Zg/yMlPw9crAcXnA84Qyd1MF3pi3Fb9urMD0iUMw9iVPwzaqd2tc0K+d4aAdvU5JOfZbduAo/vnDJu9NrbwJ9hysQWZKIo7Xu/HZ8jK8+NNm7JMaJ7NzAhk5atU1dSivPo6ueRn4fu1e7FCkwRIoon0RN0jZEas0ROA/c7Zg+tIdOKVLC1w0IB+7qo7BLQTym6frHm9nlW8c9tlZG7yvf9u6H0Bj5leCjpeyYc8huN0Cby/c5k0RNOLAUX/hV3ZoVx2tRbP0ZL991Dw902NrdU0d7v7Ic6tfPDDfL95f3yBQcbgxNGrU2J737/mG4cW3F27DWT1bo7TC1yOfs6kCSS5C25w0dG+TBQBYvMV/rIuek1C8owpXS9M/zL53BDq3zPD5XL7/Cgta+H333z9vxrVDOuGBz1YDACYM7oglWyvx4R+HYGfVMZRW+CcLxHKAnJlm5G0ALwN4V+fzrQCGCyEOENEYAK8DOCUy5vkz9dctmosc52Z4KiWRJ24NeC6MXlhBZtPew7j6zcUY27ctAHjF5425W/BV8S4crqn3eSyUBxw9MLoHnp21AZv2Nl7AvVKMf/v+o9hZdQz7Dh9HPw1xn7e5Ajv2H8Nlg/Lx3GX9oOV77zlYg1lr9/htX7+7Go8s8fWmN5cf1jwP4PH25UE6m8sP49RnfvF+duf0lXh74TbcO6q73/cIQL8OzXQnCJOL5L5PVmGRxs0EAOe8MBe3jeiK/UdqMV31+Fu8o1Ekl2ypxCldcr3vjxyvx88byg3zot9b/Ds+WLId63dX419X9vfLiJi2YCv6tM/W+XZwKEVL7oDdf6QWzdOTQETYIsVtj9V6PjtNKuNtz4zTPeaeg4E72eQnKyM96PLQTL9tC0v3ITXJhYEdmwc8h5L+T/yItCQXnr30JFzQrx2qjtZi097DcAsBITwNsrK9nLXGt34mJ/oGAhrcbiQmNG4zCqkE6jeS0zfVTyZfF+/CN8W7kJ7swronRgMIPaPo77M24LVrBqGmrgF1DW6fNNn/zt/qt39CAmHyl2u87+Wn3Ds+XIElUgOt5uCxOqzbVY1e7SJTN40IKO5CiLlEVGDw+ULF28UA8sM3S5/9OrFa+XqqL2zxjiq/glR7XwtKKv1Gtr4jPR2c3bMVflrv7xVdd2on7DhwFD8oBFj5pDC2b1ssKq3ED2u1UgM9Ru46eAxfrdzpbVCUaAk7oN0Ree8nxbh0UGOxH6ttwJKtlZj85Rqf0ZeAvye+Ynuj56Lm/4Z3QZ1O/EQuZz1hl3lVEW5Q8tAXq72vr3h9MZY+fLZXLD8u2uEXLlPziOKm0uucfTqItEk9Fm+pxD8VceTj9W6sLjvoTWk7s0crb1rc6iA6Jc30k8j1NNhZKuX+DrlxKchNxzad+L6aY3UNmL+5Ao98ucYwxAPAR9julJ5alRT9fsBnDYBwuyvumu7fuS5nlimfGOeHuJLWd2v24M7pK/CV9FR8zzndDPc/VFOPLzRm8awIMDBv7EvzsOqxUd5oQ7SIdADoZgDfRfiYPtTq3BR6rXXf/BxMn3iqz7bRL87FBtViEzecVoDMlERvqpN8Yyzdtt9P3F+4oh8yUhKRluTCvsO1qK13IzGBsEmKlRbkpuPfEwYY/o5xL83TbFQCoTc0/slvG8XwTQ0vQ4viR0fpLrpx2/vLUHm4VtdzD2aq5VM6t9D1ZGRq6how9qXFPk9CZtFbTm/f4fBHJqqvfcWh47jsPwt93stkppif497MlMmyuLbNSTV9XCVyfTQr7DILSiq95+6Um46/XdQXRAQizxPdzNW7vc6PTPGOKr/+i4Wllb7ORZhhsm9WGU/B8eJPm0KarvniAe29YcWvFOFOZaMeDFsqAmfgfFpUhptO7xzS8c0SMXEnopHwiPvpBvtMBDARADp27BjSebq1ztTcric2WnHPLI1Ojey0JL/0PgA4KT8Hd5x5Al6SQj1n92yNiwZ4vOTm6Z79hz83G0eO13s9k7TkwMX6zMUnBT2goXvrLG9n2wmtMn3ipfIjobIUmqcnacZZZXLSkjC4s38sEfCUx84Dx1Cv1/MZxH361o0nY2/1cew8cAzX6Ax9dwsRkrADwM8aT1aRIisl0S9eW1PnKZOOLdLxze2no8+j3+Pw8Xqo2xijqQyKdeYR0iLZFVrew6gX5ob0Pbk/4MwerXDHWSf69RtlpCT6iHtakgu/3jcSvafMwhFVx+MWRdw5kOeenuzCn0aeoLtSll4CQL/8HKzeeRAv/rTZ+AQ6nNmzlU9HcDD0aJPl5yiaYfbG8qiLe0SyZYjoJABvAhgvhNB1RYUQrwshCoUQhXl5eSGd64RWOuKuU3Geubiv37YHx/b02+Yi8osZAkBKogv3jOqOqdcM9Oyn2OWqUzphWLc8tG+Whm6ts7zbnxjf2+gnAPA8UegJqx6XDsrHm9cV4v+GdcFHE4f4fLb2idFY+8RorHp0FDJTEtGvQzN8eutpmDzO/7cCCHjulpkpWLSlEku3aU+tHIwPlp6ciM4tMzD0hFxcOigfj57fy28fZXbD5HE9UTxlFN68rtDU8ZdFcfrnbFWDXzxlFN69ydOB3rGFx3FIcnm8xWkLtuJ5hTA1S0vS/QuGp0IML107pBP65ecY7rP1b2M1tw/s2AzTbjhZMyFAfQ9ecXIHAMBRjTn+lXocKI1x9r0jQmrIpl47CJufGovSpz1/wXJ2z9a44bSCoL8HADcNDU2gYzEFRNieOxF1BPA5gGuFEKE9xwRzPp3EP71qk6hRWQZ2bI4tT4/16YxyJQApBhVL9sqU+a4tMpK9NzrQmH99skbPuhZTrxmErfuO4JLXFhruN7p3GxQWNMeVgzsiMyURZ/dqDSEErjqlI74t3oUp5zc2JomuBBRNPhuuBEKSKwFd8zJx09DO6PfEDzhU4/FAHxjdA7eO6Gp4zleuGuh9MlCm3MnImSgZyS4/b00PIsLzl/UD4J+CquQPZ3QBAAzpmqu7DwA8PLYn3l/yu2bY4YbTCjC/ZF9Q0xtooc5qcbnIW9fkCICyjr02pxTJrgT84/J+OL9fO93jDvrrj6g0mYYpXzc9LhrQ3i/2O7BjM/z1wj5ocAt01eh0lVFmb3RumYEjx+tx8Fgd/nF5f93vpCqWWyx+dBSypI7Hvu1z/PqzNj45Gt0nzwLg77mP7t3G27f0/V3D0Do7VbePR481j58bcH6gQKQmufDYBb2xdNt+rN3V2LHbs2021u+uxh9O74xe7bJxz8f+SYCh5L8DQLsQQ23BELCZJKIPASwC0J2IyojoZiK6hYhukXaZAiAXwKtEtJKIiqJory7KDjaZVlkpuvur08uMQhQAcFrXXLTJTsVtI07Q3SfP4HxatMhIxqBO+hkNz116EgAgPcWFP5zRxacSExGevqgvVj12rk9nKuCprEkKwUlIIPx1fB/kZiQjMYEwpEvgxicvKwWnds3FqQqBnTSmh/e1fJ9mKTqFHh7bE1/cdlrAY5slMyUR7ygaTyXn92uHPw7rgoc0nsIA4LELevuUQaRITCCvByrHd28/01MnBhe0QOnTY7HpqTGGwg4AY/q2MX3OAR21M6EAT0P9whX+QnzLcE/j7Uog00IyeVxP/Pbw2dj45Bi/lEA9ctKSvPeSurzP6tHKxxlTp6bKv+uSgfneNMa6es8+o3v7ls/7f9BOwAtX2NMVawE/OKanj2ZcKT2RXD2kkzebTk2iKzRxd4X4vWAIWPuFEBOEEG2FEElCiHwhxH+FEFOFEFOlz/8ghGguhOgv/Zl7lo4BD+uEJLS4ZFA+Clpm4IbTCjBO40I2z0jG4ofOQp/2+o+5b15XiCnn+YccQqVlpqeiFeSau9GMuHBAeyx75BxsfHIMBgSZItdCSjPNy2ys+LIXphy4k5rsMn3sa4d00tzeoUWaz/vh3bTDd6dKqZP9JYG471z/dM5jtdoe7wmtMjX7V4yYccfp+PslJyE1yeVNjZT9g+tOLcCax8/FdFWozIjJ43p5Pf+LB7YHALTJTsW8+0f67fvezfqZxepU3+Hd8jDv/pEYpRDHX+4dYWiLLP7ydTZDQW66V/xkklSCdY3qGqujMpcMykfvdtm4Z1RjVorcx5OuWoC9uYn8ezVn9mgFAHhEdU8+e0ljqFbZAXv6iS3x28Nne98XFjTHtmfGoXPLDJ+nFSUdWjT26Q3vlqdZD7VQpohGC/svpxMiRjnGWshex2MXBI6X69GvQzPdfHMzZKUm4ovbTsPZ//R0hI3onoe3bjgZZ5zYMuRjqgnlMTIzJRH7j9RCWR9lL0w5b0aKRp+FHsqkhqLJZyMlMQHb9x9F25w0/S8pkDvWW2Wleq+1uiPuhFaZmiGb60/thBeC7Hzr3S4Hvdt5GnY5ve/ywkZxC9aDTE1yoU87T0fgyO6t8PnynSDyFQuZjGT9LJwOUsKAHOK44uQOfsfQEyaZ7+4chuXbD6Bfvvm6O+uuYX7xcb8nJVVVU8fcW2amYMYdZ/hsk1NEU1W/OSXJfN3q3S4ba3dVexvfjqry6N/B2AFJkEY3K50ZLR6/oLfPWII5myrwzk2DsXbXQczbtM9wdHWo4ZxgiJvpB0LhA8WjniuGI8f0mH//mT7viQgje7TS7DeIJXImktLLkW9TZQbDWZKnpKS3zmANZeVumZmCrNQk9G6XY9p7bNcscCOgNxpQILipY9UZWu2apWHbM+MwRudRPVhk8ZUbiGZSFtZHE4dg+sQhICJ0zfN9epswuCMuG5SPicM8/RPyTw0l2zAnPQkje7TSHQmrZ7N6/1G9Wvu8J/g24mby3OWF17NUjWWaooEyCmUCwPSJQ/DzX4brlkX3Nln48e5hut+X7dRKsFCifjKRefXqQXjiQmMnUWvOpEjjOHGPpAafdkKjRxxMxY4WOelJpj3XWCL3cfnkEEs3gHwD3TK8K3JVns6ax8/F5zoxeLkxfWB0D83PjVjz+LmmxF0r00PGqJyvO9X3pr3nHHOP2sEiF2deVgoePb8X3rrxZABAhpRK2755GoZI4Sfl783NSMbfLu6L5y7r520kveIeII/ph7uHmcrmCoVrhnRC8aOjdJ809QYgKpHj8OeoGgplmKZHmywYkZWahK552ll1MnJ5qr16JUbivvbxc8PyvkPJxw/6HFE/AxMUGSmJ2PbMuKDDSrHA13P3Dcto1fPMlESkJBqHBEJ5KDEbArlleFdvdo6aaTfodw2pxT1a96HysDcO7ewdk6G1NoHSC9XqxJM7LgN57t1aZ+GiAe1DMzgARISctCRvqKJtTprPb8xMCdzPcUG/diieMgqFBS3w8lWNAwGVQhuJ65GRkoj/XDtIs8NefkoySsvMCLMjN9SO2GBgcWcCIsfXfRx3SUTMzH+iRThhBLO4EkjTyxMCyM0wiqfG6CmOZEH2LQS5I1DZiCnDSFcU+nZkeo7l+WemOKPtNd5x1on48e5h6N4myycUY2ZUMxEhRwpLKUMxyg5Is/YPKvA0Mu11nvLO7d1GM8PtpQkD8OCYHn7hUDkEZoaOLTwNhF7iQCw897jsUA02JZExRr5BE3zip743arCLWsjxcDNi9NRFffDwF/6prmra5aRi10HfBVq07qGKQ8eRnJigOfpU6zvRvg3VZTB5XE9MHNbFJ8wll/dbN56MERoZRLKNZmbCjLawuBIIJ0qD+iLVcaiMUZu1/5ZhXTG6dxt0CRCiUaPsPFcSTLEN6tQcs+46AxnJiXhvsf8strGIAsed5z55XE9Mu/5kq80Iip//Mhzf3q47a4PlyB6XsoOySjWtQbCVVU6bM/O9LJMTLMn2KR+1tRqdnzd4piswO0I4WtO0XiyFR9TjMRJdCbp9CimuBE17grFRDgkM00kzjSSuBPKmeirTZo0ygLRQ9omZ/akJCRS0sBsRrAPTo0022uiMMWDPXYNARXLFyR1Mi4FdCNT5YxeUZV+tHjUZZGW9dcQJOFxTj2uHFATctzBAdoSaLooBOFrpxOT9TNtmgifu/q7GugGR5PrTCnB5YQekmRC6wMsBetBz3P91ZX/sqvI81SS5EvDzX4YbDvKLJPL6B8oJ7czMG69Gnk8pFGH84e5hIc+1I6PniLRvluY3kllGmR5K1Hh9RvVurbl/JHGcuAcilpPhNxXeu/kUfLx0h48Xol5RJthSz0xJxOPj/dZ+0cRMZgygHcc3EgK99Fci8knJjGaNMiPsZpCFRy+uPb6/byeqFQ5FuP0r3kY5hAuinPspVPRCTGaD4wY9AAAVkElEQVRDTxv/OgbdJnsmzb35dPPx+1CJu7AMS3vk6dY6C5NVo/zUN2osHjMDIS/YovTWjawyGiSo/H02+Gle9PRRdmqCnJrF1sjlPrK7b/jI7OLqajzjKUL3Z/WqgVlxV2b88CCmEAj2RrwtwARajDayhyhnoxQWBBc6iQZvXFeIv17Yx2eaZ+34tOe/XoOk3moHcZfTM/U8UG9YJkb2hEswSyCqJ2ozyk03YslDZ2HllFEhfddzfr0nvZAPGVXiT9yD9N3vH93DljnldsR3EijP/9OlgWBDT4jcFAmh0io71S/1zMhBWqOzcpKA/W7YMX3bYtsz43QzwVpLITP1nCx2xYy0q+9luc65QpyXxZVAYXnMenWinQ0HHgJOFPcA18ZuN2U84TuUXEj/w5+ZL5oYee4FOjMfCuG7VmiwDoMV/N+wLnhgdA+c1dN/Cgg7cv/o4Ef9ymMqYjEASAu9cNC90mRhevfBzVFelEMPx4m7E260poB3zVoIvyvy2Pm9/OKkVqHlqMnCPbSryacNB1S5ZunJuHVE14Ajgu2CvJqZGeTrJS9UH4t4tRbyClxq5EFSeo3OI+f1siQ64DxxZ8/dFsgDm4TwL/MbhnbGWzdqz8Mea7Ti6vImvbrilLh13KO6Pl7P3SJx13sqkhubaI62DgXniXvAz1ndY4JUk4UQcZ9+Gt+/zv6oZyC1ynPXW7BDJphO4ljgPHEPICRxrjO2QSj+22BCTV20BirJSybqTgksfL33eG+8nII8SZ3VU2CrkefAmTC4o8WW+GLfnjAdAoZlYmNGk0S7QzW2nrvW4tpGaDU89ZK661stfLwwrlPWIpe/MizzwhX9fCYWs5K0ZJctM+6cJ+4BPrfXg1H8IpQx9xic752bBiMpgXzm4DeDVpgu0EyWQlj36N8UCGbFLqDxnj4mLcTuSqCgOmSbKvZ6vjGB3g2Z39zTYx2NRZEZD1p57p6c8OgL4fBueUELO6Dtude5A3nuwKhejWuQclQmspgtT/Vux6RVmjbtORRZg+IUx3nuerdk55YZ3gWlmegjh2XKq2tg5+clrYanocF/lkslAkBGSuMjP3fSR5YGM+vtKVB3VB5ST1rHaOI4cTdq9dnDij2ZKYnYd7jWajN0UdaJiwe2x+fLd+LSQfl+nykRwn5pbfGEvAh2IPQa3+w0x8mWl2/+fDo27Y3Nk4fjSon12zq0OlRdCQm6K93YAWWe+3OX9sNVgzt6F1g2G05ipyE8xp3UFjNW7fa+b54e3pTcVi7G0zw9CQdUaxkEQ9/8HPTN918IJBo4T9z5TrMMrWX2PHnu1thjBqVprgRCYUELzc+UCAifDtXahjiaatECXryiv4+4hzuDqJVhsukTTw15VspY4zxxt9oABoBvnrudxd1ISIzCMsqMjqqj9g07OQH1vPmhdqgG+/1o0L1NFrprrMtrRxyXWqK8sO1US1jZWGPiAqXH5FaOULVxyZNBDdez2zOlgn9mEBMa/mIcXH2x49oBTsB54q6oGCN6OGMGvLjEJxXSUksMMTJNz+6WWck+KZQs7uGhDqWa9tx19rNzfbMTzhN3nQvrFnoLjDHRwBuWEfb2pIyy7rSsLpp8Nlplpfr8Jq5X1iA7cuo72871zU44Luaux4KSSqtNiHuU99TWfUcwZ1OFZ/oB60wKCy2NkMdKKAXEza57RDFbX7TWxFVuZ4xxnOfO2IeXft7s8alsfLMZjoswMFy5cLXdZvtzOsF2qKobV86YM4fjxJ2vq82I0dwyoZJltEqUgeHKxYxZ2yOL6bCKXsw9cqbENY4Ly9g5M6OpQZBWYrJxi0vkmUGwRUboA1+CHC3PBMB0WEaOuXO2TEg4T9wV15UvcWzRKu9YzQoZDnozCJoNt3BXvTVwzD08HB2W4VvOeuyeLWOE2ScODstEFtPTPkj/1Y2rM2tb7HGeuPOltRVum08/YEQgsy+TJhjjDlVrkBsB9txDw3nizmEZy9C6qZwse4E8yFRppR+OuUeWYAcxqYufHTxzOC/mrnjN91xsyUlL9nlP5D9U30kEsrox5ss1LZKYrS592+fgtK65eHhcz+gaFKcE9NyJaBoRlRPRGp3PiYheIqISIlpFRAMjb6byfIrX0TwR40deVgrm3T/SO2WuB+cOYgqE3JfA0h5ZzHreqUkufPDHIejdTjVFbrxWuAhjJizzNoDRBp+PAXCi9DcRwGvhm2UEX1kr6dAi3Wc6XCGABMcF9zwE8iDlRT3O5DmMIkq4D3ptslMD78QEDssIIeYSUYHBLuMBvCs8z66LiagZEbUVQuw2+E7IODQCEJcQSJp+wJkXRV2XHjmvl8/7Pu1zbLmqvdMJt7YM7twi8E5MRDpU2wPYoXhfJm3zg4gmElERERVVVFSEdDJlxTi7Z+uQjsGEx77DjYsV2H1WSCPUjdIpLBoxoVNuRljfd2p9izWREHfNsS1aOwohXhdCFAohCvPy8kI7meLK5mWl4IHRPUI6DhM6WyqOAACaZyQ5YhCTHmqRcGq+vtN4acIAq01oEkRC3MsAdFC8zwewKwLH1UR9+/H9aB192uVIE4c58yLsP+K7wpJDf4bjyEkLbw1VTl4yRyTE/WsA10lZM0MAHIxWvB3Q8raidSYmEJ5USOHYa7BuV7XPe/bcnQFPwWyOgB2qRPQhgBEAWhJRGYBHASQBgBBiKoCZAMYCKAFwFMCN0TIW8I2TEgFVYaxEzoSPk8Myl5/cAZ8sK/O+Z223N1//eSi+WLET6cmOG55jCWayZSYE+FwA+FPELAqSV38tterUDOw/K6QRnVqk+7x35q9oOpyU3wwn5Tez2gzH4LgMZd9BTHw7WsnWfUcd7bmrDXdqI+UExvVta7UJTQ7HiTtjHz5bXiZNP2C1JaGhjrE79Xc4gVeujurAdUYDx4m7+gZslh5ezzsTHgLOHcSkFvdEp/YMM4wGDhR33w7VV69ij8BKnO25+77vqIrBM4yTcZ64q94r17pkzyv2OFnc1TF2jrkz8YTzxN2vE6zx9eg+bWJrDOPosExKouOqP8OYxnG1W53nrvS2vl0VtbFTjA5O9txTk1xY/OBZVpvBMFHBeeKu9tytMYOR2HHgqGPFHQDa5PD0sUx84jxxV73nIePW0jo7FXsO1lhtBsMwKpw3jtcg5s7EnlVlB602gWEYDRzouTeqeX2DYM+dCRtOsmLiEcd57kotz0lLwsFjPHGY1UwY3NFqE8KiaPI5OF7fYLUZDBNRHOi5N9KhRTqHZWyA2+3sKVhbZCSjbU6a1WYwTERxnrir1JzDMtZzatdcq01gGEaF48S9uWouGdb22JOa5Fttlm8/YJElDMPo4Thx9xsyzpnuMSc71beB/aY4aqsqMgwTIo4TdzVbKg5bbUKT48OJQ6w2gWGYADhe3J3dledMuuZlIju1MdGKJ9xiGPvheHHnDlWGYRh/HC/uLh6BwjAM44fjxZ213Ro4FMMw9sb54s7qzjAM44fjxd3FHqQlKIudF71gGPvh+LuSY+7W0SUvAwDw2AW9LbaEYRg1jps4DAAmj+uJglyPsBS0zLDYmqYJoXGen2ZpSUa7MgxjAY4U9z+c0cX7uh2vpGMZ8hgD7lxlGPvh+LCMUljG929noSVNCyKCkNSdI2MMYz8cL+5KCgtaWG1Ck8ItqTs77gxjP+JK3K9y+KIRToLQKO68TDnD2I+4EnfOnIktsraz584w9iOuxJ2JLY0xd1Z3hrEbLO5MSBApYu4W28IwjD8s7kzIcFiGYewLizsTIqTw3FndGcZusLgzIeNmz51hbAuLOxMSRIDgPHeGsS2OnH5AzatXD0S9mxfcizWNWe6s7gxjN0x57kQ0mog2ElEJEU3S+LwjEc0mohVEtIqIxkbeVH3G9m2LC/rx1AOxRDmIiT13hrEfAcWdiFwAXgEwBkAvABOIqJdqt8kAPhZCDABwJYBXI20oYz+qjtYBYHFnGDtixnMfDKBECLFFCFELYDqA8ap9BIBs6XUOgF2RM5GxO2631RYwDKPGjLi3B7BD8b5M2qbkMQDXEFEZgJkAbtc6EBFNJKIiIiqqqKgIwVzGLii99cY5ZhiGsQtmxF3roVt9N08A8LYQIh/AWADvEZHfsYUQrwshCoUQhXl5ecFby9iSugZ23RnGbpgR9zIAHRTv8+EfdrkZwMcAIIRYBCAVQMtIGMjYE2WGTANnKjGM7TAj7ksBnEhEnYkoGZ4O069V+2wHcBYAEFFPeMSd4y5NhJ5tswPvxDBMTAko7kKIegB/BvA9gPXwZMWsJaIniOgCabe/APgjERUD+BDADUJwIDaekWPuREBGSlwMl2CYuMLUXSmEmAlPR6ly2xTF63UAhkbWNMYJcBYkw9gTnn6ACQkWdYaxNyzuTFgQj2BiGFvC4s6EBee4M4w9YXFnQkL22FnbGcaesLgzDMPEISzuTFi0ykqx2gSGYTTgBGUmJKpreEZIJjjm3T8StTxVRcxgcWdC4lBNPQBeqIMxT4cW6Vab0KTgsAwTFgms7QxjS1jcmbDgPHeGsScs7gzDMHEIizsTFglcgxjGlvCtyYQFd6gyjD1hcWfCgjtUGcaesLgzYSGnRDIMYy9Y3JmwOFrbYLUJDMNowOLOMAwTh7C4M2HRwNNCMowtYXFnwqK2nucKYRg7wuLOMAwTh7C4MwzDxCEs7gzDMHEIizvDMEwcwuLOMAwTh7C4MwzDxCEs7gzDMHEIizvDMEwcwuLOMAwTh7C4MwzDxCEs7gzDMHEIizvDMEwcwuLOMAwTh7C4MwzDxCEs7gzDMHEIizvDMEwcwuLOMAwTh5gSdyIaTUQbiaiEiCbp7HM5Ea0jorVE9EFkzWQYhmGCITHQDkTkAvAKgHMAlAFYSkRfCyHWKfY5EcCDAIYKIQ4QUatoGczYi89uPc1qExiG0cCM5z4YQIkQYosQohbAdADjVfv8EcArQogDACCEKI+smYxdGdSpudUmMAyjgRlxbw9gh+J9mbRNSTcA3YhoAREtJqLRkTKQYRiGCZ6AYRkApLFNaBznRAAjAOQDmEdEfYQQVT4HIpoIYCIAdOzYMWhjGYZhGHOY8dzLAHRQvM8HsEtjn6+EEHVCiK0ANsIj9j4IIV4XQhQKIQrz8vJCtZlhGIYJgBlxXwrgRCLqTETJAK4E8LVqny8BjAQAImoJT5hmSyQNZRiGYcwTUNyFEPUA/gzgewDrAXwshFhLRE8Q0QXSbt8DqCSidQBmA7hPCFEZLaMZhmEYY8zE3CGEmAlgpmrbFMVrAeAe6Y9hGIaxGB6hyjAME4eY8twZRs1/rh0EF2klUjEMYwdY3JmQOLd3G6tNYBjGAA7LMAzDxCEs7gzDMHEIizvDMEwcwuLOMAwTh7C4MwzDxCEs7gzDMHEIizvDMEwcwuLOMAwTh5BnWhgLTkxUAeD3EL/eEsC+CJoTKexqF2Bf29iu4GC7giMe7eokhAg4Z7pl4h4ORFQkhCi02g41drULsK9tbFdwsF3B0ZTt4rAMwzBMHMLizjAME4c4Vdxft9oAHexqF2Bf29iu4GC7gqPJ2uXImDvDMAxjjFM9d4ZhGMYAx4k7EY0moo1EVEJEk2Jwvg5ENJuI1hPRWiK6U9r+GBHtJKKV0t9YxXcelOzbSETnRst2ItpGRKul8xdJ21oQ0Y9EtFn631zaTkT0knTuVUQ0UHGc66X9NxPR9WHa1F1RJiuJqJqI7rKivIhoGhGVE9EaxbaIlQ8RDZLKv0T6rqnVS3Tseo6INkjn/oKImknbC4jomKLcpgY6v95vDNGuiF03IupMREskuz4iouQw7PpIYdM2IlppQXnpaYPldQwAIIRwzB8AF4BSAF0AJAMoBtAryudsC2Cg9DoLwCYAvQA8BuBejf17SXalAOgs2euKhu0AtgFoqdr2dwCTpNeTADwrvR4L4DsABGAIgCXS9hYAtkj/m0uvm0fweu0B0MmK8gIwDMBAAGuiUT4AfgNwqvSd7wCMCcOuUQASpdfPKuwqUO6nOo7m+fV+Y4h2Rey6AfgYwJXS66kAbg3VLtXn/wAwxYLy0tMGy+uYEMJxnvtgACVCiC1CiFoA0wGMj+YJhRC7hRDLpdeHAKwH0N7gK+MBTBdCHBdCbAVQItkdK9vHA3hHev0OgAsV298VHhYDaEZEbQGcC+BHIcR+IcQBAD8CGB0hW84CUCqEMBqsFrXyEkLMBbBf43xhl4/0WbYQYpHw3IXvKo4VtF1CiB+EEPXS28UA8o2OEeD8er8xaLsMCOq6SR7nmQA+jaRd0nEvB/Ch0TGiVF562mB5HQOcF5ZpD2CH4n0ZjIU2ohBRAYABAJZIm/4sPV5NUzzK6dkYDdsFgB+IaBkRTZS2tRZC7AY8lQ9AKwvskrkSvjed1eUFRK582kuvI20fANwEj5cm05mIVhDRHCI6Q2Gv3vn1fmOoROK65QKoUjRgkSqvMwDsFUJsVmyLeXmptMEWdcxp4q4Vb4pJug8RZQL4DMBdQohqAK8B6AqgP4Dd8DwaGtkYDduHCiEGAhgD4E9ENMxg31jaBSmeegGAT6RNdigvI4K1I1rl9jCAegDvS5t2A+gohBgA4B4AHxBRdrTOr0Gkrlu07J0AXwci5uWloQ26u+rYEJUyc5q4lwHooHifD2BXtE9KREnwXLz3hRCfA4AQYq8QokEI4QbwBjyPo0Y2Rtx2IcQu6X85gC8kG/ZKj3Pyo2h5rO2SGANguRBir2Sj5eUlEanyKYNv6CRs+6SOtPMAXC09hkMKe1RKr5fBE8/uFuD8er8xaCJ43fbBE4ZI1LA3JKRjXQzgI4W9MS0vLW0wOF5s65jZ4Lwd/gAkwtPZ0BmNnTW9o3xOgifW9aJqe1vF67vhiT8CQG/4djRtgaeTKaK2A8gAkKV4vRCeWPlz8O3M+bv0ehx8O3N+E42dOVvh6chpLr1uEYFymw7gRqvLC6oOtkiWD4Cl0r5yZ9fYMOwaDWAdgDzVfnkAXNLrLgB2Bjq/3m8M0a6IXTd4nuKUHaq3hWqXoszmWFVe0NcGe9SxcG/iWP/B0+O8CZ4W+eEYnO90eB6FVgFYKf2NBfAegNXS9q9VN8HDkn0boejdjqTtUsUtlv7WyseDJ7b5M4DN0n+5khCAV6RzrwZQqDjWTfB0iJVAIchh2JYOoBJAjmJbzMsLnsf13QDq4PGCbo5k+QAoBLBG+s7LkAYFhmhXCTxxV7mOTZX2vUS6vsUAlgM4P9D59X5jiHZF7LpJdfY36bd+AiAlVLuk7W8DuEW1byzLS08bLK9jQggeocowDBOPOC3mzjAMw5iAxZ1hGCYOYXFnGIaJQ1jcGYZh4hAWd4ZhmDiExZ1hGCYOYXFnGIaJQ1jcGYZh4pD/B4DE4uL1ZmLQAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4FNX6x79nS3pCKjVAAEFaCEgXBRQsoGKBa0exK/qzoCI2bHj13mvDjg0FFZGi0otKr4beEiChBRJSSC+bLfP748zszszO7M5utmST83mefabsmZmTzcw773nPWwjHcWAwGAxG00IX7A4wGAwGw/cw4c5gMBhNECbcGQwGownChDuDwWA0QZhwZzAYjCYIE+4MBoPRBGHCncFgMJogTLgzGAxGE4QJdwaDwWiCGIJ14eTkZC4tLS1Yl2cwGIyQZNeuXcUcx6W4axc04Z6WlobMzMxgXZ7BYDBCEkLIKS3tmFmGwWAwmiBMuDMYDEYThAl3BoPBaIIEzebOYDAY/sRsNiMvLw91dXXB7opXREREIDU1FUaj0avjmXBnMBhNkry8PMTGxiItLQ2EkGB3xyM4jkNJSQny8vLQqVMnr87BzDIMBqNJUldXh6SkpJAT7ABACEFSUlKDRh1MuDMYjCZLKAp2gYb2nQl3RvOmrgLYvyDYvWAwfA4T7ozmzdIngcUPAvn7g90TBsOnMOHOaN4c+k26ZDCaCEy4MxgAcHZXsHvAaMJMnz4d6enp6NatG7766quAXJMJdwYDACyh6QvNaPysXr0ae/bswd69e7Fo0SL8/vvvAbkuE+4MBgBYzcHuAaOJsmTJEkyaNAlmsxmffvopxo8fH5DrsiAmBgMADBHB7gHDj7yx9BAOn6vw6Tl7to3Dazf0cttu165dGDhwIJKSkpCWloYPP/zQp/1Qg2nuDAYAWGqD3QNGE8RmsyEvLw+TJk1CcXEx+vfvjw8++CAg12aaO4MBABZTsHvA8CNaNGx/kJ2dja5duwIAIiMjMWzYMBQUFKCoqAhTp07FW2+9henTp2PWrFle55BRg2nuDAYAmJnmzvA9e/bsgclkgtVqhclkws8//4ybbroJKSkp6NChA5599ll8/PHHPhfsANPcGQwKE+4MP7B3717U1taiS5cuSE5OxuTJk5GRkYGqqirk5ubCYDAgJibGL9dmwp3BAICqAoDjgBDORcJofOzZswdz585F79697fssFguefPJJzJgxA7/++ivWr1+PkSNH+vzaTLgzGAKlJ4DEzsHuBaMJkZWVhe7du0v2GQwGfPfddwCA559/3m/XZsKd0XypyJduM193ho85c+ZM0K7NJlQZzZcLudJtmyU4/WAw/AAT7ozmizFSum2zBqcfDIYfYMKd0XzR6aXbTHNnNCGYcGc0X+TCnLMFpx8Mhh9gE6qM5sm8O4Hs5dJ9THNnNCGY5s5onsgFO8Bs7owmBRPuDIYA09wZTQgm3BnNDzUNnWOaO6PpwIQ7o/lhrVfez8wyDD/ByuwxGIEg7x/l/Uy4M/wAK7PHYAQKeWSqALO5M/wAK7PHYAQKuT97u/7A2V3M5t6UWTkNKDjg23O2TgfGvOu2mVqZvdLSUiQkJPi2TyKY5s5ofsjNLyOm8fuZ5s7wLa7K7D3zzDN+vTbT3BnND46TbhvC6NLGIlSbLBo0bH+gVmZv1apVyMrKwnvvvYfnnnvOL9d2q7kTQtoTQtYRQo4QQg4RQp5SaEMIIR8TQo4TQvYTQi7xS28ZDF8gN8voBeHONHeGb1Ers5ecnIy7777bb4Id0GaWsQB4luO4HgCGAHicENJT1mYMgK7852EAX/i0lwyGL5Hb1vXhyvsZjAYiLrM3bNgw3HvvvcjIyMD+/fuRkZHh12u7NctwHJcPIJ9frySEHAHQDsBhUbMbAczhOI4DsJ0QEk8IacMfy2A0LuSau4Fp7gz/oFRmDwCSk5PxzTffIDk5GT169PDLtT2yuRNC0gD0A7BD9lU7AOKSI3n8PibcGY0PJ7MMr7kzP3eGj1EqswcA48aNw7hx4/x6bc3eMoSQGACLADzNcVyF/GuFQzj5DkLIw4SQTEJIZlFRkWc9ZTB8hVyIGyPokqX8ZfiYM2fOwGAIjt+KJuFOCDGCCvafOI5brNAkD0B70XYqgHPyRhzHfcVx3ACO4wakpKR4018Go+HIhXhYDF2u8N/kFoMRaLR4yxAA3wI4wnHcByrNlgC4h/eaGQKgnNnbGY0WsStkq96ATqRZHV0T+P4wGH5Ay3hhGICJAA4QQvby+14C0AEAOI77EsAKAGMBHAdQA+A+33eVwfABNitgElkVDeGA3ujYLjsV+D4xGH5Ai7fMZijb1MVtOACP+6pTDIbf+OMJYN/Pjm2OkxbKJi5vdQYjZGDpBxjNC7FgB6Aw789gNAmYcGc0Ty66ii4rC6T7LSq53hmMEIMJd0bzRIhGjWkp3W+pDXxfGAw/wBKHMZoH5/YAS/7PsW2Moku5z3tLeWYNBsN/TJ06FYQQJCQkYNq0aT49N9PcGc2DJU/SfN5hsXR74AN0WV8lbReZGNh+MZoFSmX2OI5DfX09Bg4ciNGjR/v8mky4M5oHBfvpMiwaiEsFEtLodoU8HINNsDJ8i1qZvZkzZ+KFF17AhAkT8L///c/n12XCndG8sJoAvQEIj6PbYdF02fUaupTnemcwGohamb2tW7eiTZs2yMnJQWRkpJuzeA6zuTOaF7WlQFQSHKEbvDAf8hhwbDWY5s7wNWpl9i699FI89thjsFgsmDFjhs+vyzR3RvNDZ3QEKwmauuASuXtucPrEaJK4KrP39NNP44svvsDXX3+N1NRUn1+bae6M5oc4l4ygqdcU0+XpbQHvDsP//Gfnf5B1Icun5+ye2B0vDHrBZRu1MnuBgGnujOaH3gBEtADa9AVunkX3db+OLgc/Erx+MZocamX2AgHT3BnND50B0OmBRzY49gl1VAX/d0aTwp2G7S/EZfaSk5MxefJkZGRkoKioCFOnTsVbb72F6dOnY9asWTAaje5P6AFMuDOaH3n/KOyUTbAyGD5ArcxeSkoKOnTogGeffRbffvutzwU7wMwyDAaF8I8Cq8bE8CFqZfaqqqqQm5sLg8GAmJgYv1ybCXdG8yAq2fX3wiRrIOuoFh8DTm4BNr4XuGsyAopSmT2LxYInn3wSM2bMQN++fbF+/Xq/XJuZZRjNBDfmFp2eLgMl3IuOAp8NdGxf9oyjD2oUHwMSOtEJYUbIYjAY8N133wEAnn/+eb9dh2nujOaBO3OL3SwTIOFeUyLdNrvJRrn9S+DTAcAHzkN8BkMJJtwZzQN3wl1Nc182Bfjbw+jBinyg/KzrNlZZ3nhLnev2m3jTTXWRZ31hNFuYcGeEBts+B87s9Py42jJg1nCgrtx1O8Hmnr1Cuj/zW2Cjh0mdPugOfOgmdbDNLN0+tcV1e6vZ9fcMhgwm3BmhweoXgW+v8vy4o6uA/H3u2xFecz+9DSjJoet1FertG4pcWJuqlNsJBHKil9EkYMKd0cRRKHgd08p5n3gy01xDlxaTf7oEAGd3Sbe3fOS6vVzTZ2iCC+Esnw3tO5t2ZzQ/lEwcRKzn8C8EsUC1Wd17s8jZ+qn6d3JTT/FR19eIiAeqApOTpKkQERGBkpISJCUlgRCFl3wjhuM4lJSUICIiwutzMOHOaFrUXAA2fwCMeAEIj3UkBAOA9kOAc7uBq950Pk788Ov5aEHxpKfFBIR5mJpgzcueta8tA6KTlL8bOhlYO92z8zVzUlNTkZeXh6Ki0JyEjoiIaFC2SCbcGf7FZgMq8mhxjMh478+hlcxvga2fAPEdgUEPOXLGAIAhDHhVw4Mezpfis1oc+6wmABqFuz4M6D8JuPJV9Tbvtnfed2w10PdO5fbRKXRJmCVVK0ajEZ06dQp2N4IGu1MY/mX9v4GP0oH3ugKmSu/O4YnvuTAxKVxLLAx1GnWZ8jy6FHvYbP7Idf9rLgA5f9OPtZ6aUSLi1D9i+k2ky9pS9fML9lfOBuSu1/Z3MJo1TLgz/Ivg722tBw7/4d05bBb3bQTk/uoGkc1Sq3Cfdzu/IprQ2vIR8I6LIfKK54G5N9MPAEQmaLsWAFw0ii61ePUAwOpXtJ+b0WxhZhmG/8icDRz/EwiLBeorgR2zaGHqtMs8O49Hwp2/pQVtXzxB2Wm4tnO0H0InXbOWa79u7QUgpTtww0zqVtm2r/Zj9eF0GdHC9fkFzNXaz81otjDNneE/lj0NVBcCMS3pdsF+4PvrPD+PJy6J1fwEquARI9bWBz+q7RzZy4H179KJWa1Y6mlysg5DgPYDHZOyWrCZqU3d1UtsjUhbT+6m/dyMZgsT7gz/I0xQCuTtUm6nhjxU3xWZ3/LX4KNZBfs54JnA3aSSqXHLx8Ch3+mIRDzRa6qgE7ZaeTbbMUmqD6MvIa1RqHoPrqNGdTHw2WDg8JKGn4vRKGHCneEbLDIBnDnbsd79eqDf3Y7toiN0uWMWkJfp/tzeRGcKx/z5mvZjWvdx32btq8CCe4EfxzteIFVFdFTiCbGtga5X0/W6circNf+dHga3WEzOL46S40BRlvvgKUbIwoQ7o+HkrgfebiWNuiw77Vgf8Txw42fAc8fo9h+P0+XKqcA3o9yf35sCGt5E94XHuW/T4VLglq/puuCZU3WeLjsO8+x6N3xMa7im38oLd41zC0eWenadGS2Bz4dI9wlRuFonmRkhBxPujIZzdDUVwKe2OfYpmVLEnit7ftR+fm/S8J4/SPOfC8R3dH/M8Odcf3/zV8CkZUAyrWZvj2AV/tZWvZWPU0NvADJuB3Q6qXA/shT4dzv1NMDth0h98OUc/wtY/AhQKYpoLTkubbN/Ad8H3sSTl0lfyJ7EFDAaNUy4MxpGZYHIhU+kLQtmgIm/O/YZIx3rgvauBU8ETvLFdGmqANb9G0jiBfFTGtwMu1yhsv9KqpV3H0u9b3SyCFbhb/XEpi9HpwcOLaZCe+1rQH2VdL5AzJntNOukmo1+3b+B/b8AJzdL9+eKCoJX8C6qSV2oj/43o2g8wuqXvP8bGI0Kt8KdEPIdIaSQEHJQ5fuRhJByQshe/sNipJsTnwxwpKsVm0Ks9UB0S6nA9Fb4ic0y9TWu27bJcKyX5wGV+UC3MdL0Aq5Iv9V5X/shwH0rHBPD9vQEMs29IcI9LJoui7O19bXqvLq93GqS9ktgzjjHesEButSHS72RdnwB5KzT1mdGo0aL5v49gGvdtNnEcVxf/qOQuIPRZKkXR22KhHuRRiGlBbFZpq7MdVtxRGreTqoBe5Lw6wolzVVmv7fXW+VNI5X5dNkQL5bLeZOQJ55Bavnthd9AqQBIwQHgQq7Db55TSFY29ybtfWA0WtzOpnAct5EQkub/rjCaFBEtPBNUrhBr7nXlQFxbF21FL4Lu1wNZyzwT7okKuUiSLpJuCxp6zt80JcHBRfz+Bgh34ZyFWQ77+LJngN7jqV0eAFqlA+cPOI4xhKucjH+pntjkHCPwpSyAzGZl+WqaKL76rw4lhOwjhKwkhPTy0TkZocaBBcDrLYCP+wFHVwIpPbQdt/hh1z7eYhdBdzZhoe19K4HYNnSdeJiqV07v8dLtyAQgLAbYPx9Y8Rwt8AE0bKQijAZ+FwVandxEA8H2/kS3zx8AHhNNWofJ4gcEhPqshxYDq6a5vi5n9a7KU0mO97mCGAHBF8J9N4COHMdlAPgEwO9qDQkhDxNCMgkhmaGahpMhQl6pSLDjXsilS6X0tfEdHOH2AvvnA+Vn1K8j1sYLj7juE2elk6odL3Vow1WFro9xh1xoh8cCzx0FnjtOP8KkbUM8TVzZ6w8upsu7FgGtROX7KlTqtBoigLhUGij1bDadM1BCZ6CjooIDzt99N4b67ytx7E/gk0tc59phBJ0GC3eO4yo4jqvi11cAMBJCklXafsVx3ACO4wakpKQ09NKMYPPt1a6/z7jDed+Te4GX8x3bbS+hSyEI6sxO4P0ewN6f6QStzSo1y6Rd7vqa4oIXwsRgeIzrY7whLBqISaEf+/kbUDlH50K4n9pCTUxdR9Ptq9+myxMbnM0uNhs1h7UfRAOlYlsDrVVcNA2RtL1SHMHprUDhIeXjskR+9tkrqfloxyz6UXpRMIJCg4U7IaQ14cucEEIG8ecsaeh53cFxHFYdLIDZyvxyg0aRGy1aqEUqRqenH8ErpQWv/QmTfwUHgMpzwO+PAb9PBt5MlPp7n9oKlJ5Sv6ZYuAv9Kzzs/m9pED6YOI5VKP0n5gpR4Y9BDzvWz+2VtvvlDqDslDQ4aaxKKgVjBB3pqM1h7PrekdVTgujvnXc7kPkdDUhbORVY6cYMxAgYWlwh5wHYBuBiQkgeIeQBQsijhBDBODgBwEFCyD4AHwO4nQtA4cJ12YV49Mdd+OTv4+4bM4KDK8+Wm2cBt/8MXHIv3RY8NMT29X0/0+U/3zj2VeQBn/RXPmdVEbX1y23snk503viZZ+194RWUkOZYF6dqAOhvJTbHiCeI5VGtR1fRpdgertY/QyTV2tUmVA/9RtMtyFE639QTNOumkocOIyho8ZZRGFtLvv8UgItikf6hpIoO48+WqkTxMYKPwUX9R50O6H6dI4tjbSmw6QOgWsHOe+g36bZasegvhtJlPq/N9psI7JnrWW51AIhr51l7I1+hyVeun2JBf+evwEWjpd+LhbFaygL5JHBKd+DCCYcPfMte9Hc89BudCAdojEDFOfpyq6sAFj9Ig9TkphZxMJRAVCJ9WcjnYRhBIyQTS1TWmfHaEhV7ICO4jH4d+PN1un7p/7lvH51Mfbw3vQf89QYaZOKQvxg6DqPCXRwZqwVPNf1bvqYmDGH+oKGI8/J0vNTZlVP8EpGnZkjqCrROB/r8S7p/4u/U57/wCE1yduUrwJFlQM5f1KwCACNfBC4e4zhm3zz6vdx9UiClB63tKuSh9yj5GcPfhKRw/3x9Dmrq6U20/MA5vH9rhpsjGAFDCP8HtAvVUa/Sgtbvd3Ndas5T7MUvPHxheKqBx7UBrnjRs2NccfUMYPccui73LJKT8zfVwgWbvc2snAwsjncLTe4K9OQjVXtcD3Qe4RDu8uPGfQyc2+N8rvm82ejx7dL9Or1nhVUYfiUkhbtFNIlaZ2YTqo2GJzKdA360YghzbcaRY7XQxFtKCBWXBPOFp8I6SsGFMxBcNoUWCDFGO/a5yxG/9ROg4CBwz+/An28ApSc9y04pHqXIbe8tUh0T3mIS0uh15HiS2bKJcPR8JQ6fq8ANGW2h1/nILOcjQlK42/w+XcvwmCtfdWRL9BZPhPuOL9TNPkLqXk8iU73thy8Z/Rr9AEDHy4AEDZksASCXd/kUKkd58neLXTC1HvfoZuUcP81QuD/4QyZOX6hB+8Qo9O/o4dyOnwnJuOML1T4Ka2c0LkpPSLef2ucIEAKkJp9aF544gnnBrrF7qFEFS7iLuW85cNPn2tt/KfL/9yRHu04kArQeFx6r7Lp5YgP9HzajSdXTF+hL7uuNuUHuiTMhKdx/2yPzvf3nGxr2rpb/muEfJOHvPhhO9Z9E65AKJKRJA2zEBaRdCaI+ssyOnppl5GUBQwFxJSh3gV5qCF4/3pLYmS4vKMQ3NHFWHSpAnblxTSaHpHB3YuP7dFlzwXU7hm9J9tK+rsYNM4GpOUD/+4DOI+k+saAQC/TKc+rnsQdGCSM8D4V7WBQN2w9FdAag9y3eHdumb8OuPeIFuszXkDvfQ9YcKkDXl1dgXXYDU0n4mEijw5T16d/HkVNUha835sLWCGzHTUO4C5qZN+XYGN4jtq/68l6+4SPgnj/oeov2oi9EF5ELECUXPPuLwYvOxbiJGA02N89S3t8Qm7eugeIguRu/4vuJxd2ny2C2cjh8rnGYfMprzLjl8y2wiPIJfbruOF5cdABvrziCUxfc1B0IACEp3LukRMv2CDdT8N+WzYpA+DTf8YtjvUKkrcuF+67vnY8VzDidRnh+XV8FJPmLjNuBQY847+95Y+D7ImDPc+9Flkk3cPyz3Vj+LSdKqrH7dBn6tZdOoh4rpJHBJkvwTTQhKdzbJ8psg3bNnQn3gCIR7n767VuK0gar/X+PraXFQQBadalVOl3vexcw7hNg6BP+6VuwGf68874+twW+HwJCZkt/vPT5f72ukUh3K6+xP3GlwzR5eddkuydfvSX4VoSQFO7OycIaoLmXnvSLjbDJU3OBloQTSOnun+uo5T0R3B0B4KcJwE7eTHHrHId5QacHLrlH3R8+1IlJAVr2lO5raO76hiC4UrowDdWZrbjopRVYtt/FnIkCNv7F3lj0N4uVdsQg8m3vkhKD8lo6amkMCQ1D8q43Wxz/4W6tYhqmuc/ko1tfL/dBz5oRWcsc649tkya28uVvSQjQfjAw+BFg7euO/fb6pTJB4q1vuxLjPnUWno2NmFbSrJeeuEEK/N9uR4GPhiBc20Xxj4LyOlhsHP63OhvX93FRUUvE9twSfL2JuskeL6xqcDcFiqtMKKo0oXvrWBCNI4J6iw06Alh5FV0cuHTwrOO+r60PvnAPSc290mTBwDRq62rdItJRJV6cPZDhXwS3N0Aq2P3BA2ucE2HF8xOtb8miSX1ZMu6SiUCqSgbKxoIQ9CTgzaRoUhea/72hCAFR8hzzIgQZavNAEXtoTqZ9fdHuPK+6psTYmZswZuYmrD50XvMx3V5Zies/2WzX0A16h3CvE9nZ5+087XRsoAlJ4V5USdOKXtIhHhzHOZInbQt4csrmSzDqblpEcQzFR4F/vpV+T/SNZ8YtULTtR9PtCknLgmqW4TX3oizVJoJN2pOiVZV1/ol6LaykLyFPgyKzCirx1HyaefRsWR3mPkBfjAfPOjx5wgzKz8epkmo8/vNu1Nb7f8I1JIV7XIQREUY9dITYh0d2mK+7f9n5NfBhuiNv96jpgbv2/atpGt/2g+n28inS731pkgklohIdUbXB/A2EUYNabp79CxCRTatwni3TFnAolIa4fWB7Ny0940RxtX3dG88WYcLUarPh8q7SqnLJMWGqNveZfx7D8v352HTM/2VGQ1K4cwASosKg0xFknpJlEawsCEqfGjvltWa8sfQQPliTjQbVUlnxHFB+mgp5ILBFkpO6ADd+ql6Szht7c1NBSOQV7BnHqGT1eJPFD6LN2skenc7EC1EnDzkPsFht+HpjLsZ9utm+77Efd9nXc4uqcaqkWulQt3RIlLplR4fpkRQdrircK010FBKIGKeQFO5WGwcdoTPSseGyB9pP5oKKOjN6Tl+FLceL/XJ+AZPFiiP5FT6PcNt4tAizt5zEx38fR54vCpyc3kaXFfmu2/kDeQ5zgWCaJIKNkD0yWrF8ceAgOs3BhOW1Zuw7U+byXjfxWV8jjN79bwvK63DRyyvx9ooj2J/nmPDMKnAoJXO3n8KI/61HTlEVFu3Kw6+ZZ1BlcjYFKfWzX/t4ybaV42A0ELs3DQD8nXVekskWCIz1MCSF++kLNbDYOAzomIBaeT4HP/1qh85WoKbeio//OuaX8wv0mr4aY2ZuwnMLHe6ZVSYLCisaVr7s/+Y58nJf/t91uPPr7S5aa8Cedz0ImqK8MhHDodS4KrQdqH5oFO4Zb6zBjZ9twVebREm3LuQCP04A6mtQXmtGxptrAAARRu9E1f/N2y3ZLq2ul3i1AMDTo2lyuiV7z+HZBfswdeF+LNvn7Ko5P/OMZHvf9Kuhk6X57ZISA4NOh3pemG84WoT7v8/Ek78o5MX3MyEn3M/xtrpl+/MRFWawF+1w4IFw9yB7XaAi5Cy8drB4tyM52tiZmzDo33/59Dpbcxro+iYI2IuuanhnPGX4c0D36+l6YmcgsQtdr/edm1zo0UiitIlOfWSlgiSlwOpXgONrgZy/cF6k0IhzuHgyGfnPSanZduzHm/DNJmkGx55taMxEaY1jYlWeBIzjOLy4WFpuMCrceTQx5/5BCNPr7Jr7vd/tBACsOBB4c3HICXexMI8K08P5Zvbg5t41W3tbH0fIFVbWKQ79lDjtgzwVidFh6Nch3n1DBXKKqpwnnY7/SZe+cKHzBqHIxMVjHdkM2/mozF0oImjuwc6vpNN7bPe3KraXPmdif/Ie01d50zMAQH55nV2rBoCp115sf6azRaYaq6xLn6077nQuo95ZfCbFhMOgJyho4EjbF4SccA8XuRhFGPXoRmR+r54kTlIqOKCCYG5zJ9u35hTj2V/3YerCfTh2Xn2ycdDbf+HajzZqvj6gbPNzBcdxyCmqwtJ953Chuh4pMdKSbU6eRgqU1dRj1Psb8NLig8A2hfziwXCJBGhQ08CHgH53A1F8fo/YNsHpS2Ogjs9vbwmyUKkrB/b+5FxU2wXDSv8A1r/r5B8plvnHzlfhgcs6+aSL9aIgyFaxEXbPnR0nHJ52+8446gWYLFa8t+ao5Bwxsrm+lU9djm0vXgkAKKsxo9pkQbVG5c1fhJx7wbHyw4jtMQ3VuU8jwpiOcMii4ZZNAR5Yre1kHpRTE4IuthwvwYj/rbPrFfdf1gn3DE2zt/tx+ymsOXQeFhsHvY5IvhMQ/GvlE5vuhPeLiw/g3fHp9mi6rceL0T8tAeEG5cmm15Ycwpxtp+zbgzolYthFyXh96SFwHJ2Q1rtxnRN8jLfnlgCHFeqEBku4dxhCPwDwrx+AkuNAysWuj2nKdLsG2PNj8HPRm3gTy9KngIf+1nTInUUfAevBJz1TfgZaRBqxRMEO7g1CJsfYcAP6d0xAUZVz0NWSfefw8R39AADPL9jv9P1zV3eTbPdo40iH0Sk5GuW1ZsmzF8Zr+YIJKhDRGCEn3H8/ugIAoI/ORoTxWtRAVkD4jAcThQq2wcLKOpjMNifXqym/7rWvnyqpwTW9WmH1ofOY/schfL/1JADg4laxqKm3olurWJTXmjFv5xnM2ymdhFGjzmxVHBWIJ1LnZ56BleNw37A0AMCd3+wAAGyddiXaxjsXo955Qurz37tdCwzpnASz1YYZy4/AZLF57YVgpzH4lkclAlFBMg81Fsa+D/S9Wxo5HEzOUldDjuPQ6cUVuHVAKv6r0KwDEUWH7v3ZEd0qG4EM6pSIt1cccTo+q6ACh89V4JZLFGq9qrAoGx2MAAAgAElEQVTrZClSYsOx48VR0OkI0pKjceKdsRgzcxNyi6udkn4VVUqFf0ZqC9x7aZrq+aPD9U6j4nqrDSsO5CMxOgxny2oDUm815IR7WQ3V1Im+DlYbB5vcshTpQR3DUsebFdXFQHQyBr1NJy5PvnudpGlxFZ1sefaqbrhtYHu0jItA2rTlAIAOiVEoKK/DyoOOSZO1zwxHTpH6BN+jP+7GVT0dOcNH/G8dzlc4bqLOydFYl12I+2b/Izlu4a48LNwlNUUdOFvuJNzrzFZkFVTiqp6t8NSorjBZbHa3LSF6TktyI86dOSpYmjtDijEC6Dg02L1woqikBON1G/Fb5qX4r0L1wimGBY6N/H2OuRSdQTLPc3Fr5RHJnV/vwIXqeo+Ee6XJgkqTReLpQgjBnAcGocZkxcj31kvaW2w2DO2chG251AnhkRFdXOaiMeh1sNhsiI2QitfJP+1G73Zx/Dn9P/EdcsLdwlEhG568DuGGF6GHTPsO82BYuuMLx3pduSYf4T7t49Eyjt6ln9zRD+fKavHIiC74dvMJvLXMkcCpa6tYdG2l3pf0di3swnXitzskgh0AcoursfmYdz71P2w9iW82U4+AjNQW6N2uheR7YYj4yV/HUKwSek0ATLo0DS1j6d+aV1oLKJUWZcKdoUb5WURs/Qzvh32JsnpxsA+HnS+PxqC3/0ICRAoQZwOMkfY23285af9KryNIiDKilFfu9ueVYX9euT11gJU3g6rx3wl9MHWhs3lFTMvYCED0yJosVoQb9LDYOEQYHefOaO/aMcGoIyiuqscrvx9UbaNlvquhhJxwNxoc2ubpCzUwyoS71WqBzWpTnMl2iUYvGHGF8xsyHFntOifLC4i4xqgnOHSuAnVmKzYpCHEdbMjcshaA+1J24hvFYrXhtSWHAAC3DkjFrQph2x14k9MPvE3QufgJ/W3rzFb3mfuYcGeo8WFPxCnsDocZLWMjYNTLnjmbxWGW4TgkRofZv9ITgjdv7G2P1xj36RZsDn8S0wxD8JFlPKxHlkNPeNnw60Sc7Xgj2t3yDp43/IJF8fdjQEcPRvQ823MvYES3FFisnCS1r9GNScXgQvYI+WeY5q5Ai0gjwLuuRofrnTT34soavP/bAfx3QoZfri+fJRe4ontL/Kt/KhbsysPsSQPdnic2woiiyjJ0f9XZreu6Pm3Q+dBneNa4EGut/fGQeQratIhEfrmyJ8Qfe8/aJ3xrTPT3eOCyTnj1euVsjUO7JOHjO/qhvNaMYV2S0DklxqnNLZ9vwZ9HCvHnETc1K5lwZ7jAZoiAzlKHT4yOpH7PGBYBuBk/PzQEWd+0FDW2AMd4Zwi9EUM6J+GbzTTVr05HnMwcqaQYjxqW4SyXjLAF30u+a3fqD+DDP/C4AegZn4pOySM97zv/TFlsnERgqyUFE4iLcB9IZvUkc5qXhJxw50Sz6Vdc3BKLQX+k2i5jAVMFdGf24+8s90V0V+89iWvEO5R+7H2/ADl/A5GJ0ONStI53FoJi3r45Hdf0ao0rurd02Q4A3h2fjqHvOHsTzH94CAZ2jIfurYUAgKv0u5BorsR9w3qgdYtILMg846Tprz503ilt6ZDO6p5AhBCMy3CtkX921yXILqjEf1ZlIzu/DEZYsMHaByP0sqEtE+4MF5gSuyOycC+iiMPs+KhhKQBgYFoiMhEJE4wI73oFUFVIzar1lUBYNKx1HPSwwgo6aW8QpTMep9tiX48Cf+4H/6IJ1L4cJulDp9ItmvO1A0BSdBhKquvt/u8Wq02iucdHhakdCgB4aHgnHDpXjjWHz2NcRlu8Oz4dPadLPfgsckd6PxByT6Y46VWruAgkERpKPPloBhacjIQeNmhxNJo1/zfZiRWE++aPgP3zgR1foDPJt+eQVyPMoMPontoKK7dpEYknR3VFy9hwjLw4RbJfVyv1ctHDihsy2mJcRlt8N2kg9rx6FXa+NErSZu0zw+2fDc+PxOge7l8w7vo38uKWmPfQYHxunInsiEngFH7X02XqubsZzZCbvpRs1qb0ddk8JUoPjuhp0jeb1fEc2qxon/09joRPQiToiNWgJwhHPe7Tr8THYZ/Zz6ETFL5WvYHWvZ2u4RzFDhydMUa1T1/cTXP4OzI/ci5NLXKiwgy4tndr2jdCt/8zPl3SZsUB/+dkCjnhLk7yv+7MWru3jMlKEA4zEkmVJi+QXrqTAIBSjmrjBeXV2HBUlobTWg8bH/0YjvoGZaZTYspV3bDz5dF4aayjTmirFuFOgVhXdEtCmxZ0osmo1yEhOgwt4yLw2Z2OiExhArdrq1h0TIr2SFNxRUy4AdfqqcdOJK99FcPxkqs0Bb/iDKMR0fcO+2r+Tb+iJqmXy+ZGnQ026FFrJThZWAqrUH/VZsVFWV8gjFgxsA3V3KvqLJig34jXjHMl59Dxo3c1t1wC53vUlWklPoqaVYqrTHjptwMoqKiDQUew46VRWDz5Upd/j/2assfvsq4p6ENycBEfdLku2/8pf0PaLPPcxucwCP8CAFRyUbjNsB4AMKRzotvz3B+1GTAD0aCBRLPWHcWZMMcbvrzGjFirGRZ9FMLMNQiH2e5l4mu6ibxqwg16u/+9TWeEzmbGm/19kMXRS8Qay2AdLcJg4zjH4Ki5FcdgaMbC6WA1uvZeu8iaCw5AZW090rg8CFNonM0Cji+h+Pr1VPkxW212ZUzMZSnVQBlUTYQ9zNSLLcKoQ53Z5qRFyxHy2IhzyRh0BK3iItAqTsllTB1BWrWLj8SS8FcBAGl1P2Pf9Ks9Oo83hJzmLs9FbjJSVyqbyGQwtnKh2/NsbUH92D+z3AQA2JFbjD+POOzWGW+uwfmyKpytpe+/uVEf4p6B/gtvH92jlcPFitdedDbq9hWx8zPFYywBmJRxh5lrHMK9tt7a4MyZDN/y7wWbsNZGg8uO2doptkmwlSKaq8b2qtaS/dVFJxFupc92GC+l2sZHKhpckwkfFetm/ufIm9di/XMjcdvADi7bpSZESmzsgFr+G3UEF+KOSc6eaANIFlpE+T97Z+gJd1l48qW9ovn9BAutwwEANxZ+Aax6yeV57iqeCQAoBdUEZt3VF9kzrkVu/OM4GXEnXhvbFRE6G3L0XVBO4hBlrUCL7F98/efY+er2Hlh8P69RyCNnVZJBXd2zteL+QJIS52yq+nDtUcVES96y69QFe/4Pm43DuuxCp5f8rbO2+TxzJsNz3ll5BCut1FssHGYczK/AKutAdNWdVWxvgBVbrL2wskjqABCx4xP7umBTz2gf7zDBiDByZtg44jZlICE0GtUdhBB8fpc0CZ2npfiGXZSMOfcPwpNXOrsyLwx/06NzeYtb4U4I+Y4QUkgIUfTIJ5SPCSHHCSH7CSF+Tc0XoZMKk8gw+s+2QYccm8gDZLuytivHBDrznRofjnCDHro66md5X+F/kKCrwegBvdHieT63utl/mqFuzjjoZ11GN2wKwr3mAvDzbcD31wOHlwAAIsP0mDyyCya5CIX2N0oKzcy/juF/q7N9do3xX2zDsHepZ9HsrSdx3+x/JNHAAI3Sbc6U1dRj/j/BLcpstXGYtSEXJji00g1HiySjajktrQUYpj8EKy+Kigk1qdqqHR5heuK4yT4Jc66TbODqYYOj5OZX5F8N+0MAXN2rNU6+ex1mTeyPR4Z3lsyLaWV4txSPJmJ9jRab+/cAPgUwR+X7MQC68p/BAL7gl34hNaaLdJvwGh0I6r2YQjBz1L5GVk0DIkSRnKe2AtEpNKWtMNxb8zJw6RPeddwdZx0V3u3C/dp3gVXTgPy9wJwbgQLeDfHkJmBKFrDtU0wdOVXabz9yMqwr0uplxUoCbHM/zZdDO89MMBKm/LoPf2cVIqN9PLq3Vgod8j+CcBW8qgg4lNWYkRjmvhTj82N6AX8BdRx9hsPgcCqIcPNYGzgzbCB4fckhGHQE9eYkZclmMQEHFwMZt2u+b6/p1RrX9Ar+CNkb3L5WOI7bCMBV1ekbAczhKNsBxBNC/GacjtRLJ2hSD30HgAr3xdbLPD7fQa4Ttlh7Ue24SJTW89kjwJTDQPqEwOfIFswysW2AW76h6wUy//I/XwO2fQrsnRewbpWM+RJmTo93zbfb9/m7ZKfY/FJcZbJH1R48W4H/rMqSFDpuzhRW0pedPOlVIBGE+zordX+895brsfH5K9A/w7U7JAB0a03nm+KinBPgtRCKYpzZqXhsjN4KG9Fj5YF8LN13DuFGlbfBx/2A3x8Fspa57U9TwBdjhnYAxKkP8/h9ThBCHiaEZBJCMouKvHMFkttarbyWwIGgFHGYEvEGAMCmC8PpEvV87Wej6DDrGNcOd5lfpulJr5mh3FhIo+pJ3hpPOH9Iui1o7jo9nwZVxBg+t145b8M8r56/wtf079IOXU1zsdg23L7P3zkyjhc6co/sOe3Isb1odx6+WJ+DX3YG1xTRWDhZTO91EpBkssoIk47rjCNgnnoKfQdchg5JUTCqpKR2Mj8CCAtTCBASlKtvlat+xZQeRoTRgD3Tr8ae6VfjjZv6KF+vgn9mqv3vhtgY8IVwV7qbFJ94juO+4jhuAMdxA1JSUpSauMUmE+7V/Ky24O9+IKwfDkQNxgFLKu75bofqefKie6GciwIn/gm63wD0uQ0YKctbrjcCCWlA97Fe9dktv8sqwp/gi3jojDS4Q4yQgz6fT0G8Zy4wW5TBkuOAVS8CWz+BTxAqLgGAIdye43qJlWYg3HnyAnq8ugqfr/fdBKoYcY1c+f8eAM6V1+HpINSnbGwIVb2UfqNAIbzon76qG4xRouRaan2yimsx0DZmKLwItIycxZ4ywnrbfsptT6vLhaaEL4R7HgBxdqpUAL7Jqq+A/Db5PIHam4VJm2OFVSioNMMAK06W1KBEIRF/ndkKXWW+c8SlTgfc8hUwcprChTmg6rzzfl8gvjHNtQ6zTIfBtE9i4vhBkbhe6KnNQGEW/ZzbA2z/HFjzCnB0tewB8gKx2Scq0e4i9qL5QYwy/Q/rsgpRa7ZiztZTKidoGGKzi3zUBgBL953D73vPuWzjLbX11oBk7/MlM/1cwN0Vwm8lzwemKpytomeTfwZM4QqZWT0W7nwH1IqFH/7D//bERoAvhPsSAPfwXjNDAJRzHOe32FpikZpaqvl/qg0E1/Whpn4r9HwaAuDy/67Dr/+ckXz6vbkWBdVWxBMP7LVlp4Dc9T75G+zkbgCWPCmNrLPUARbe7SpMIZdNclegjUJStM8H08/XVzj2/XwrcLyB7oFCtCz/UhGeW4shGjlcO7vXilAz0tNSgO5Yvt9xK1XUOZctkyeTEl/+SH4F0qYtd4481siV7693mya2sSGuAxpo7MJdnjVRLpz1fIEdseLRYShw6f8h8trXnE9coeBGOfF34K5Foh2iawrPk1qhbkutvZhI0MjRVqWqIbh1LyGEzAMwEkAyISQPwGsA9XXiOO5LACsAjAVwHEANgPv81VkA0J2nUWMXR3dBdnUOYvlAHg46TLu2O5bvz4cNBN11Z/B05HLcYl0DLJWeYzUBOuiKcNzWFs9d3U1i13WLqQoId51ATDPr3wVOb5Xus5h4jYY4m2Q6Dac55x/ZSN0hf53o+G6CqNi3zkA1mfl3AaYGPuyCcOeXo3u2wj1DO6JdfCTeWZnl1Hzsx5sadj0RHMdhzWHHaOm1P6RzE9tfHAUbx+HSdx0PisXmKB2YeZL6ASzIPIMR3agZMG3acuh1BDn/dm9iyy+vw6LdeXj/Vv9kGPUFNfUWvL7E8bvIqwZp4bc9eThRVI0pVzesTOHve6gQrpbncpHb1qN5k6yVV2LaZABhUcDVMxBdp+DS+vOtwOuy/V14Jebpg7Rma0tRBtSWPQGiB3rdoi7Ea0s1/EUySk8BpSeAziM9P1bO3Jud/yYf41a4cxx3h5vvOQCP+6xHbhibejG6bvoR0WNexORd72BiBRVeNo7AqNfhrsEdULiL2vue5n6CNSYFpo4jJOeIyF0LmIDkxHg8cWVXzzpQdd53wl2np5VnrKIAiWVTgAu59Du5u9aNIt/9MFkwRu9bpNtClSmrSvBF/j7gxCagPA8Axw9TFZaFfAGSq2jghVGvw5s39obZapMIdyEVcpYPNUf5S1dsfweA1i0inMwwF7+yCh/eloGb+6Uilk+9KtckQ8XUcvBsOd5bk43P77oEUWGOR/VEcTXatIhAuEHnlG1wsIbUG3KemU/jOBoq3D/lA9fOymoDo6ZEui1o8sK9OfhRx3dEQ9nGi0Y71uPbO5tRUy4GXi2iz9Cal5XP4U0h8Zn8RK0nQrm2DIiMB3bPdd/Wx4RcbpkuscnoUl2Dg7zJQs9JfWvfvjkdz2U6qqTrBz+MqBFTpSeZezOQ8zfik90UohAz6GFg51fSoWThEeo3O3KaYyi45yegTR+gtev8FQDozd1hKHBig2Nf9nL19vGisGm967Sj0PP2RpuCzb30JDDL4fGC8Bb8qJbwLxTZss9t1DdYhJZiKAt35WFCf+3lz8SUVJmwV1SBXg1CqBY+e8sJzFhOa2w+M38fbu6XajcVVSmYc9zxA18XN5i8vyYb67OLsO9MOYZ2oRPpOUVVGPX+BtVjxIWaA8GBvHLodECvti1QXkvvtagwmYDOXSfdFswlwrMkvpflo1Ul0jUEKbmr7evHgEQ7W2YCa6fTVMRL/BQf44KQE+6CNktkGpsNBIKCNr5dBSCkdJcLdgAY/y1QlAWkdNd+3bTLqHAXZ2xcNoWaVfrcBiRfRO1of0ym9ukph9XPBQAV54AzO4CuXiYQ6jiMDjsPLXYMc8UID4zShGoNH7Yw+nWg/yTP6s6qUGWy2B9uga3Hiz0S7gfyyvHFhuMw6nX4Y6/rOfmrRamV9TqCf/VvbxfuALA+uxD/8AXCj7uoZavEF+tz8J9VzianQJFXWoMHf8i0j4LEo5PZW064PDbcTSEJi9WGN5cdRkJUGJ65qluDJ6Bv/Gwzwgw6ZL01BvcP64TvtpzA06O7uT5I0Nzr+TkvvWjiUySU99o6o68u1/l4LS8AOb/eI932RnP3hO1fUsEOAMXBmeQOudwy9lnuCjrRJmjsT43qaq9tOvTKca7PEZUIdLyULrWiU9CEy/lC1cKNIrhY1VW4P98f/Js8OgW4ayEw4H7tfQGoF80o/uZR8kYVHoC/ZzjfXEJ/2/bziWAXmDRbGmTiaSmxt1ccxooDBW4FOwC8J7ODx0VKH/jP1+VgTDqdYL+kQwKsNg6bjmmbWA2WYH97+WGMmbkJj/64S2LeEv+KdWZnz5Hr+7TBw8M7A6CjJVcCe/mBfMzZdgoz/zoGi9UGs6xoxNiZm/DrP2dUjqYcPleBOdtOAqAT2EKfymqpmSXCKBMr8oRegg1ecAEWT7iKzDLWWBXFwOgc6KRK+yFAx8uoh4yY4qPK7X3FX6L8MXITKkD75GdCT7jz/t2V62nA0dpo+o++c7DIZNF5JF16KjBdIWgXVpHmLrgpCnUfTbxQj9Ng7qkrB2JaA9e9D3S9Cuh3t3rb1EHKQ1GhT0qh1OFx9MauK6OukWLK+IfX4MFDogFxkBFAs/i54q8j53HtRxtRx9vSS6qU5wf6dXAuSCwvZSbPX2+yWO01Os1WG77ckIOJ3zpePieKq3Hf7J0or3G8rMtrzOj8orNZ7Nj5Sp97ASnx9aYTOJJfYa+zKVDG97GkyoSFu/Ik3z0zuhveuSUdL43tge6tY5FfXodB//4L58qc00SXVtfjqV/22rd/3H5KYvrKKarC4fwKTF20HytdFJN48pc9mP7HIRTIyj4KcxlOtQRayso9cjY60VkoTASLPV0cIqn/RaJYSJsNSL+Vrne5UrVvTuiNkLwek/lRhTfav4C70U7RUcAs8sQLE+XD0ofRa4//xvvrayT0hDv/wx7jQ4yXxMZI9gOgP+b0C8D1H/ruusLNIDbLCBrJ+n8DCx9wCFElM4kcq4lqzoIWYnCRJ/rBtco3g9AnsS3e/p0OeGA1EJcKnPmHfoQUwWbenTTcTxG3PIKdWInzFXV4gDc9dH91FR6ek4lqk9Q2PnlkF2x+4QrcPbijx9eut3L4i6//umx/vt1zRuCrjTlYl10kSfN8KL8cSjL8qg83YpkLYbds/zmkTVvut3w3gqycs805lqBvh3j7xPGc+2l63aJKE77aKDVnFFeZ0O+ttZJ9ry89jFtnbbNvz9qQY19fcbAA5yvqsC6r0OkjTHQPecfhZvvm0sPYe6YMPZVs/nJhyNmAr0UCWk0TbyNKW8BZgUR+Lk1wpdSKeGRww8eAMVrd0UANsY3e5mYOZ++P0u1akdLTYxzwajEQ57/04QKhZ3Pnkaf+tUduCribUPH4gvwNUil6yBM7U8+WomyqISRfDBRna7PnWeoBg2giydMbFgBiWgFDHgf63qnepq4MqMgDvh0N3PMHNdPk0cpKTr+Zj/lw7VG7C6LA1xtzUVpTj1ky4bPm8HnodcReUEEgNSEKZxO0FSv5+I5+eHIejVY1W21Yss9h3pFXvjFZBBdaB67ysjw5bw9GdEtBi0gjThZXY+R76/HtvQMwqkcr/LyDpkA4dr7K42IOAmU16sJmX14ZxvRurXhusY29ZVwE/n52BK58fwMqRZPI0/84qPhiAICHh3eGyWzFD9tO4ddMx6hg6b5zWLpPeyzigkw6GrxygEJ5R7mfu0lmttSrBBuJnRKsZv48xDmwzxVER18unYbTyO/2g+n1PBXu4tKXVrN6nwFHnIpAjmhCudPwgCXbCz3hrvTDPLYNMHr3UGlGyLwo1rCjU4AWHYBnHBVbMO9O4NxuYOfXQK+bqV+6EtZ6qZdATEtqSpHf+K4gBLj2367biCNZS447BDvg+gbVwMqnLseYmep+7XvPlGH1oQJJVr23VxxRbT+iWwquS2+DZxdQ17wIviKO1lza4zLa4uXFB1BpsriNXTDxL5Aj+Y7fe9Lsf9SaA6ABVXcO7oB9eVQTe+CHTPRJbYH9edQ1zmSh5qVj5yth44CLW6uPjBbuysOxwkq8OIbmOJr8027VtrM25GJbTgnOlTkrDakJUq23c0oMLmoZg0W78zCAr/mrJtijwvR4aWwPlFbX2xOyybmmVys8NtI5J/n7a7Lthdrf+1eG64nzuDZAkfr/HUaV8pViDdlmobZ6T5U2oqNuv+kTaCI+nQ4whDtMqVoRjz7cae42M/9sEzpCFzT5vne7Nr/6mNAT7vyPPLjO8cDX2MzwbXVTpevy2scvd9C3/30rgYIDzu2SOlN3xhXPUa15+PPK57PWS7X1iDhg2mngDd6+fKtahmUPiYin/QAc3gkCDbE7grrdLXliGB77cbe9mIacR+buwsl3ae6bmX+qew0sfeIypKfSF+ioHi3x+56zuCGjLb+treg4AFSKTDsx4QZ7zhU5Qv73bzefwKvX99TkNfLSbwew+XgRJl3qcLVNina8oKN5X/+rPqS5gYS/W4nn+BeYINwFG3l8lNFuYxdIiQ23v0DE6HUEqQnOd35qQiSOF1ZJysQJPDmqK7q3jsXkn3bbC0frZHEA/7w8GlUmC1ITIlVdXr++ZwB2nLiAhCgj0tu5STl97X+AzwYqf5c6CGg3QLpvwmyqtZeJXjg2CzXNeHrPWutpROqeudKI75IcURsz8ON44IqXacoPRTwQ7tZ6IDIRuHsh8KVo4rTTcN9bFFwQejZ3nlTRELoWKmHGvkScSe7MDqoRRyU6/6OveguYeoK+udWiQ+traEi1QearLh6VtHKu4u4V/5oN9L2Lrptk2mwDhTsA9EmNx6gedCh+XXobVYFWWWfGh386PBSeEbnLPTy8M3q1ddhq46PCMGlYJyTF0Jefq2LGrrguXd2uKTfraZ0vXXGgAHtO0+jGH+4fhNn3DcKix2gSNZMX6XbTpi3H4z/txsmSGvRoE4d/Xh6Nw29eg9n3UWHYpkUExvZWzif+7NXKLoef3NEPCx8dim0vXonXb5BOZj5wWScM7iT1EhPL9phwA1Jiw9EpOdplLEOEUY8R3VLQJzXefTH2lG4izy4ZQx4D9LL7sPctNM1GjOjvNtdSzV1LkJMYcfIwYRRbX0NHygKlJ2msyR+yBH5iVr7gWHeXr8lqoaNieV+tnkcPN4TQ09x5dKIfyhwIG5bcjm6upZ8UWVQfIVToG6OA4uPSrIoCQl5qJTfEpIuo+cTghQ1eiS5XUn/+vT8Bp7ZIv2ugWUZgSOckzNl2CvcMVZ74HPm/dTjJp1++e0gHTOjfHn3bx2N8/3ZoFRehKSBKYMPzI53c98S8PLYH3l5xBD3axOGh4Z0wP1PZrW90j1aYveWkfduTbIpCZK4QlSuYjzZkFznNMWhhOT9Za7baYNTrYNTrMLJbCtY+MxxJMeFIjA6TmE1OvDMWlSYLYsKUH9/YCCMGpFEBPmlYJ7y+1BFz0SLSiFpeY0/mX56RRj3axUdifP9UTBzi+eS1JgQvM0OE9FmqdJGGqnVvYMhk6qhgM3tnluk0gtY9EBPXlo4C6qupm6Lwv3d1D4hzwFcVALEuRpNFR/gIc9l93davReqcCFnhrhf9I8yuPE18hSCI4zsAZaeBZc9Q//GOlyq3j2lJzTOqEacEGPa08+67FwHH1jqyP/qCWF6DlY8yfKC5A8DY9DbIfGW0XVjIOSnKq3/7wA7ozQ/jlUwK7lAqOCzmoeGdMXFoR7vAVaNzijSFhFi4f3bnJXj8Z6kNfOu0K1FaU48L1fWoM9sQHaZHP76geftE+nd8t+UECioc5ikls4gr5j00xL5OCEHXVg6bfYtIoz1IjBDi5Arqis/vugQJUWF276XIMD3mPTQEPdrQ8xv0OmyZ5oF7oTf0uZUKSIuJOh0IxLgxuQkC0cqbZdwUwXaim0KQoE5P/d4P/wFM3uHwgb+QAyx60L2b4qzhrlMQRCUDJbnSF1Gvm+nLKoCEnnDnbd9iXd0WCNMB72UAACAASURBVM29y5U02Ci2DbD4IRrhGpWo7nN77zKpzVBOdDK1s8tJSAMGPeSTLtshhL6Uzuxw3u8jlAT7R7f1RVlNPcb2aYN5O87g9kHtvfYm8QSxYL+lXzss3uOcVfDV36VFTl7+zbE9pHMiXrmuhyTitU2LCFW//bgII94Y1ws/bj+FY+cdpi+xm6U70pKikBKrPlqTR/96wlgF85QrN1W/kNgJeHQT8MMNDuF+249AtzGujxPqFuz9kUaIe8PIl6i7soDYXPL3W1Kl58ACZ+G+f4HzOUtygKQuzvsB+hJK7ip9EXk6gesDQla4i/Uym6dvc2/pyleCmbzNdTuADttcDd0CTb16VSp/cVM/x+jjqdEeJmiT8e29AxAf5bkZ6YaMtorCXY44OCgu0ogHL++M/h0TcPPnNGunO7vyvZem4V6+UPkjczNxces4TLlKPQxfnuJg3XMjXZ5/TO/WTkXBQ5K+dzmK0fS4wX37Iv5F0JB0273HS4W72JWypgTofh1wdJX68btmO+/b9AFwkyiRX1059Z/XGxzmI3FkavYK7/vvJaE3ocr/YOJHjfN0kqU50lKo3k6Ax/8BHl7v18t1TPKt/9KoHq3Qv6PnGQ+v6N7SpdcKAKw+5BCaYbzNGwDa8Zq63N3QHbMmDnAp2AFgkGhS89Ab17h9eUwb0x3t4iPx1cT+HvWl0ZHmYdh9Sz7/U0In1+1cIS8gL5YXNSVAokwDr5GVjFbSuuW54t/v4UgOxtnoNWKDW1g79DR33k4sfhQsgfCWCXWu/4hm50uf4NN8MkrMf3gIurT0UVrkAPDIXEfO707JDm2rZVwEvrlngN1F05f0SW2BqddejNE9WtldKF3RMSna/3bxgOChKbD3eFoystdNNEmeN8hjYOSTsvIgq8p8ad4pq4lq5eKUAvvmATd/6dg2Vzv2iSd+PY1d8SGhp7krFNVddcLFkIpBSb6I2vL9LNgBYHDnJNXJ1WDzyPDOEjdMOeGypFeje7byyzyBUa/D5JEXoVsr/6aAaHQopaB2hX3SvwHzQ0KQVGs+H7tYcy8+6sjeKCQHFPvDH1hIHSi6XkWjwcWoedeIJ34nfEeX0QqRu34m9IS7wlAnKTLAk0OMkOXFsT2c842LeOCyBgz/GRrwVEgL7RuQuE2np0GBt/7g2BZTcQ7oPQG45m3+e/6FUl0CLHqA2tMN4cDlU6THKWnkpaekmruQ5qC60Lmtnwk94X7JvXTZ7Vr7rvax7VUaMxiUnS+Pwr7p1C1uYKdEXKRiNrqie+A1rGZJpMb5E2EuQh6A5yk9b6S5oABnd8qENGDCt44EZgvvB84fkgYd6cOcczEtfsT5OrPH8pq78ALh++9t3YYGEHrCXaej2eJEs9u+rHjPaJq0jI1AC97bpm/7ePw5ZYQkKlbAE/9xhhcIwlopx7lie15Eye3iDaHTcKlpRhDqHS6l6cLPbAdObZW6SOoMzq7DR1fyfRPJn4o84NweR+bVbtcAw6cCt3jpxtkAQk+4A05vXqtalXMGwwUzbpIGlVzVsxG5rjIowhyRLysnjZgKPH/csS3Ik+SLgH99T9dtFuCIKCo1VZb/RqD4mOI8ICp5DyydHrjy5YDMdckJPW8ZwEm4M82d4Q292kq9YPq2dy4KwvATWp/ZcH50tW+eb68vliG9bnasC/b2LTOlqRE6X6F8nqJsIF4hZUMjUDibhOZugw+HbIxmg0GUMSstKQqTR6pEHDJ8iIcTqmFR1NvFx1XDJJOqYldJQbiLBfuA+4EWKulAzLXKJiNb8GVSk9Dcbb60xzGaDTodwaapV6BFlJHZ2gOF8Ox6Un/BGAmc2uzbfojdHY0i+79SvqUYhWCkdgOAs5m0mtkXQ52/Z5q7l8hcmTac2RCkjjBCnfaJUUywB5K4tsAVr9A8TVqpKXGsX/qkb/pBCHD3Ypprvrsoglku3NP/BQx80Pn4K16ky8h4Wo1Njruc7wEgNIW7THNfmrs0SB1hMBgeQQgw4nlHPVRtBzlW1SqbecNFo4Ahj0oT+Mk9YsZ/A0SLXCD73gVc+aqoprKKhq62P4CEpnBnMBjNhxtFCboaEqnqC276HBj+nMOVUmx+Gfki8AhfdlLwqQ8ioWlzLzsd7B4wGIxA0e8ummJ768eNwpYNwKG5m0UumnXltILade8DnUYGpVtiQlNz5/Okzz3XBFKgMhgM9wgFeQKV3hsArnxF/Tth3k+cTGz75zTIcuCD1Gc+yISm5q4Pc+RsYDAYTZ9LJtKoz94TAnfN1EHq3wlmmQWTHPti1Wv2BoPQ1Nx5wR5vZS6QDEazIL4DTeyl5m/uD1zVa03sBLROl+4bMdW//fGQ0BTuPGkW6m40oJVKaDCDwWB4i6siQFGJwKObgQmiKk1CUsNGQmgKd1lVlszzmUHqCIPBaLK40twFulwJpHQHHt2irX0ACU3h3t112TQGg8FoMFrKd0bGA4/vAFr3dt82wGgS7oSQawkh2YSQ44SQaQrfTyKEFBFC9vIfhZAuH5Jxu19Pz2AwGI1NE/cUt94yhBA9gM8AXAUgD8A/hJAlHMcdljWdz3HcE37oozOt04HXy2nY79IbA3JJBoPRzIgJ7cItWjT3QQCOcxyXy3FcPYBfADQOidoIosAYDEYTJa5tsHvQILQI93YAzoi28/h9csYTQvYTQhYSQhTr3hFCHiaEZBJCMouKirzoLoPBYDC0oEW4KyVzkGfaXwogjeO4PgD+BPCD0ok4jvuK47gBHMcNSElJ8aynDAaDwdCMFuGeB0CsiacCOCduwHFcCcdxQjXZrwH090333NMtoVugLsVgMBghg5b0A/8A6EoI6QTgLIDbAdwpbkAIacNxnFC6ZByAIz7tpQsGtBqA/Op89w0ZDAZDC/evAerKgt2LBuNWuHMcZyGEPAFgNQA9gO84jjtECHkTQCbHcUsAPEkIGQfAAuACgEl+7LMEIs+/zGAwGA2hw+Bg98AnaEocxnHcCgArZPumi9ZfBPCib7vGYDAYDG8JzQhVORoLqTN8x6GSQ8ivYuYwBqOxEpopf0WQYFdmaabcvoxGCR+490CQe8JgMJRoGpo7g8FgMCQw4c5gMALCp3s+xQeZH3h9/Ma8jXh2/bM+7FHTJuTNMgDAMaM7g9HombV/FgBgyoApXh3/+F+PAwDMVjOMeqPP+tVUaRKaOxPuDEbzwdpYimQ3ckJeuDM/dwajeWHjWHlNLYS8cAcAjmOaO0Mddn8En1pLrX3dbDU36FxspK6NkBfuzBWS4YqjpUcxYv4IHCw+6LLdtnPbcKbyjMs2DO8wW80Y9NMg+/arW19t0PmYWUYbIS/cAfYmZ6izKW8TSk2lWHNyjct2D699GGMXjw1Qr5oX9bZ6yXaZqWF5W9hITBshL9wJCMxWM5bmLMUb294IdneaHXsL9wa7Cy7R83UwvdH25mfNx/ys+b7uUrNnbKeGvUSZzV0boS/cCYGFs+ClzS9h4dGFwe5Os2PiyonB7oJL9HwdTG8EwowdMzBjxwxfd6nZUVVfJdnOKctp0PmYWUYbIS/cGcHneOnxYHdBFR2ht7jFZlH8fvKfk5H+Q3ogu9TsWHB0gWT7u4PfNeh8zCyjjZAX7hfqLgS7C82O0xWnJdtTNngXlBIIDITG6alpe5vOblLcL/buYDSMTi06+fR8zCyjjZCPUC2sKQx2F5oNJqsJj659FJnnMyX7T5SfCFKP3KPTUf3lXNU5Ny2l7Cnc44/uNEuSI5N9er6SuhK0im7l03M2RUJec2/ozDtDO0dKjjgJ9sZOjDEGABBljMLhksNI/yEdBdUFqu0PlxwOVNeaDb7WtL898K1Pz9dUCXnhnnUhK9hdaDaE4kRWcW0xACCvMg+PrH0EAHD9b9cDAI6VHnNq/9ifjwFg8RO+RMlGbrV5fy8V1BTg2kXX4v/++r+GdKvJE/LC3aALectSyBAsW2dFfQW+2PcFasw1Hh/733/+CwA4cuGIfZRnstJa7kdLjzq1F+ZwxGktsi9ke3xdhgMbnO+b9zLfAwBUm6tdzm/sOr/LaTLcZDHhbNVZrM9b7/K6FfUV+OnIT812AjbkhXvPpJ6SbTbZ4ntOlJ/A1nNbg2aS+TX7V3y+93Msy13m0XHuHuppm6Zpvj7De5SeyRUnaNXOIT8PwbWLrlU8bk/hHkxaNQlf7vtSsl94ObtjxvYZeHfnu0E3JV6ou4DMgsD3IeTVXvnwzmqzQqcP+XdWo+KxPx/D2aqzmttPWT8F289tx9Y7t/rk+hWmCgBAZX2lR8f5yoyUV5Xnk/P4E6vNirWn1+Kajtc0umR67l6yah5v56vPA3CesK+31is1d0K4b7S+DPzFpFWTcKL8RMCrloW8FIwLi5NsWzhlf2aG93gi2AFg7am1qDR7JohdwssqT9NMNGQ4LtY2t57zzUuqIfyS9QvSf0hXFYRzD8/F8xue1zy6WXlipX0+wt/MPjTbaZ+WF6/QZmfBTsn+OmudtgsL942fzTIfZH6A9B/SsSJ3heL3wsvp9mW343jpcby06aWA/PYhL9zfufwdSThzQyZqGK4RQvkDjSeTm/Oz5mPxscUAvNfcrTYrJv852atjG0JFfQVKaksUv1t0bBEAqHr65FfTYuXlpnK31yk3lWPqxqkB+xt3nd+l2Ad3CHMkco84s01bVknhvvGlI4DFZnGKuBVeXi9sesHlsYdKDuHmJTdjae5S/Gfnf3zWJzVCXrgnRSbhtotvs2+HokdHqHDrxbdKttvFtLOv2zgbjpce94uWJESZZl3Iwsa8jS7bztgxA69tfc3eJ28orCmU3EcpkSlenccdJ8pP4Ldjv9m3r1l4DUb+OlKxrdAf4bdQ+15It+AKQTgGKkbkkpaXAAAeTH/Qvk/LC1ttojUxIlHTdYV7Mbc8V1N7d1TUV6Df3H4YOm9og+f2AuGNFfLCHQC6JnS1r6uFmTd2Vp1YhQlLJjTqkYf8huwa7/jdl+Qswc1Lbsa6M+s0n89TDWz1ydX2Umta8PZFvy1/m/T6frJh377sdkzfOt0uhKrMVaptbTYqTNwJdy1CR2ijdi5f0zu5N6IMUXjqkqc8Ok7uHSW8ZIe0GaLp+LQWaQAAo843Jfne++c9+/r3h75v0LnkpiZ/0CSEe2xYLKYPnQ4gdDX3d3a+g+zSbJcPeGNjSFvHQya4C+ZVapt8NFlNGPrzUPyS9YvP+iMPQPJEu3phoGNILWj+Alon8DylxkKFl5YJv5xymmxLp/LICoJQy8hJ+F2Kaos09bOhWDmrVya9hIgEybbQX60KnPDyEv7eanM1qs3VHvdDQPxsas2npOa+W1KnbH7zJU1CuAOiHCIear6Lji7C9b9dH3RfWKE6zfma80HthyvEL85but6CO7vfad/2VBssN5XDZDXh6wNfu22rVXN+dYu0CIQnL/pjZceQFpem+J2/o6Dlk6RKL6WEcCro1CaVd+TvAKAt7iPQClC9td4pp7uW/6kQoyAgaOBa+y+8CIXf8/7V9+P+1fdrOtYdWp0Mfjzyo0+u5w1NRrgLtkZPvWXe3vE2TlWcsmsDS3MCM9khR7jZ6ywaPQGCgPih0hO95AEVvtMqiAWTjPBSdoVW+6TczOOpXVRsExYzvut4j86jBXGpudK6Usl3SsJL2Pd+5vvYmb8TD65+UDIpKWiCavdPaV0pDhYfBMdxfo0FqTHXIP2HdHx/8Hv7vgVHF9hHJ8ILtCF90KrAiTV3k9WEwyWHNaWXeHPbm0j/IV2i8O0v2o+1p9bat3cX7tbUh2DWO2g6wp0f9nk6hBYemlornbx5afNLAX/bmq1mVNR77pNbba7GlrNb/NUtJ8S/rVwACQ+rVkFca6a/t1Hv3h6q+YUhq8359+m/Nbcd2maoant/aLqHLziEjNy1b8vZLeg/t7/9ngBgX99ybgseWPMAdhTswNKcpU7nVRo5rTm5BncsvwN3LL8Dcw7P8atwF9L7/pKtbG47WXESADWlejpaFv4PnpplOHAu7wU5wt8gVhbcTeSroZZ1NBA0GeEu/OO12nwFBM1RCHgIBneucJg37l99Pyau0FYA45M9n+DRPx/FyfKTfuqZFLFwlz9gwgSR2Lb627Hf7OYCOYKmqaVYspqdWY58vkIpvYDA69tel2y3j22v6j3ij0l6sSeIXHB8sucT1NvqcfQC7b8nQjBMH+a079kNz9rNCO9lvofblt3m1MZXCGkF7IKV73usMVbSrrK+Ep/v+1zzec02s/2lpHV0LigFG85sQJjO+Xdx97uK/0enK0+7aEm5r/d9mvoFAHf1uEtzW29pMsK9fWx7AMATfz8BjuPcDofMNjNe3fKq3RYYqIAOJeTJz/YW0b6vOrEK6T+k45esXzAva57TcbvP06GhN5NEWj1VxIgFx+gOoyXfnao4BUBqn56+dToeXKNs6hAe1NbRrV1e08bZnDRbNR9puetcuD5csV3nFp2xJGeJ03XURhHLcpf5XNsVv0jkxSuEl6hepwfHcU72aoG/Tv9l71evpF4AnCchlWjIpKJWBF/w9WfWA4BiUJs8rYArimock79i84grhFHk3qK9kpGSxWbB5rOb0WdOH6fUzuIXuXjSc+WJlZJ2Si8LTyaNM1IyNLf1liYj3MU/9ryseZi4cuL/t3fu0VUV5wL/fXm/IJCYRCCEGARquCgvsRAFEW3Q0mKVtF7FhdWr6+L12l7Etta1XJa1tFqrpSq3vtCrWFFQLFKRh4Cg8tAEIgFFAiHmQR4kAgkkJDnnzP1j73OyzzMn4SSBdH5rnXVmz5m95zuzZ3975ptvZvi0wn+XqLKxkn8c+ofruKOu9x3r7uDyNy8/e0GDpKG1wVWhHtv1GI/vetwrjbNl0tmZm+tK13H5m5e7FHKw2JWdCImgaF4R0zOm+0zzfOHzQV3L+XIJDwvHoRx+W1FPffmUl/Lbe2yvz7RWk5ZSivFp432m8+X37MDBggn+Nx2xPtz1zfWMeX0MX1R13Z3N+WL2hbNsyhvLufLtK3km/xmf6fJr8imqM6a0O2dqO5SDxQWLeaXolQ5liAmPAYyX4pjXx7gmf3VEm72NRTsW8dfdf/Wb5niLMY7Q2cHoky0nmfneTL6p/8Ytfknhkk5dB9xdIF/a+5IrPG7ZONfqn9Y1X97Y/wY5y3Ncx6db21+C41LHuV07PjLe5QkTFxEHGC/s2qZaFu1YxJayLSzcutCvbD3hst1nlLu11eWsCIFGtJ2Vz0lHhV1QU8AZ+5ke80PPWZ4TcNCmvKHcNTjUWdvl6kOrsSt7p5X7hyUfenWJZ2b6XvSpI5zmmHAJZ/7H83n4s4d9pvNsYQPcu+leTpzxVhrWyS3Hmo+1mwSi+nml9SQ9Id2tZ3LN0GvYfXt7+Vtbu86e1bJvlvm8Vt6aPL+LYTkREZ+tP2ivt4t2LKKhtYG3Drzl9zrOHqfTTbC2qZal+5YGVLxOLkm+BGh3Y/V0AfXHjatvZOXBlR2+QPbX7ffaVOMvV/8l4Dk7qnZQeaqSv+5xl99XPegMVwy6wmd8QlSCK7x492KXeyq4m/U89cPxluPkLM/BoRxuJuEZK2ew8uBK7t9yP+tL17vSz8qaxaD4Qa7jnvBYCkq5i8hMEflWRA6JiNdSeiISLSLvmL/vEpHMUAvaEc63J+A2EOUPz4ocrJnCuZqdL9765i3GvD4mqKnVwRCo1XPD+5YlFzpZUT6r/AwIzlOlI5yzVmMjYv2mWXdknSvc2NpIq72VbZWGnXln1U62H93OmpI1zFgxg5f3vsxXx74ib02ez2nrTqavbO857KndQ31zvZtLYe57uS5zzo8v+rHf61wQewFF84pIjk12G1MIkzC3lt8TXzzhWrfF+aD7mxxz4PsDHbrKtdpb3XYouu1DbxustSdyxYW+ldOJMyeoa67j0AnD79pp8wbDNOI5Vd6K8+Xyl4J2hVveUA4YHikbSjf4XO7Aan+2O+wu05CnT/d7xe+5XDidXDvM3ZznibMlXXIiuFmlvho260oNc6bVpu9vJ67Hdz3O7prdLPhkgZcOWH14tSvsaz0bm7LRam91NfjKG8sDymp1U+2J1Ws7fLpFJBxYAlwHVABfisgHSimrT9FdwHGl1MUicgvwJNB9ozY+sE6FdxKoNe650pzNYXOz0ze1NREXGed5WsCd298tfhcw1vlIjE70m86hHOyr28fFAy4mLjKOCInwOUiUEJngNkj4XcN3DOs/zCtdV+znEJw5p6NK6LRrBlqT++Wil7lu2HU4cDBl+RQAMvpleKWrba7l2T3PgmkGXVuy1u+L2uaw8ebXb1LXXMfSfd4789gcNv552FDGt2ffzrHmY2wq2+SVbtTAUW7nOPm47GO3dG2ONh769CFmZc1yPcxOG2v16Wpe2/ca04ZOC3o25BnbGaIj2scE9tb5NjU5iYmI8Rn/6I5H+cG3P/D52+TlkwNec1f1LnZW7XTrIdY01ZDeL52CmgIe2PoAUwZP4cXrXvR7jSveuoKM/hms+ukqHtv1mNtvKw+uZPiA4QFlcKKUQkRcz02wPWSHcnjZuh/c+qBXukCKd966eW7HsRGxNNuasTlsFB8v5uIBFzMofpDPzV1a7C2uZzfQpDBB3GT4SdZP/KYNFcE03SYBh5RSJQAi8jYwG7Aq99nAo2b4XeB5ERHVgzODRISU2BS3An6l6BUGxAwgQiIIkzDCw8KJkAgiwiJIjUt1G9R6Ov9pt4fb2fo+euooLY72FlSTrYnDJw6TlZjF92e+p9XeSkpcCgU1Ba6bn7cmj815/l2v8mvy+c223wAw/7L5fkf/Pb0/Zr0/i8XTFzMjY4Zb/J3r72Ra+jTXcWRYJAsmLOC1/a9ReaqS1LhUNpRuICsxi7nZc13pDnx/gOjwaBQKpRQKwwfaeuzpgz33krluxz9I8q1YrBw8fpCxy8a6KdJAW905WXHQfR318anj3RTRk196z0fI7J/pcrf7/KjhJhoVHuVXOd4//n5X2NeL7Jmrn2HBJ+22+FXFq1weWRWNFeyp3cPyA8v56MhHXuYTX8rAyfGW414DvvGR8YxLHefqWVnJTs5ma8VWn9fytxtZbmYuJSdLAsrhOY3+l+vdPT62H93O/xb692ppsbdQfLyY6Sum+3RKeOKLJ/yea+XqFVcTEx7D0dNGC7u22dtz6YEJD/B0wdNucWOXjeWylMtI75ceVD7B4GyoFNUVcdMHN3n9nhid6NIP924KbvG1uy+9mzUlhuvqvOx5QbkAny3Skf4VkTnATKXUf5jHtwNXKKXus6TZZ6apMI8Pm2n8uqBMnDhR5eeHdgH7FnsLSwqX8No+7yVGfREVFsWq2at4bs9zrpu1s2onYHTLO9N1EqTTA5v+mJY+ze+D7C+vS5IM+2mzrdml3LqD+8fdz92X3u0WN+b1MV7plsxYwsbvNjItfRqfH/2czyo/81Lo41PH02Jv4ampT1F4rJDC2kIy+mfwSfknPjdYWPqjpdy14S6v+KnpU8kbmcfakrXMGz2PWz68BUEYnTwam7Lx5g1vsqF0A7//7Pde51rX2C45WcLsf8wG4MXrXmTK4Ck025pZuHVhUH7Of5jyB9IT0nlk+yNBzWC8/MLLmXvJXH61xVhzZc2Na8hMzHQrz+SYZD75xSeAMbj8xtdv8OK1L/Lgtge559J7qGuucynojXM2khaXxrN7nuWVold4NfdVJqZNpP5MPW32NlLjUlm0cxGrilex89adPLD1gZDNk5gzcg6Hjh9yjUf4wlnWvuqLP/487c8s3LqQfpH92H7rdhYXLPbZUwNj3ESkvYV8feb1fFT6kc+0vrhj9B1BrRmzevZqZq+e7RY3Z+Qc3j34rlvcE1c94doQpmheEbd9eBt76/Zy72X3Mn/s/KDl8kRECpRSEztMF4RyzwNyPZT7JKXUf1vS7DfTWJX7JKVUvce17gHuAcjIyJjw3XedG9ALhrrmOt4+8DYDYwYytN9QhvUfht1hx67Mj8NO1ekqyhrLGJc6zmsUfFvFNtYeWcvg+MGESRhp8WnEhMdQfbqaCWnGxJKv679GEBrbGmmxtZASl0KLvYWkmCSyErOCerDT4tK4KPEi8mvyCZMwqk5XkTssl+iIaIYkDKHqVBUrD67kvnH3UVRXxG+3/ZaTLSeZmz3X1WX92YifsbRoKZemXMpNI9pbGCu+XUFpQylhhJE3Ko9h/Yfxt8K/salsE9MzpnPziJupa66jsbURESGMMEQEQYxjCXOFBeGu9Xcx8cKJ3DziZqamT/Xypa5vrneZhg4eP0hMeAyTBk3y+s92h52tFVupOl3F6OTRZCdn+/TLBviy+kvWHlnLhXEXcse/3YHNYSM+Mp7Hdj5Gm6ONrMQsBsYMZPLgySTFJLnNRny/+H2uHno1ybHJrusppag+Xc2e2j0MiBnAiTMnSIxOJGdIjlu+pSdLyeif4TUZqNXeyuayzTTZmkiKSaKsoYzhA4a7PJZSYlNcC9jVNdcF9IZxkp2cTXq/dD7+7mPiI+OZPNgwoyw/sJzPKz/nuWueC2oC15GTR4gOj2ZwwmDXfz3ddtptsNAXzvKICIvgyiFXUtZQxqeVn3JZymWMTR3r18R04swJfv7PnzM2ZSyZiZlcO+xaRg4c6cobjJ50WUMZNU01nGo9xaRBk4iPjAcM02ZUWBRD+w+l5GQJz+95ntzMXEYNHEVG/wya2pqICIugxd5CYnQiq4pXMWLACMakGLNG15WuY/Xh1SREJvCLUb+g+nQ1IweOZFTSKJd8BbUFzMiYweayzbTaW0mMTmT4gOGkxKZQ2lBKSmwK5Y3lpMWnkV+dT7+ofkxIm8Dmss3YlZ1p6dOoOFXBrR/eyh+v+iMO5WBQ/CBGJY0iNiKWzWWbsTlsTLpwEkdPHyU7ORuHcrDuyDpyhuQQLuEkRCVwrOkYUeFRJEYn0mJvYUv5FnIG5wQ1znDISgAABmBJREFUyO+PUCr3ycCjSqlc8/gh8yb+0ZJmvZlmh4hEANVASiCzTHe03DUajaavE6xyD8Zb5ktghIhcJCJRwC2Ap1/SB4BzVGIOsLkn7e0ajUajcafDAVWllE1E7gPWA+HAq0qp/SKyCMhXSn0ALAWWicgh4HuMF4BGo9FoeomgHJ2VUmuBtR5xj1jCZ4C80Iqm0Wg0mq7SZ2aoajQajaYdrdw1Go2mD6KVu0aj0fRBtHLXaDSaPohW7hqNRtMH6XASU7dlLHIM6OoU1QuA3ttdwz/nqlxw7sqm5eocWq7O0RflGqaUSukoUa8p97NBRPKDmaHV05yrcsG5K5uWq3NouTrHv7Jc2iyj0Wg0fRCt3DUajaYPcr4q95c6TtIrnKtywbkrm5arc2i5Ose/rFznpc1do9FoNIE5X1vuGo1GownAeafcO9qsuxvyGyoiW0TkGxHZLyK/MuMfFZFKESk0PzdYznnIlO9bEcntLtlFpFREisz88824JBHZKCLF5vdAM15E5Fkz770iMt5ynXlm+mIRmecvvyBlGmUpk0IRaRCRX/dGeYnIqyJSa+4U5owLWfmIyASz/A+Z53a8s4Z/uZ4SkQNm3u+LyAAzPlNEmi3l9kJH+fv7j12UK2T3TYxlw3eZcr0jxhLiXZXrHYtMpSJS2Avl5U839HodA4ydU86XD8aSw4eBLCAK+ArI7uY8BwHjzXA/4CCQjbFn7EIf6bNNuaKBi0x5w7tDdqAUuMAj7k/A78zw74AnzfANwEeAAD8EdpnxSUCJ+T3QDA8M4f2qBob1RnkBU4HxwL7uKB/gC2Cyec5HwPVnIdePgAgz/KRFrkxrOo/r+Mzf33/solwhu2/ACuAWM/wCML+rcnn8/jTwSC+Ulz/d0Ot1TCl13rXcXZt1K6VaAedm3d2GUqpKKbXbDDcC3wBDApwyG3hbKdWilDoCHDLl7inZZwOvm+HXgRst8W8og53AABEZBOQCG5VS3yuljgMbgZkhkmUGcFgpFWiyWreVl1JqG8b+Ap75nXX5mL/1V0rtUMZT+IblWp2WSym1QSnXTuk7gYA7PneQv7//2Gm5AtCp+2a2OK8BnBuNhkQu87o/B5YHukY3lZc/3dDrdQzOP7PMEKDcclxBYEUbUkQkExgH7DKj7jO7V69aunL+ZOwO2RWwQUQKxNifFiBNKVUFRuUDUntBLie34P7Q9XZ5QejKZ4gZDrV8AHditNKcXCQie0Rkq4hcZZHXX/7+/mNXCcV9SwZOWF5goSqvq4AapVSxJa7Hy8tDN5wTdex8U+6+7E094u4jIgnAe8CvlVINwN+A4cBYoAqjaxhIxu6QPUcpNR64HvgvEZkaIG1PyoVpT/0psNKMOhfKKxCdlaO7yu1hwAb83YyqAjKUUuOABcBbItK/u/L3QajuW3fJ+++4NyB6vLx86Aa/Sf3I0C1ldr4p9wpgqOU4HTja3ZmKSCTGzfu7UmoVgFKqRillV0o5gJcxuqOBZAy57Eqpo+Z3LfC+KUON2Z1zdkVre1ouk+uB3UqpGlPGXi8vk1CVTwXuppOzls8cSJsF3GZ2wzHNHvVmuADDnj2yg/z9/cdOE8L7VodhhojwiO8y5rVuAt6xyNuj5eVLNwS4Xs/WsWCN8+fCB2NbwBKMARznYM3obs5TMGxdiz3iB1nC/4NhfwQYjftAUwnGIFNIZQfigX6W8HYMW/lTuA/m/MkM/xj3wZwvVPtgzhGMgZyBZjgpBOX2NvDL3i4vPAbYQlk+GJvH/5D2wa4bzkKumcDXQIpHuhQg3AxnAZUd5e/vP3ZRrpDdN4xenHVA9d6uymUps629VV741w3nRh0724e4pz8YI84HMd7ID/dAfldidIX2AoXm5wZgGVBkxn/g8RA8bMr3LZbR7VDKblbcr8zPfuf1MGybm4Bi89tZSQRYYuZdBEy0XOtOjAGxQ1gU8lnIFgfUA4mWuB4vL4zuehXQhtEKuiuU5QNMBPaZ5zyPOSmwi3IdwrC7OuvYC2bam837+xWwG/hJR/n7+49dlCtk982ss1+Y/3UlEN1Vucz4/wP+0yNtT5aXP93Q63VMKaVnqGo0Gk1f5HyzuWs0Go0mCLRy12g0mj6IVu4ajUbTB9HKXaPRaPogWrlrNBpNH0Qrd41Go+mDaOWu0Wg0fRCt3DUajaYP8v85eHizduW0TQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd8FGX+xz/P7G56ISGFEkIIQuhFioiigAgo6tl7Oz05u96dCvqz66l3Z787C5ZTz35iR5qCiqJU6b0FQgskIb3s7jy/P56ZnbIzu7ObLZPkeb9eyZSd8uzszHe+z/f5FkIpBYfD4XDaDkK8G8DhcDic0OCCm8PhcNoYXHBzOBxOG4MLbg6Hw2ljcMHN4XA4bQwuuDkcDqeNwQU3h8PhtDG44OZwOJw2BhfcHA6H08ZwRuOgOTk5tKioKBqH5nA4nHbJqlWrjlJKc61sGxXBXVRUhJUrV0bj0BwOh9MuIYSUWt2Wm0o4HA6njcEFN4fD4bQxuODmcDicNkZUbNxGuN1ulJWVoampKVanjCpJSUkoKCiAy+WKd1M4HE4HI2aCu6ysDOnp6SgqKgIhJFanjQqUUlRUVKCsrAy9evWKd3M4HE4HI2amkqamJnTu3LnNC20AIISgc+fO7ab3wOFw2hYxtXG3B6Et056+C4fDaVvwwUkOh8MJh33LgZ2L4nLqmNm4ORwOp13xxuls+nB1zE/d4TTu9evXo2fPnnj55Zfj3RQOh9OWEL1AdVm8WwGgAwruwYMH48MPP8Q777wT76ZwOJy2xKLHgOcGAjUH4t2SjmkqycvLw8aNG+PdDA6H05bY/i2bHlgDiJ64NqXDadwAMHPmTDQ3N6O01HJOFw6H09Gp3semH14GVO6Oa1PionE/8tVGbDpQE9FjDuiWgYfOHhh0u3nz5qG+vh7Tpk3Dxo0b0bNnT8PtHnjgATz22GMRbSOHEzLuRmDth8CIawHughpfmo4p8+WblPn3LgbOfxVIzopZUzqUxt3U1IR77rkHL730EgYPHowNGzYAAPbt24cbbrgBd911F7799lscOnQIZWVlmDBhAp577jlccsklcW45p8Oy8CHg6zuBbfPj3RKOmuZaZX77fGDHdzE9fVw0biuacTR4/PHHcfXVV6OoqAiDBw/Gl19+CQDYsmULEhIScPvtt6OwsBBz587F+PHjcezYMdxxxx244oor4tJeDgf15Wy65l2gZGp828JRWPxX7fLs64HBF8bs9B1G4966dSsWLlyIO++8EwA0Gvfpp5+O2267Dbfeeiv279+PNWvWYM+ePZgyZQoAHiXJiSOUsunmr+LbDo6t6DBeJSUlJVi2bJlmefXq1QCAGTNmwOv1orCwEHl5edixYwcopejbty+OHj2KLl26xKvZnI6MpwXY9Hm8W8GxIR1GcAfib3/7m2b5jTfe8M3n5OTg6aefjnWTOBxg1+J4t4ATCke2ArklMTlVhzGVcDhtjqPb490CTij8ezTQXBeTU3HBzeHYlWbJZZY4gIHnxbctHMCREHwbT2xSPXPBzeHYFXlgMrsXAD5AHndcycDoPwbehooxaYolGzchZA+AWgBeAB5K6choNorD4QDwtjAtjzhiJhA4JlAKNFUDjiClCuWXbZQJReOeQCkdxoU2hxMjRI8kuAWAeuPdmo7NwbVsKnqB0x4y3y5GL1huKuFw7Iq3BRCcgOCImSbHMaGxik2PmwT0mWy+nc0ENwWwgBCyihAyPZoN4nA4YD7cy2cxbZsQpulx4ocskBPTgdRcNn/8Nf7btdTHpDlW/bhPopQeIITkAVhICNlCKf1RvYEk0KcDQGFhYYSbyeF0MGqkhP2degAgTHCIXqZ9c2JHSz1L9CX3eIgApOcDf9kGpHRm5qyUzsDSF9nndtK4KaUHpGk5gM8AjDbYZhaldCSldGRubm5kW8nhdDS8Ur7nsbcDNftZIqNHs4GHM4GGyvi2rSMxawLwj96KQCaSyEzPBxxO4NyXgNMfVbaPUZ7uoIKbEJJKCEmX5wFMBrAh2g2LFrx0GadNUHuQTR0uoP6I9rO/9wIWPAD8+A/A64592zoSR7ey6d6lbGqUt0i9TozN72FF484H8BMhZC2A5QDmUErnRbdZ0YOXLuO0Cd45h03NBPOyV4BFjwOH1seuTR2Zn55jUxJEZMZoLCKo4KaU7qKUDpX+BlJK/xpsH7vDS5dx2gzuRv91DxwFLvuAzce5hFaHw0xwy54my2fFpBkd0h2Qly7jtBkSUpX5rCKg2/HMfCJIfgXcVBJdMntol80E99jb2HTdR9Ftj0R8sgPOnRn5Ll6XwcAZTwXdzKx02T333ANCCLKysjBz5szIto3DCZXCE4G9vwD9zlLW3bFWmZcFN9e4o0u34UqtScBccAtBIiojTIfSuM1Kl1FK0dLSglGjRmHSpElxbiWHA6ZV9xgDOBOAE28F+p+t/VwWFFxwRxe9e5+ZO6YQWx04Phq3Bc04GpiVLnvhhRcwY8YMdO3aFZdccgk++ig23R0Ox5Sag0C6VMBjisGwUnvTuI/tAzIL7FcQWT/YaKZxO2IrSjuMxh2odNnSpUvRtWtX7Ny5E8nJyfFsJqejU7kbeHYgULEdcDeYbycLil0/xKZd0eTgOuD5QcDy1+LdEn/0OWLMBHcMK7wDHagCTqDSZWPHjsVNN90Ej8eDxx9/PF5N5HCAlW8oUZMFfnFuCql5bLridWDqE9FvVzRZcD+brv8YOMFmGTX8NG6THkFydvTboqLDCO5AyFo4hxNXKAWW/lNZziww3zajKzDsyvZRk3K31GuosqGXF/WyF2jZcrZspnE7E2PXJnDBzeHYh2WvaJeDCYPENJar2y543cwDw9PC8nekhZj6wpkUnXa1Bn1+GFMbt4XqOBGEC25O69j8NbBzETDofKDo5Hi3pm1TV65dzh8YZAebDeQ9lqPM9xgDXD8/tP2r97Jeh10GKD3NwJ4lQE/VfW0muGPcZi64Oa3ji5tZZZDaQ1xwtxb1QNhNvwD5A6zsFLXmtIp9v4a3HxXt04v4TkoeVfqTsi6ti/n2hWNjlr2xw3iVcKIApUCTVNDW2xLftrQH1ANhVvyC7aKZmrHnpyCf/wy8d3Fs2hIOB9f6rwvk9ifErsRcTAU3bUdVPNrTdwmLlgZg7j3waXxccLce9UPfHvJuvzUt8Oc/PMXS1aqx03PVXBva9oS0P8GdlJSEioqKdiHwKKWoqKhAUpINB1NiRdkKllAnoztb5jkzWo/6oQ+WhQ5gNvHmmui1J9oYJdCyk+mnpS607YkQs+yAMbNxFxQUoKysDEeOHAm+cRsgKSkJBQUB3LXaIyteB+b8BZj2LDDnz2zdlbOB+fcBFTvi27b2QKimkg2fsGndkdA9OOyA1w0UTwB2LdauC1ZJPVYMPB/48e/WtyexM5XETHC7XC706tUrVqfjRIM5f2HT/avY9Ix/ALn92MN2bC9QuQvILo5f+9o66sFJK6YSwclC3j++Crj2G0CwyZDVcZOAHd8G3070AK4U/3V2IVQXPyL4ewZFCZv80pw2RcVOdlOfMJ3Z9YZIA0z1FfFtV1snVI379t/YdO8vzJUunlTuUuYvfNPaPt4Wpl33P0dZpw8xjysqs83pjwJXfxl4c1dSzH4HLrg5oVN7AHCogkPknMWBcmtwgqPuZidmBN++UyFwrhS0U3MwOm2yyovDlXkrgTSbvgSObmOCe9LDynoxNqaGkDnpDqD41MDbTHoEOI8XUuDYlWN7tV152Sb5zjlto5Dtw5nsz27Igrvb8Ux7s0JGV+2+dkCdm9rMGeGT66QZnUvj3l+AT6fby7vEKp17A0MvicmpuODmhMewy5V59YOqL2zLsU75ZjadvjjwdmrkYJV4mhj0WrLav1xtQtHsI3kh1RxQPJMA4KMrWBWZUF3xooGNXx5ccHPCo5eq26gOSuBugeFzYHXo+9ghL7f+3GrBHawnUPqTce/C7sFFcYYLbk54qIV1QpoyL3LBHTa9TwO6jwhtH9lkFU/bcKgvDbUme+oMNp3wf7qNggjuqlLA3RTaedsRXHBzwiNL5dqZ0xcYeT2b5xp3+HhbtIO+VrCFqSREwV26VJmfcB+bpuVptwmkcXvdwAtDgE//ENp5Q4abSjjtDbXgJgTodyabX/RYfNrT1qkqZZnonCH6Dvs07jYiuN+7CHjrTP/1W+eGcD7pu24LMftgqNTsj+7xWwEX3Jzw0Ad7tEiugLt/BLZ/CzSHGC7c0Vn9Npt2GRLafj7B7QG+f4rVbow1gQS3foBv+wLj7fQh/la8ZMwGD49sBRqPBd8/GKvfaf0xogQX3JzIkK5Kd/neBcD7lwC/vhyzSDLL2NVP2N3IfLcnh9hjkU0lR7cC3z/Jajc2VkW+fYEIJLj13iFmgUUhCW6qm+r492jg0xsC7G8ROXJywLmtP1aE4YKbYw21Bl1i0NUtGMVC4E+5my2X/gTMmwmsejs27bOKnfyd1XiawqsAIwvCY6qIvS1zItMmqwQS3K9PVOaP7TPdtqpRu7650qDnIHrZS0nWtAOd10yzD4Vux7Pp7/7V+mNFGC64OdZoUIWzG+XRIISFwE+8X7ve2xzddoWKXQV32QqgPozeiRyAo+7WG2bdayVbvgG+fVi7rr4C2LnYmo17z0+sN2DAziN1+HmX1rTh/cKgDuw3dwF/K9LeU+Vbgp87XLwtwHGnA4np0TtHmPAKOBxraHJFh5C9zU5JgwD7Cu5D68PbLyENyChQKsMDTHuPNB9exqbHTVIqHb17PnBwDXDTUvP9ZOoOm350tLYZL3nOwVkOVdUc6mUa9kdXKd9NLmzgUQnuFa8D42cCqaqyaZHCTpkKdXCNm2MNtcAbe6v1/WwnuO2UxCgCEKIkm5KJZvTqor8q8+Wb2NRj0Ks6daYyv3cZKyAsM+4vmk0pgJ20m3Z/KrL0CVvnMAGa3lX5TF20Y8VrWk+mSI5hyEmwbAgX3BxryIL7gjdCCxKJp5uaEeoXUJ1NwvPlFKhF48LbX+9CuOUbYNcPwI7vIp98SqPNS77WZSuVVd1Hsqk6Z8fWOVrzRtdhmkNSCjRDKyDdHq/y0h89Hbj8I+DMp9myPlZg1VvKfbbpc+vfJRiiO+bV263CBTfHGrLACzUU2XYat0pwx6v4Q90RlhpX5tPpbOoMMfjGjIrtLOHXu+cDs69nOVBa6iNzbKPfc+7dyvwAKUVrdjHwcDWQkA4c3cFeIjK66vUeUYQ+UrKivlmJwpUHYGXt16hM3k/PsenaDyx+kQDsW8EKBVfusq3gtmzjJoQ4AKwEsJ9Selb0msSxJT7BHeK73s6CO15mk+cGMg30hkWs9yIP/KYHqCAeDl2HAqU/Ay+NAYZcCpz/anjHUZsf1L+n0Ut87O3a5ZZapnGrySrSLLoc/veUSyDKuWTBLU9XveV/3iNb2cswEt4k3z3CgqFcKUCvU1p/vCgQylN4B4DN0WoIx+aEI7hTOgM7F0WnPeGiDtqIlxlHNhvozRiZheEfUx8q70zWVinfMDv8Y6tfcGn5gbe10iPT3UMpCcxL6UXPuain7HtkJjuV30fWtGXBvewV/2OWLgVem+i/Phzcjayk2n0HgKGXRuaYEcbSU0gIKQAwDcDr0W0Ox7bID1Eogrul3oYBOCohFA+NWx3RpzdftKZ3MvA87bLe7t2a76q+Zp2PU30QZgY/nXD3iuxl+qznYmymPQEADk+jYsuW3U8DeQQlZQBNEYiWBNiL1Zlk6wyFVp/C5wHcA8CmvlScqBOOxj3qDwj74Y4W6oc/Htnlvv6TMt+gK/XmSg7/uHoh49QdqzVukGqhr7YvWxFsvYNrwaKqF1RHWbsd7lpgyTNspaxpq/N264lk/m5PS+g5Y2JM0KeQEHIWgHJK6aog200nhKwkhKxsL5XcORLNdYqQIRaK2Mo4EowHkuLJspeVeU8UAlWCsWeJMn90K3OVkzkxBDfLYPQ6JfRMg2aoNe7VbwNVe6QFneC+yCBK9spPWaTtoAu060+8FRjPMgN6Ve+Uhz1XAwAOd5+sVLHP6cumge6lSA3sAkzjjtS1ixJW1KeTAJxDCNkD4EMAEwkh7+o3opTOopSOpJSOzM3NjXAzOXHlw8uZhwIQmsbtSGCeAXaqJCJ7H8QL9Ytv1/fAm5OV5VZpeToh6nC1Tpht+gJ4NIclD9ObWV6Vimi4daaewhMNmkWAyz7wKyC8e8R9mJPNhLRsKgGAOsqqvjc7pWjFs54DckvYfPF4/+N3k2pdRnIQ3GtfN0CZoE8hpfReSmkBpbQIwKUAFlFKr4x6yzj2oPYQsPsHZdmK4L5jHfD7ucqgUkMl4LWBd4n+BZIWYS8OK2SoAkl8mmsE0JstRE94wodS9rfwQfbSrT3of93MbMlGqRBMuPG/q3DL+6zij9pU4gY7hsMjZZtUa74Ol38xXvk7RrLWqae57ZtKOB0cfSi2FbtmVk+g51glYf4/ioE3JkW+baGi8yIRvR6s3FOJqvoYmnPkAJWII/0uKVLot7sRSAqjIPLHVwGPdFJeKs5E6943IfTGth5WbNJqjdsriSRB1ub1vYYhFwO3qgJ+ZKHvbWGJznSuhmERTkGLGBOS4KaUfs99uDsYC3RJo0Ixlcj5KVLztNnr4oVugO6pbzbgwld+wcxP18WyEcxNMtLI79O8/sp5rjRwAVz9Dku5u99kyGrzV/7rrHqkBNO4/7yFudipWFVahbpmpTfmlkJL6mpr2Ap9r4EQIKePunHSdonMxJHTVzGfhAvXuDltniO67GvdhhlvZ4Ss/eSW2MPOrRPcWw9WAwDmbzRPgBSVNoQaxBQKReOAwRcBJ94GZPdiZqtElea9+h1g2zzrqV9FbwgadxDBndEVSEjVrFq5pxK3SiaTS0b2wBe3M/u5p0nSyIPZ6dUat+hhCdC6DgNSwxxno7TdDE5yOiofXqFd7tQTSM6yvv+5LwHnv86CNhorgbUfActmxa2YAdUNYDkQBz9uveAuGBXZ46d3AS54HSg8gS1n9QRG/p7Nl29WPDOsVnehXuuuhBZfSH/6aI1v/r+/lkK2lEwb0hX9urL7q7NTClIys9NPfYr5rsveKq4k5hfvcDJbeLiDlfJ+Nh+c5GldOeZs+VqZT84Cpj4Z2v5JmcCQi5Sirp9JOTmObGbeAjGgutGNQ9VNKOmSjtmr9uFC1WedwIpDDOvRyfwAzXUsA52cAa9gJEttGi6y4J7yBHB0G3BoA1s/+a+B9wuKbCsx6NnIbX9pjLKu/ohkEgiiWYoiQKQXXFaRYvs26kFZHJz87DellmNZleKSmeAUfGMohbVSxkMzATrmJvYnisC6D1mUaGMVSyEgOMOPipWvFTeVcNoF13wN9JsWmWOVWsjfHCFOeOJbTHn+RwDAcwuY2ecTL8s/IUq3/5p9ASLuPryMFRD4/kn2N+eu1jVIFtwn3gKc/QJ8grbr0NYdd+il7EVZONb/s7XvG+8TqOBCifRbU69ST3SQ6rUnZzSUOfeVVvtSpyUa6JHBjikI2sLVoOwF0lwTnteO3COxuamEa9wca5jVCrRCQhrQoip9ZqYNeSX3s06tyNmho8ktdfM3zMaT4vOAAByjzM7qIqxbnOQKoL80VDJB+0AF8NXt/gIrVCjVmhRkzbW1eZ+LTgZmlBp7/ZgVbl7yNMveZ4QsMEWvMsic04f5au/9BXjvQu322cXhtVuFILX9GVyJv0AKFbFyXdQl3066g6W0BYCv/wxc9WlojfjqDumY9ta4ueDmWCMEH10/rvlSmwBIbX90NzHNKK8fMHcGsPIN4J7dQEp2+Ocz4pPrcIokLxvAhFIiWC4Mog5eWf4a8IuqxmDVHiC9G9PsnImtjwSlok64SoI7lKpCZpi5auq9Qlwp7CW59J/mx5JNFNSrfOfOfVgag72/GJxbwG97q/DLrgrcPP44/88t4BBY+5tIkmLxySkJ7SDJWSwqc+Wb4YXBb/6STfMHh75vDOGCm2OMWivOG9A6/9jEDPNjf3krsP5/LMXpyjfYuqbqyAtuFU1SBroepBy3OD5HPqkBMJV9uOt7ZivtO5UJt6o9QK3kwuZI1FZyCQf94GTXYcCB31qXpyQY2cUstzTAXDNPvQcYeb3/dlu/AT6SBqSzJfPD6neUxFiuZHMNmAg479/MBBau4JbkNr4nY3BingcTL7yFDTqa0OIRQUGRqL52Gd3ZSzanL1B3KPRGDDwPOLwR6BHhQeMIwwU3x5it3yjzF7zRuq58aq6St6TzcYrNFGBFZAFdSs7oug7KGncNTcXdro+1H4oe5j1z/ixmYtio6mo7XCy/tCgy4RAOesF9+iNs7MDnfx0Ffj8XeEbSXO/ebm2fvP7sN1suRSomZjKPFTO7sUrbp5SCGGj/X649gO2HzbVgQZLcxxxZWJh/PSbm9jXdtrK+Bcc/thADumbgmwGSYtCpUOkZOhP8K+VYIdrumhGCC26OMTWqQInWaoPJnYB797Nu97x7tT7EtQaltaLs8z3VsQIA4DRyB1QXiJWFgOyfLAuCusPa0PVQ0AuGpEygz+nhHcsqVgs0qE1YvU5hwTJy70hwKq52RlgQdrd/8FvAz2Ubt4MQTTSlEY9/zepdbjpYA+RJlYzUQV6ORFYTU/SGZuZrI4Lb/i3kxAe1OcPdYL6dVZwJ7AUgOIP72Ea5EnsBOQKREghEOc+eo1KItehRDcRKWqP84MvJjsLNbU0pK2gQr5JpwWiuUeYT0piQdiWxP4d0TfIHAj3GAJMe0e6rEnbhvndTpYIKDoFoMgYakZGseoHkSKYZKdsgAGVwNdRrrR88tin2b2E75ZkFW7Fhf3W8m2GOWniGkso1GA4XC8Z5/xLzQBy1/3gUcECEB4JG4x7/9PeobnAr0XcAe/iPOx24VKpjKAv0cHyERW98o0enPaO4+JkhV+TJLjbXrDO6AdfPB06+k3lwyKiE3W+B3Ct1/P6kIsw8ox/e+v0o5GUo9uxvNweOZs2Xtk1wCsDJfwKmPMls9zJyYYnlrwFVpZbb4z94bE+44I4Dokjxz0U7cPa/fop3U8xRJ/nP6xe54w69jE23zVMGwvSsiUDB1wAs9I6ACAEOVV0QAhEfr9wnCW7ZREKAKz8B+kgBNz7BHWJU3tZ5wKPZwKMhRJ1GmlF/AC4z8ef2Ib1YBl0YeDOZ0x9V5lXC7oKXl2L+RmsDgw+dPRA3ntob40vyfOvcXtE3UGmGnFFQFKnkSXKzVuBmF7NiEiteU+z0VnA3wHbFPwzggjsOeCT7nR3Sd5iyb3l0jtt1CDD+XjavHgBVc3RrVKvTvO2djCTixjhByXzohIjf9lXhWF0DWqhJD0MW6KFq3PpiuXYnHI0zo5tmcb8UEenxiliw8RCONSjeONmpgX2kzxjUBUFM3ExgQ5sSVkPn3sC9ZUyoy9GQwaCUeRVF2VQXCbjgjgFr9x3DP7/bjm83HcbafcfMbzY7Iee3OD8KZUat5IFoOBr580rIGegGCkoX2gEvvll/CGUVtdhZYfLS8NU+DNVUYn8NDkB4mkT/c9hUF2nYrRMb0F62uxLT/7sKE57+3vfZ74YxIX9qX+NEUE6HAE8QI7cs2EUKLNpyGEUz56C8Rve7OZzM7GW1hyRHkuYPtLZ9HOFeJTHguW+34futSjm3hX86JY6tsYg8uJMbYgBEKMcORDiuXAZMFlZgGy3QrPMYaNTLZoxHeYsLwisi6sw0btnWH6qppGJnaNvHDVlwh/CiOX8WUP0gkJCiWe2UbB1H65i2W9Wg/J6JTnYdR/cy9tV3OQS4g6jcXtVL5rq3WH7ux+dsxguXDtO6IloZDJeplwpb55i7IdoFrnFHGUopqhu1QqimSbmRnl24DbVNkRFSEUXuLrYmYtIMsxBsNREqRTUr4Tl8n/gXzToP/L9TZt1O9MlNgZOIvmT+foQ7OFm9T7s8+KLQ9o8V/aRU+6HkpHEl+/JjT+qvtVMDwGOS216iU7mmsv2ammj4Lgfx7W+G0b5frj2AH7bp6t2GknBKrtKUWRB4OxvABXeU+eeiHfhtr3aUvcmt3EgvfrcdT8/fGutmBUe+2aPhGmUlD0SENG4jTiox8Gt+YxLwWA7yxXJ4zDqiIQruZo8X1721AjtcOg0ukoVtI0nXIcDD1WwaBiIFUiSXvs2HWKCNUxDQOTUBGx6Z4tuuODcNANAjO8X/INI+lCKg8PaKFE6BoDhHm99791FdHUzBYV0J8KV0jUD6gSjDBXeUeXbhNr91V7y+TLPcEsxpNR7IGnckXQFlki2Es4vRE9zPXWpSPiy3H3Y5ivFbyknGn8vRkhZs3F6RYuCD87FoSznmHdQJKDvU34wCbq+I4lwmSF/8bjuKZs7BoZomnDG4Cxxqr5Pju+Oj6WNwztBuhsdJTWT33L8Xm/tgeymFIBDmDqjika82aQV+KKYSqgo2sjn2b2EHwJZjldE0lQw4h2WmMypn1mUwq3O55Fng4rdbdZrymibkGX3gcGGvmItCQepWD7oAGD0dKByDu15Ygm6pSfijwW5H6r3IBXDozSvQTMy15npnJ2RP/9znPTSE7NJuULPfYK+2j9srIiXBX6QkOh2+cHYAIITghGLz8m2Xji7E43M2++zjRuw+Uo8Wj4hEl//96RUpfKsFp3UlQBbw0VBWIgwX3FEm2eVAozuwhmaU1yHu+EwlUWhbchZw5jPA+wa23iGXMMG9a3GrT1N1YKex4BZcqIcU7HH5/4C+k30fsag94zfp/KquSPScgp7p1JfJTk968yEMaFmP0575FEB3AMB62gunQFV0OYpmoHji9lIkGwjSnDTlJXfz+N5Bj5OW6ETXzCQ0u817ogs2sQCdtQbBPhpFKBQbty+8nwvuDk8woQ0AOWk2zP0rdxujpX30GgcMvdw/yX/ROOCEGyMShEPVQURq1F1hnf+xIBB4TXpA+xpceNVzIzbeOQWpRkn/Aayd9ybw658gSB4aY4qz0ekQBRypLOLwlZM15d9EkaL4vm9w95QS3DIhvKx6dqHFIyIjSXtdHvvdQFw2muVX3/OU9UHPRKeA/60qw98uGKLR1vXkpSeivFarmWvcbR06U0lLvV/dS+xewu4J+b5oA6YIYJyaAAAgAElEQVQSbuOOE/dMVdzs5qwzSLQUb6JpKgGYN8Kkh7Xrzn+dFSN2uFjB1lbakESPVrN92XM21lyyAhAEPwEj4yBKcIeeJrcXGUlOU6ENAE4nG9iSozKLOqdC8LawAdkug4Hf/ZvV4pSQX+wvfGcxa5/NaGjx4KEvNqCu2YOth2vhcmhFyviSPDgdoYsZeZ+tAbIJAkCf/DS/dQMfmo9FWw6jxSNCJKrByXX/A57oxtK2qnn7LOA/U1XKiv3Fov1fLW2cMcXZECmwfHelb92mR6cgJcGJ95ftRVlVoz1TI0TTq0RGH6FWJA0KCi7A0wQ80ol5OYSJqIuYa6SJGNCHabXdCnsDO3b7fT+9qWTjgWpc9MovaHJ7IVKgICtwpkSHT3Cz60cIMBZrlfwnw6/UbF9ZzyIKE532FxZGvLV0D97+pRSCQNDiEVHX7EFKggMNLez7H6lrNvUeCcT/TeuP3/9nRdAeq5FNHQD+NncrbqxYjXeFWhR0FtANYGkWACa4jYJsRD44yQEL9/11VyWOL1SK0Y7t3dl3s8kKpT29SqJsKlGfQ0YWohFyx9Jr3BTweSGQqU+xBES52jwsDoFgZWklRv+VlSiTu+GXn1CIzqkJGF4YoLAwgB7ZTAOUNe5EpwNeELQ0N8BlkKe6SgoFD5bG1K54JbtSoySopwzsgq2Han2COz1A7yQQSVKQTiA7N6AE+ug5XNuEFo8Ir8uB5hYp3F6OxjXryS1+gk3bgI27bb7m2wgfLGdeE6tVftzqB1+2xe2rDFC0NV7IN3c0b2K9m5YsuFtbxuvAGuDhTLh3/qBZTdURgTl9gDP/7lcQ4Y+n9MaFIwpwWv88jOujhGRff3Iv/GVyCSb2yw946tRkNhA3StgCgOKqnX9BMTmIr5qHYe4G/8RLsueJHCLe1qiXBLR8LzsdBGcOVnKVB8tLYkaiVAe0yRNY4zYbJJZfhB4IIFS6z+TalIn+5hUAQClL+iYaBGjZDa5xR5G1ZUo3f/opxZj14y6NP6uttaxYmEr0o/1ywYZe4wDZqeTXV4AxN4Z23AX3AwD6H/hMezoLodwT+uVhQj/mi1LX7MHs1WUAgASrdlrpRfeA6z2sF4vRu5rVZ3RTJ7xN/v7E8j1gR2uZFX7ewbTYvZUsZ7tACB47dxCSExzwihSd08ILNspIYi/vmkZ/DxxZuwe0grtn5xSUVrB21ErX2gsHXGID8OPTStFj/eCkjq83HsE5RWE1O2ZwjTuK9OvCKmj/aVJf3w3Y5FG6fnaW274wbQPBvaO8Dle/uRw/6sOLQyWzBzaIRfBQ6Rwu6YEqHAPcsZbNV4aR52PPEgBAirtSs/rMwcYBH2aolTmnw6JoVZmWOhEltN8NJ7IMtE+PZGqw5TiHBdZLOeX3H2O9Rlkxue/M/njgrAFhHzdJ0ribPf6mErXd+6ft7MUxtndndEoxuL4Q0L1pO7DoMVbbE1DuMxPe2pUebrNjBhfcUaRLJuuanTm4Cw5Jmcu0z6d9JbeYIHUn9YV+AUx69gf8uO0Irn5zOYpmzsF3QZLem+JMwFktT2BI8+vALSu0ZousIiAt33JKzm2HazFPNkVIbT+a3EuzTZcQzRGCSpo6rdaYVA1sqXOiuOE01B49UjEJoY1K7olS7+S8YcxnPVJfQ/ZO8Rj4Zqrd/Y7vyVwrC7KSDXsthukLgoyhNFP7GyK44I4icjdYEAgOVTPBPXlgF7/P7ci6TZsBAFWN5uHCcsjy9nILSaMC0IAkUClRkQZHouVglcnP/Ygb313FFvIHAQAaXdrCBaEGOqmFqWVTiSpBkdqmvofmG9prPTa+B6wg39eyi6SZzTlU5ON4DKokyVr9xSMLcIKUYTA10YkLRhgkhzIcowl8zWWzj53hgjuKyJqBgxCf50hmsvI2v1QKTACAbzeFqbVGA0ox7MgXABSvB+Uj6hNiT180FEBkXkCGA/0OF4uitIADXjzpfI2lUJXdDHXuhqFqtWoZlJliccA0qydot+EAgAQoL72PvBOwZJt/jnE5h7Qto2ctkCHdz7K3TqQEt0sw17jllK6Dumfi4lE9MKl/Hm4a3xtXnlCInU+c6dvu+7vGo1k0EHGr31HmDW68WoOxCLvBBXcUkZUFQVW1Wh2gcM+UEnxy44kAgIV2Etwe8+oz+yob0eIVkZ+R6HPFCpaC0wqGxSWajvl5fRjR5PZiINmDy5yLgdl/AJU0KkHnbkhCHGgN13xBzvkXAOAkYYNvnRtOzDMo53WompmCOiWH70mz6UANbvvgt7jUMJXva9n9L1IvIHlMQa1xiyLFvxfvwDEpt7dACDKSXHj9mlHIS08CIUTz4ijKSYXHSMStfBNY9TZQfxRYEYVCITEgqDGHEJIE4EcAidL2n1BKH4p2w9oDsmYgCMDrV4/Ee8v2okeWEoxACMHIomx0y0yyV1WcAOYJeWDowbMGQhAICImQxm20svBEoHJ30H3rmz2+HNpiXTmEGuYJQnSC21FvrQ6iTNgySLJzX+1c6FslmuhIspzZdLDG8PNgVNQ148wX2WBsUecUDOqeGdZxwkX+7eWEUI4ICW5ZAD/xzRZcNKIHslIT8N2Wcvxj/lZfMJuZD7emfaqiGNWdBiDzGMsPjq9uZ8m+Spdqtn/LMxltASsqSDOAiZTSoQCGAZhKCBkT3Wa1D+TQaYdA0Cc/HQ+fM9Aw7wIhxF4eJpJ/9WueM/0EqpxLXB71dwlCROy0n0pudxqcSQG1f5mjP/0H/QXmMy8LbQDoVr9Ju2GCif+uCWFrjyaRdxca2GDlSxdu5OQvu5R8LPEYM0mT3Pa2SaHpR2ojUys00SmgqDNTcpbvYYK6vpndl3XSNFAOE5nvxaHYIBbhG+9obBl+v/KBM0nKW6K9J17y/C6s9lbWt2DiM98rA+RRJujdQhny6JNL+rOTmLEtPo07iAAQhABFT+OBpHGXUv9gk8OSTVYuP+UQSND6gFaYMdvAlt1YydwBl80KmLek5NcZeNr1atBzJFeHng9kQkku/n5hiIUFUnMMVxsJVvkeKa9tDkvwZqtc4OIhuPdWsMIFP+9gL5ClO00Se4UIIQSvXsXypst2btnlUMaKdv+NOAZntTyBm913oiF3qG+96EgESn8Gts3VbO8OM/hmb2UDdh2px9MLYlMUxdJrnhDiIISsAVAOYCGldFmwfdoK9366PmDC9tYgP0fBBLeDEHsJbil/sRtOP3n51tI9AID8DBZYIRDgtSW78c9oJEnauYhN594N1LZek3HWhZ7M6z+/H42LR/YIbadkVVh8cha8V3yK4pxUw56JOqHV9vLACZX0VNQ1Y/ZqJbd3PDxU9lRoPTCM8mOHi97OLT9GpdLLwspA6POXDMPtpzGPJY/Kza9RdCh+3SrMTFrBkJsSifEeS+ezshGl1EspHQagAMBoQsgg/TaEkOmEkJWEkJVHjrQyMCOGfLB8L/4RpdJh8kMZ7P4S7GYq8Ur5MyD4deHlG/O4PNbFvGUiS9r0zMJt2NFKt0A/Lv9YCVOOREWcqU+1/hihkl0MR5/TpORV/g+1uuhtsLwcem56d7UvshOIvcZtVPcxKYLJsmTPErekcbs9sj2d3Z+DuvvHGMjIofbnDu+OKQNZz1HtoFKjdpbqdapvVnbhDFTEwQj5UsTqNwjpKlNKjwH4HsBUg89mUUpHUkpH5ubm+u1rR8yKlUaCDfurfeHAwTQDEiCVaKzYcqgGS3dK7mqNLLeKE15NxODhmias2FOFwuwUn/335vHH4cXLmPtbTaSLHvedApz1PJs3Kz8VSuHeHqNb36ZQERT/ZiM3M/XvHkqysZomt8/2K2Pk8xxJGlu8+FVlU3cbuOolRUPjlq6LWpu9ckwhjsszjnDc8MgU/Dxjom9Zfv62HlJ6NG7VoCXG3uablQX3os3lIbVV7jHHquMcVHATQnIJIZ2k+WQAkwBsiXbDYoHRjRcpHvt6ExZsOozs1AQkJwS+mR1C/E0lU59fgstfkyxgNQcAAHtoFyzYqLgpzpfc2fQBCp0l7cZtEJ7cauQACjOh5LZhgi41Ugh8o9uLg9X+A3dqDc3tEVHT5MaTczcHde3bfaTeb120tb0Zs9fh0lm/4s4PmYnB6J5NSYy84P5y7QE89vUmvPqjkv7g8XMHm+6XlujUPHNNUk/muW+34YfE8fgw8w/wEtUAcpYSYdsMNtjqDvElKF/6WD3HVjTurgAWE0LWAVgBZuP+OrrNig3R1FCaPCJOOq4zfr33NN9AnhmCnWzcx/YCn94AAGiiCVi9t8r3kTq5jxqnL8otCt9BFtwmBXqXrLW5DiG1PzXBqfHVrqpvwfvL9mLRFkWza/aKWLG7Eq/+sAuPz9nkdyiAeVasKq3CujIl4+SSeyagS0aS5iUbDTZLLoufrzkASqnhiyLVJD92OHRKTkCfvDSsK6vGRyv2ha1oqfu711RPx9zMSzSh8Fe/s8Y3n5/FtPhQb2W59270co4GQa8ypXQdgOExaIspXpHihe+24/qTeyGzFYEKeuqiGCHl8YpIcib4VaE2ghAC26Tk/uoOwM006hqkaAZWG0wEt8sp2yKj8CXkpE0mppLtZYcwLvJnjRxS5GdOeqImV8l7y0rx9IJtmk33VjT48tvIQSZ6HvpyIz5ZpXWd7JGdgvoWD2qbPKAGOb8jhVqWHaxuMqwENKooO2LnS3AKWPhnxf588Su/+JmHrKBXinaU17GoXBEQiRNbyxshlyDNSU/CvqqmkE2XsbZ02j5ycuWeSvS+7xu8+N12PP61sRYSLtf8Z0VEj6fGK5oXlNXjEKJrbw8Npc1uODR2WfkB0MsFeRBp5Z4qtAbDayD7RBvZslvqQawMWs7cB/wpsveOZZqk8QJdZR0je3dFfYtPYKi3/XjFPpRVsZdpVX0LenZOwdvXjdbkdr9hXLHffpFG/fs0e0RD4TamOHKCW8/r1zL3wECDkkb0yU/H0B6d0Fcqc7b/WCNEyVRCQDWeJH+a1BdA6Ncx1j1m2wtutauelcK7oVChGjk+WB1ZW6nbK/rV3zPDTqYStc7spQ6NV4l8M+v9Z2UtMZyw/U6qHCCGl0Aw0bif7AE80Q2Xbb4l4PHLaScgKQPI7B5y21qF7A1z9ZcA2DiGukey66hioyaECXaPV/R5mWwvr8OzC7ehocWDe2avwxWvL0N5bRO+21KOTikJOLVvLj67+SRfAV5HNM1VEsW5SrBKs8er8YhRvkv0cq5kJLmw+K7x+M+1oQ0ypyU68cUtJ+GqE4t86zIpM/t4HUmasPh0qRZpqM9jrB9f2wvuxVsV18LWpL5sbPHi4ld/weq9VSivbcKL321HtarreuKTi1rVTj1ekVrO4UyIeWXxWLP/mGKjc8OhuYHlB1Xfk8hNT8SpfXOx9XCt5mUYKoYPiyywy3UaczN78JK8BoN0lGCzyBJ4/c97StjtaRUuKbWBVNvQ5dBq3A0tyouIUhYp2OwRNV3uz34rQ4s04FtV34IZn6wDABw2sKO6pHstmhr3qCIl2+Leioa4BPz0yklFbnp4xRkOqZSzjQlscPNwjzNRByUNRd98ZuMO9butlcYcYlU71PaCW01rEo/999c9WL67Ev/32QZ8ueYAnl24DW6viF45gZOqh0NFXTP2VDRYN5UQ+5hK1J0aLxw4fYASPSlXJSnp4u+GdYLURa42yDkdCHW6VMMrsF9K1frVnZaPuZ0W4Csvy8oQt5x7ef3Z1ME8bhyCgIYWr+93VishnVMTUN/ixZs/7/aZH7pkJOFQdRM+WM4KWtQ0eXxKjNF95QiQTS9SqIcw/rloh63TEhvRpPKT9wiJ0jQBbtVQn/y7hPrVnpob20HyNia4w38M05NcSEUjBiVXwFVdilQ0YuvjZ/jyIUSSn6Ww30KL1a0FQrCurBoPfrEh7gJcnf/BA4dPWANKRZ8HDSqbdJeKFITaevUDYvjVfYOT1l4IdUjBTPcNIbYiClz6HnD1F8xMA6aJ7T/WiFvfZ650aqEnX3NKgTs/Yh4Ogwsy4fZSLNrib34yqgrjMsimF2nqmpXfQNDZ7NsCcnvvnlKCjHR2Lx+o1Zrg5GSUdjFdmmH/Ug8q1qpcoEKlU7IL3yTci54HyoEDwCkJ+XAKF/hKL0WKYw0teG4h8xa4XJVvOxDnDOuGV3/YhXd+KcUDZw3wPYRWqG50Y1VpZdAitlZpUGkljUjUCGL5xg8UZPHcwm04b3h3nNbfWnvU0YSGD0vXof7rAnB70ZdYs6Uc5xJW+NWJyI6LWCY5Cyge71u8aXxvfLKqDHPWHwR5f7XGFm3UMZPHC3Yf9U/qf/FI/2RVslJjJNTDYW9FA/747ipfUrGsFJem6LXHK7ZZwZ2e5ETXbj2Aw8CP+7UXXx6/sft3a1Ma984j9dhz1N+maQUKoAupxNrkMdjRaSzyyTEQQlCcYz1jnBUXoQWbDmP30XqkJjgMa+AZcfWJRbj6xJ4A4LNpWuWpuZtx3VsrsS+Mqh2HqpuwQ5cfQz2gqrdxy1/fqOMjD0p9ve4g/u+zDf4bmBB0MK0fG3xDdrGSuyQA8gDgNsryi/wmHme5LdGkd24apknVz79ed1AjGIySJZ3Sl0Uf60Ovc9IScafk+aBGzkr35k/B0+AG4nBNE8qqGrDpYA02H6xBz84pyE5N0AjtcX1y4FYNpLYV5HvNIRAUnTUDk5v/hlneaZptZDOUnEwtVGwTOWk35JSOoSKKXiQSDxbXdsO8o3lIJCxZQbdOSZb2f+n7HZjwzPdBt5MF7+K7xzMf7pZ6oKo06H6yv3eognvZLubXGo6mNebJ7zDp2R8160o1LwCieVlRk8FJtqWCUYkuM9QCzFDjFhzAcacDlbuA/57ni+o0Q9YQ3/dOxLTmJ7Aj5zTLbYk26sFqj0jRvVMySvLTcc3YIr9trx7T02/dpzePxS/3TjSMDThTeinkZxjfz9WNbk24uhHlNU044YnvcPY/f/K9AO+f1h83jNPW7sxMdsHtNQ7AsTNDCliu8uNy0wCHE9toD3h12QBlBcSqVVYfiBQrE0ubMpUArSiNJCVO6pmXjdxUAY59FPB6kEzcyMUxHEEn013La5vw93ksEZUo0oB5gOUf0VdcdvYNwNY5wEPHAt4N8sNY1dBiWA3cDNE32GV5l4BQqj2Q10DjNhprUK8K5eXT0OKFQNixTe95dd3A5rqAas0Kny85wUZahBtK7JM3R92bqW/2oKRLOt68dhQA4End4JZRmoTjC7P81snIPt3dTAoiX//WCqwsrcKWx6aamrr2VTGvi6oGt+83dDkEvxdFglPA3soGTH7uR79j2JlLR/XACb2yfW6Np/bNxeaDNSivbcaNLXeiDsl4F0BGktNyQYgZs9dpUtnGKkNjmxPc4Q5QptbsAgCc2icL2RkZwD4AfyvCky21eDIJ6NP0juF+Hq+I0X/9zrfc5PEiJUBYr7o7BoAJbYAFkDjM95Pzfbz76148eLb/4J8ZVDcNxqrSKsycvU5zg5Wrkt87db7nRtqE0UuCqAN3LEZQyt17+RSm34GoBM26DzVJgQKx7L7TfNfVDqiv5Y7yuoAeTaEma5K3N7v28viQR6R46+fdqKxvwZ8nl2i2UedVl3twCU4BCQ5tWy4dVYhmt4g560NPkxtPCCEaX/S3r2P+4EUz52CeqPiGJzgFuC0K4I9XGhQAiQFtzlQSblfE2cIGIVu6jAAGXQCcdCdQeILv8z7E+Aeo14V51wSoeg5oq95o8Ab2b548oAtcDoI3f96Ns/65xLJ3ibyZ1RDdlXsqsb28Dl1UXerFqnwZ3dN0GreB4DYKslCvcnspftruXxhXjz6Rkulvq9a4lzwDfHZT0GMDzGygfxHFk7kbtIIukM97qNGB8oD2xgPVmix4ADOTKKlRRTz81Sa8uGiHX89I/TJ/aymzlSe7HH4a9+he2XjifPMkT20dpyDAa8GtMp4ZPW2tcRtpD+Ha1RxuaVAzMZNF0Z3+CNOCH2X+x906pWLLoRr0zUuHSCke/mojGpq9frbjYNqkx2cq0QvuFgDmGpYgEMy6eiSue2sFNuyvwcYDNZbqB8rXQ23SaGjx4P1le332XjVLd1aAEODuqSU4/6Wl0jGUz52idlDGq7FxS201ENzydUlyCWhyi/h551Gc3Me4EoyMvltpyVQC+FUtaSs06fJt9+uqCOfB3TM1Hk6JTgdevuJ4vLhohy+5UyBkf/jXluzGa0t2+yIqAeC7zYpL4ccr9/nmPaKIBJXupr63tx1mudU7pSQYurWqA01kU1d7wSEQS9kBjSK5P715bDSa5IetBbc+fSgQvuBOamCDWjRR5UWiEgi1x45i6vNLkJueiKN1zT4hUpCltRkGGwSU3dv8NO6WBuYiFoAJJXl49/oTcMXryywlci+ravCVc1Jfl5+2H8Xjczab7te/a4Ym8KVZNZhY3LBOs63Wq8TcVCLn3jhzUFfM3XDIUjmzynrtdzTtZZDIpQqNJ5P65+NblRBNVplDxvXJ8XNNPWNwV5wxuCuKZs4Jemy9Vlzd6PYlZFNr1mpbuttDAZUlSR+8I/fKkg3MNlrBbZ+UDZFAjnL1eMWAPTYjxShWl8HWglstjAZ0zcCmgzVhG/9rGtngJEk0Tr7+btrzODv1fbR4RRypZQKlICsZP82YiLKqBpz8t8UAgg+8yfLKb3Bj81fAmBuDtlOu3PHMgm0YX5Ln97mcWjXBKeDeT5U6jWoFQX65zL1jnK9SjRoHIdiuqlYzd71SFmyj2BMDBcULRi1/Aw1OytVvMlNccDqIpRScevugZY0bAM5+gWUyNKE4ChGxreXeM/tpBLf6/r7u5F6oanDjg+V7wzq2UaY+33lMLqy+cIM+eGdif3b/Jbr8hZfaXCa0E5VbDsZzCARfrDmAL9YcwN1TSnDLBGOXUrkSTzywjwHQAPWNfdcU5rsaqD4kpRR7jtaj3MAHM4FIzvfpOvNDF2arc7lrMe/OU7DoL+Mx+6YTASjmDp+HCIDfv7Uc939uUNjW12YRhKgiEGUte94M033UyFrS+v3V+O+vWjfCZxdsRf8H56H/g/Mw7m+LNGlC1Q+nOlDG5RD8/gSBaFzT1KkyZaEtVwjxGmjcRuPDfxjXCyX56bhpfG+4HEJYPSPTPXRV05cU/xkYcW3AY334xzEhnz/ayAmMZE7tq3i85KQl4kkTu3FxTmrQ1Az6hGbqHp9siz1jUBeML8lFnpTr4+t1B/D5b/t9f7+ovCPun9Yffz2XVShUa9df3nqS37n9zIJtjNk3MfPGf69nY14jemYhXXoRBirHtzvMmJJI0GY07hGFzBYdqDLI/I2HcOO7qwEAq+6fhM5pSjKaXYerMBZAcpLOz7XwRF/OZBl5FF0+u/ohSHI5sHiLeU1Nj0i12rZD1Rct3wLk9TPdF9C6cz3w+QZcpfLn3V5eh5y0RIwqysLcDYdwQJVsSB2BaGpnVxEs4b2LMM1ePQCj1ND0P25BVgrm/4kldHIIBCtLq/Dp6jKc1i8fmSnWcqibdbdFImg0jGdqJ2EcgMuTXsL7TTcb7pOXbs0/P5bkpSfh7etG45o3l4e036K7xod8LmrwIv/reYORnZqARVsO47q3VuKRr8xT3WYmu1Q+zQT/unw4hhZ0Qg8De3dBVrLPJt4WGdEzSzMm8PcLh+LvFw7Fqf9YHNAEZDUGJBrYWuP+YZsiIFMSHbh2bJFhHmOZA6rMdjVN6uxrFIer2Ei74NJlFqv0jzST7YWyAKYqXXBs75yAdm4v1eXhFlRC64vAKUiNqFYl1G90e9GtUxLuO7O/b52sGXy55gCW7jiK15fs8mkJgXze5VSsZqwU/fMSy7PBfOkdhGDzwRr8+eO1eHdZ8OCjoT2YD7LZM7LxgFYorNl3DKf+YzGWHuuESc1/xz/zHwPuP4LyO/YZH8BGqLXsSGtsL11xvG9ek6pA97tN7JePn2dOxOK7xvv9jZMGlPW/8VlDuhkKbQB4+OyBkfsSNoKl2jUX3Ea9ypQgZQojha01bnX1dYEQOASCRrcX2w7X4qEvNvqN6qrDVNVvSo9IkUA8oCAgenvp0EuBHQs1q7pkJqFbZhJuO01r2+qU4kKiU0BLgMjA937dqxVALvXgpjXzwb8uH+5LRjT00QVIkmyMzR4Ro4uy0SM7Bbef1gcvfrcdo3plY9GWcrz9Syne/kUrJIN1Ya8/uRfeMAmRXiv2BqAtsBrIVKJGbV6xEulanJOKtfuOmQ5Ort1fg8G6O7W0gg1c76AFWJmYCzgTkJjYNrrsg7pnYMP+Ghw4Ftkc8ONUXjylRxswWIoUNBow724SqCOnTA3F1JWWZGsxEjYuhxCwgLNeG3/+kmHo3zU0N85wsfUVP31Avi/ZjkCUUe6pz/8IkQIje2YhRTUok5HsgkgpDtc0a7r4Ho+I25yfG59k8IXAj/8AUpSbPjPZhaX3KqHS2Sms9t2Mqf2wfE8lmtwiPvvN2O+7rtmDgsxEYP9qIKcvkKSyqVusSH7WkG4+wV2Sn47xqui/Cf3YgJFLeggdAkGCyQ0WzIf5tP55poL7Jc85AICPVu7D3VNLkJOWaJiS1Aj1+8JKFKWvQrbJ51uokqyrSsjGY78biAe+2Ohb98dTWfUXo0E0O/K7od2xYX+N4ff97OaxprU9g6EWzH/+eI2v7JfpgLkB8u8VSsX51mTttDMuhxDQO0r/0bnDY1esw5aCe19lA1wOQaNBE0KQL3XvZZn8zMVD0bOzdtDmm/UHcfN7qzWD3O6WBiQDONhpOLoanTAtD/Capw11OpTad3sq6tHiFfGnj9aabv/E0KPAaxcAQy4BnCrTjEnB20Ccd3x33Hhqb7/1cp1HSilcDgKjZz2YSSPBQLD/5B2Ikx0bUQHlhfPjtiM4//gCnxYW7DHtkpmMwzXMM8dMcKu1a/nBNzOVqEtLLUiZ5jOtyIztzV66iTfmh94AABuaSURBVE4BUwbm+5Lh25WMZPbYqVPmygwPENYeDPXvXVmveDz43DgtvNe6Ss+YUdusnLc94XQQUy+2fZUNmKWqOt/PIEd9NLGl4B7398WG6xN06U6N/Evle0ikFP98/A5MTt+NXllsgLC0y1RjwU0cgGit23r9yb0weUAX00ELh0BQUDYHWA7gyBagUVWHMYxcyWbPhGwGESlwyahCvPmzVnO+e0pJ0MLKRjbLBiT5qsfIyDev3lZqRpnK/95McKvHCY7vmYXPfttvek13ESWN6f6qRgw2kUCEELx61ciAbbMDF47ogSa3iMsspv21SqLTgXevPwHvLy/F8t2Kp5BZyTkjpp/SGxlJLl/SKiu0da8SM1yCYBpwZyajYoUtBbcZeaow7fREp2HaVHkk3OtpwW2et4Aq4GjzcTgg9kJF5+P9tgfA3M1MqogbHb8wWPGFvZL2flDSyjv1ZHmlj24z38eEAV2NoyflAVSBEDx49gCN4L5hXC9T31M1OWn+JaAIAKrTqXPS2HX2mUqCPKgVKm3PrMstVzF/9HcDkShp/kZi2ytS9Ke7fMu1SLZcEs6uOARimBEwEpzcJwfzNx7S2Kh9gtuCgM1NT8Rtp/UJ6ZzB7oe2istJ0OwOXdmKBW3DKCihzo722S0nGaa3lLWKtFIlMdTIykfxO/dfkdZzuPGBBSdQvhl4baIibFuD3uyS3IkFkVi0cQPMnfH9G07AScd1Nvx8Yr88XDa60GffzVPV4bNasNX/eaM43bEK3YVKvHrVCN/aRKfk0x2C5gYAvXNTNb7mauSIT+L7Z5z7obbJjV9FbdKt9qrhRQp9PIxIKQiJXiHf9vp7EBBNUWc70aY0bjVmRTnlXnRZZT2KpHVrH5wMh4MgzSy6bPgVrDTWjm+Bvb+GXHXFD68uoqr7CKCpJiQbd+e0RIw10IhlCrJSNAEbi+4ajxmz12HOuoM41mAtokt+kEf0zMKq0iqUEOZOl4laTBnYxbed3F00KxZsBqXAd6oEVmrkl0CvnDQcrDY3U3lFimNUG/2pDzbhaBEEbR51j0ijKlwFQkBI7ArlxoraJrdGIZIxUjBO6+8f5RxN2qzgNtK2AUUYqe3hQQNA+p8N9J4IPNEN8JhUvtg6D5h7N3DdfFbAlpp0oSp2At89wuZ7T2RVW1wprKBCCBp3qKQlOlEpheAOCMElac9T00Apxcs/7MQ383dpPpt11QhM/+8q7D5aj/ElgQNwjOjZOQUHTISyHF7tdJCAg5NekWpMKP27ZvjSAnCM0ecOEUUaVc8Ph0Cw/uEp7SpfCQB0zUzGrqP+gUV6LXzJPRNM86BHizYnuI8v7ITVe48ZJpoHlG68GOpAoEN6s3pMkjvN/gPQUgt8czew5evgx+s+Aigap5TbIg5zYR8hZBEXqlcFIQQ3jz8Ovy2o1KyX/YBlbc3nVmZRe+vXNQM/7TBO7yoHNjgF4vMLN3rwvZRqvEqaRSFmQQ5tFYdANL70n6/ZH9VqNU4hQG+2DeMwKYh8xeu/apbNApOiSZu72v+6/HhsPVxr6q4kaxbeUIWkw8ls3b++DKz/BEhMB66bBzhcwPZvmdAGmA08OQu41iRj28tSWsfrFwK//FvVMCGqGjcAzJjaD3/+eC2G9DCv5hOI1xKe1SzLBSNkDxCvz4/b2vESHALcXmpYNUj2enA6hICC2+OlmsHSfUUXaWy1oRRW7igQnY07NcGJ5qToKQ3tdXBSEIhh7izZ1TWe2E5wBysg0K1TcsBuiXwP1YjMv9sruGBZPxs/Ezi0Adg6lxU+OLAG6DYMeO8CZZvqfcwEkm8S5ttlCHBoHfy8nYkjLD/uUBhemIXFYeS1MEO2WcqZ/liXO/gg1+UnFGJd2TGljqZXRJIqYvVoXTP+JSULcwqKqcToIfGKFKJ0LY/SDBCX1kyy8ZGpYXyz9o2DaG3cLV4RE/tFzwZrdbC6reEg9q32bjvB3dpUibJWeKCRfbVVxz+J0YF2UHPK3WxauhT4zxlAc43/QOP9R5gWbsbVXzC3P72vcYheJTFnx7d+q+RBwL/N24LppxT752Ex4Ynz2KDpswuZ+2NVQwu6ZiovW/XDIKcyAMxNJbVgXdGXPecgWbquJx3XGaf2zTUd6+jI6G3cbq9oGGwVKRzttNfjEIyzXJpFKscS2wnu1o5+y917B2EXNr1TGMViE6RozMpdzFYtk94VcAYZGEvJBgqllKJqTSQGGnfYeN3Auxf4rVYL6dKK+pAHufrmM2+QV3/YhWaPFyf06oypg7poBiGLc1Oxt5IN9ugfkupGNz5euQ8tcGFi+hfYdaQed0pC4r0/2C9tq13QuwO2eMSoeuK0W41bMNa4i3NTsUXK4dPHIN99LLCdumKW9N0qsmZRsuN1AICThPFmzJAi9Y6VagNzQm2bXLmFCJLGbU9nfk10p46bx7Nwe69I4RWtadwyffPTkeQS8NbSPfhg+T7c+dEa9Htgnq9yyJPnD0aSy6GMS+geko9W7MWrPzBPl0NSClvuChgc2eYsihRNbi+qGtyWxyXCob2GvDsEgkM1Tfh4hTbr5EFVOuUB3WKTVEpP0KeAENKDELKYELKZELKREGJediQC6H0k9yRdjj1Jl1veX3YzO9GzAgAguMJw00ntDCSkAV6PLpgmRME94lpg1B+AU+6yt8Yd4IUk1730UspMJSFp3OnY9MhUnDusm2b9rCW7NKeVIyH1gltdo7FBrvzDBXdQ5BfheS8vxdNShs1AFXJaS3sV3PJ1vGe2tpyf2qspXiZwK0+BB8BfKKX9AYwBcAshZECQfcKmtRp3lS74REgMs4RVQipweAOwSZVVMNS2JaQA055hGQJj4FUSNgE8cByCIlSNvEOCIQgE/7hoKH574HSMKmKRr+XSqPwQyd1QfkA8IsVnv5Xh/Jd+RrPH67PTjinOxrVSiPhx+fHpmrYlJpTkYUJJLsoqG/D5mv0AouOy9vVtJ+P+af3bbS/o89/2G64XKfXlSQrmTBEtgr6GKaUHARyU5msJIZsBdAdgXj6jFbT2DUZ03hwOV5jBGhndgT1L2J/MuS+F3zDBaV+NW9eTeNMzFddJ8w6VGcPq4KQel0NAVmoCXrt6JIY9utBXd1F+4OXScCKleOiLjahp8qBcSs1LCPDh9BPhFSnOGNQFJxQbpwDgKAwuyMR/fj8at7y/2lfhPRp26EHdM309svZIvUl63Sa3iOQEBxrd3lD74BEjpP4TIaQIwHAAy6LRGEBrKrmmTwvQyqImzmCDiWZc+zVQKxXRdSQAnXq0riGi199DxS6oNO6WLiMw5dK3fMsOlRnDK7Yu97I+W6Hsgy074Nz36Xpf5aK6Zg9EqpzPIRAutEMkyenwmZvaqzkjlhTNnIOCrGRUN7p9tQHiJbkt93EIIWkAZgO4k1JaY/D5dELISkLIyiNHzGsyBkO2c+ahCo/suzb0A+juz6TEMOvCJaQCnXuzv9YKbQDYISW9avK7dPFHJbgTXC5NdRRZU7v/8w0QRYrW9IoJIThflWxer3GrK8///j8rIFIa1UG19k5dszI+wwV3ZCirYikcTunLcsDTOEluS48hIcQFJrTfo5R+arQNpXQWpXQkpXRkbm4YLngSso17eZKuPuOHVwBN5oWCfW3VLWfbpWhs38lsWr45vu0wQm2n26cN55XdMzceqAl5cNIItd91IB/sQzVNeOn7nVHLaNcRGNRNMWO01+jGeFHShXmTxMtRzIpXCQHwBoDNlNJng23fWkSR4kbHl/4fbPkaOLzRf72Oos6pOE1YpaxItIkNrng8m7obAm0VHwIMTqof+PkbD7VakKozyMnJotID1Cy0UvqMY4z6t2uvvtbxQq4DG696m1Y07pMAXAVgIiFkjfR3ZrQaVFHfgpmuD40/LFsZ1DOjKCcVbyQ8AwDY1+0M5tpnBxKkxE+ye+HWucAxu1QlN+/uFecoXjkpCY5WFzEY1ycX/bqk4/zh3VWmEu0xz4th7b72jDrxUzt1/Igbp/bNxcUjC3DbxOAFS6KBFa+SnxC8zGDEmP7OSqwz+3DhA8Ca94BbrI2NZuZFtjRUq5DD5OUByg8uBZKzgRnGxXpjSgCXpryMJFxwfAFmry7D4ZpmnDXEekkrIyYNyMekAfmadXr7azyyrbVH1Kao9lrQNxZkJDmx5ZB2bCo90YW/X9jKvP2twHbvYdmrwJQjWywfy1Y5FBySd4tXlVmssdJ421gTxBdVrRGb1eBrDU5dXhd9bVFOeOxT1f5s6+Xe4oEcOFacm6aJlgTiL1tsJ7gtESBEW42t7HpyBOcn1wXeLh4ESYGrfujvO7N/xE+v/5mmDOzCzSUR4OyhSsTqqKLsOLakbfKPi4aiJD8dDl1FISD+5drapuBuCVAHrvGYb9ZWmeM6qcw2lbvMt4sHwQS3dJOeWNwZPTuHGYkagEa3dtyiT346nrtkWMTP09Hor6qElG6Sv55jjsshIC8jESKl8OgEd7xNTzaSbCEQqCL7wgd8s/G+uBrUbamviF87DAlsKnFIpgxXlF6EPTunYETPrOAbcjgxhqXI1QYGJjgErnGr8Vi1n3oDCG63qsZhr1Na16BoUblTmVdXyYk17kaWzlU9bpDhb6LIz2Bl3UorolPxOtHpwOybxmLakK549mJlwOfikQVIb4clsWJJUecUFPLB3rARCMtHImvcs28ai98ePD3ufvG2eioWbDpsbUMzjfvQBmD9/5TlvlNa36iooPrR598H9DsLyOoZ+2aULmUFFA5KfjzHnQ6c/YLfZqN6MfuoO8o+1f++/HjN8t8vHBrXkfv2wP9uHBu36L72wOKtLApcTniWleKKaqZFq9hK466ot5jLo9wkEGf/SmU+L2oJDFtPi3/l6LjgK/YovQhHXAtk+mvc2SnMI2YkH+Bqc+SmJyLPLtHDbRi5uLVdUgfYSnBnBIpCun4hcOkHbN7MM0OjidvjAhuy7mPt8jd3xacd9VIFdtkt0WRMoCgnFbNvGou/njcoRg3jcOxFRT1z47WL4I6/zq9Cnz3OD2di4M/VUZWB6kLGG10+EGxfEJ926F8gxPw9zgcPOR2ZWT8yTzC5NGK8sZXGLduRGqiJgC4ap536HUDSuLOLgdMfiXDrIoDcY7ALSfo8LvbQJjgcu5GS4ERJfrovv068sZXglp1K9pFuxhs4E4Buw4GaA8afyxr3H5coSZ3sRN+p2uXCE+PTDpneE9g0U0pbG0Dj5nA6IndO6gMA2FvZgIHd41Nf0ghbPalyLu7MlEDdEcLc6dxN/h/JGrdgj+6MH4IAnKQq2RkokCiWyFGddvJ753BswPiSPN+8S7CPuLRPS6CYSoha8+t5Mpt2lrJw9ZLMJA0GQSyyxm1XwQ0Apz+qzE99Kj5tEL3MF16+Xke3sSkX3ByOhmE9OuHMwV0A2Cvfi60knKxxZyS5AFkZHfA74PdzlI26DGHT5wYAKbqUrS1SUh3BAVuTkMZcAlNzgbG3tS4Ip2In8w4pPMHa9tsWsMyERvUvuamEw/FDzsFmp6LIthLcssatiUqq1uWs7j6C/bkbgR4n+AvpnBL7a443LgHqyoGcPoArheUKqdoDZBWFfqz3LmKmo4eOWfveFTuY0B56ObD2fe1nLh5hx+HombuB1Z5NTbSPQmgrwe315QNQCaDf3gUmP6YsZ/cCblgU03ZFnOxi9gcA+QPZdOPnwMl3hn4sOXy+eh9LZLXiDaDbMPZyM0KUCjmMuEYruK/+EigYHfr5OZwOwg3jiuPdBB/20f2hCG6iDtENkrmuzVMyjU3DqQB/YI0yXykVZJjzZ+C/55nvIw/gJqZr1xefqpRb53A4fnRKsYcrIGAzwf3KD5L2qA6kGX5lfBoTK2RTz+K/Wtt+52Jgw2xm257/f8r6faqqQE3VwPODAY/By0BO0NUpDrlROBxORLCVqWTnkXokoRkJFZvYiis/BY47Lb6Nijah2OO3zgM+uITNOxKYPb9gFFC2wv84x/YCTceAtDztetEDgACJaa1qNofDiR+2EtwAxeOu/yiL7V1o61n7ETD0EmV5/2ptebOfpcx9mYVA9V5WCSh7OFsniv4FGmoO+LtGttQp6QBOuAlY9nJkvwOHw4k6thLctw5PwIWbf4x3M+LHZ9OBhqPAibcwofvaBP9tiicA/aaxxFQ1ZUDRSWy96AG2f6vddtapxudJlELdpz7JBTeHE4QEp4CWKKc0DhVbCe6cjpp98sEqJrCf7gNU72fr5BJsE+8HeqkEcE5fYPOXyvLo6cD6T5iLX81+Zf3ZLxhHlwJAbl82tbvbJIdjA5bOnIjaYEXMY4ytBLcgu6p1NASB2aKTOinuenI1+LyBQA+dm166lMslMQMoGMnMIZW7gI2fKduMuDbqzeZwOgI5aYnISQuSmTTG2EpwE7XgdtjrQsUEhwuoKgV+fQXoIuW+dhi4IPWZBNyxDkiSkt4IDq3Q5nA47Rr7Cu7LbJYCNRYILmD7fPaXls/WOU18R9WlzojkUpjbHziyGZj2jPVzdh0K9O5gg8AcThvHvoI7nPDvto5D9XPUyfU3Q7BDp+UBt/wafDs1f+zAg8EcThvFVgE4gqgKGAlW7aY94jQYnU22UHkmVUq21dHcJzmcDoqtNO6T97+hLKTmmW/YXpn8OPDry8Cuxco6Kylqr5vPvFG6Dole2zgcjm2wleDuUbdOWTCz7bZn+k4BMguAl8cq66zUzkzvwv44HE6HwFamEg7YAKVm2T6pJDkcjj3ggttu6G3aekHO4XA6PEEFNyHkTUJIOSFkQywa1OFJywVu+kVZNvLj5nA4HRorGvdbAKYG24gTQXL6KvOpOfFrB4fDsSVBBTel9EcAlcG240QQtT83zyfC4XB02NPGPfa2eLeAw+FwbEvEBDchZDohZCUhZOWRI0dad7DJj0emURwOh9MOiZjgppTOopSOpJSOzM3NjdRhOzZdh8W7BRwOx4bYKgCHo+KWFTyohsPhGGLFHfADAL8AKCGElBFCro9+szjI7aukbeVwOBwVQTVuSullsWgIh8PhcKxhT68SDofD4ZhiK8HdhESsSj0l3s3gcDgcW2OrwclzMv+H4pw0jIh3QzgcDsfG2ErjppTVzeVwOByOObYSkyKlIDzEm8PhcAJiK8FNKSBwwc3hcDgBsZXgFikNpTQuh8PhdEhsJbgpAIFLbg6HwwmIrQS3SCk3lXA4HE4Q7CW4RfDBSQ6HwwmCrQQ3pZSbSjgcDicIthLcIuUFXzgcDicYthLcFNzGzeFwOMGwjeCmlOJwTTMOVjfFuykcDodja2wkuNn0h22tLHvG4XA47RzbJJkSBILHzh2Egd148QAOh8MJhG0ENwBcNaZnvJvA4XA4tsc2phIOh8PhWIMLbg6Hw2ljcMHN4XA4bQwuuDkcDqeNwQU3h8PhtDG44OZwOJw2BhfcHA6H08bggpvD4XDaGITKseaRPCghRwCUhrl7DoCjEWxOpODtCg3ertDg7QqN9tiunpTSXCsbRkVwtwZCyEpK6ch4t0MPb1do8HaFBm9XaHT0dnFTCYfD4bQxuODmcDicNoYdBfeseDfABN6u0ODtCg3ertDo0O2ynY2bw+FwOIGxo8bN4XA4nADYRnATQqYSQrYSQnYQQmbG4Hw9CCGLCSGbCSEbCSF3SOsfJoTsJ4Sskf7OVO1zr9S+rYSQKdFqOyFkDyFkvXT+ldK6bELIQkLIdmmaJa0nhJAXpXOvI4QcrzrONdL22wkh17SyTSWqa7KG/H97ZxMaVxXF8d8htQW1talWCamaVHCRbmwsomi7UNAmfkQUpOLKCuLXooqLQkDctkVwoRgQiq1UE6sW3BRaXNSFNpHGxsbPJmnB2Jhgq9SFqNXj4p6nb4Z5k87M+5iB84fHnDlz557//d87J+/ek2FEzovItiL0EpHdIrIgIpMxX2r6iMjNpv+Uvfeifgg1gdcuEfnWYh8QkZXm7xKR32O6DS0WP2mMdfJKbd5EpFtERo3XiIgsbYDXSIzTaRE5XoBeSbmh8DX2H1S18AtoA6aBtcBSYALoyThmB9Br9nLge6AHeBl4sUL7HuO1DOg2vm1ZcAdOA1eV+XYC283eDuwwux84CAhwKzBq/lXAjD22m92e4nz9BFxfhF7AJqAXmMxCH2AMuM3ecxDoa4DX3cASs3fEeHXF25X1UzF+0hjr5JXavAHvAVvMHgKerpdX2euvAC8VoFdSbih8jUVXs9xx3wJMqeqMqv4JDAMDWQZU1TlVHTf7N+AboLPKWwaAYVX9Q1VPAVPGOy/uA8Aes/cAD8b8ezXgKLBSRDqAe4DDqnpOVX8BDgObU+JyFzCtqtW+ZJWZXqr6CXCuQryG9bHXVqjqZxo+YXtjfdXMS1UPqeoFe3oUWFOtj0XiJ42xZl5VUNO82Z3incD7afKyfh8B3q3WR0Z6JeWGwtdYhGZJ3J3AD7Hns1RPoqlCRLqA9cCouZ6zLc/u2PYqiWMW3BU4JCLHRORJ812jqnMQFhZwdQG8Imyh9ANVtF6Qnj6dZqfND2Ar4e4qQreIfCEiR0RkY4xvUvykMdaLNObtSuDX2B+ntPTaCMyr6smYL3e9ynJD06yxZknclc53cvl3FxG5HPgA2Kaq54E3gBuAm4A5wnatGscsuN+uqr1AH/CsiGyq0jZPXtj55QPAfnM1g17VUCuPrHQbBC4A+8w1B1ynquuBF4B3RGRFVvErIK15y4rvo5TeHOSuV4XckNg0gUNmmjVL4p4Fro09XwOcyTqoiFxCmJh9qvohgKrOq+rfqvoP8CZhi1iNY+rcVfWMPS4AB4zDvG2xou3hQt68DH3AuKrOG8fC9TKkpc8spccZDfOzotR9wGO2NcaOIs6afYxwfnzjIvGTxlgzUpy3nwlHA0vK/HXD+noIGInxzVWvSrmhSn/5r7FaDsSzugi/Nj9DKIZEhY91GccUwtnSq2X+jpj9POG8D2AdpUWbGULBJlXuwGXA8pj9KeFsehelhZGdZt9LaWFkTP8vjJwiFEXazV6Vgm7DwONF60VZsSpNfYDPrW1UOOpvgNdm4GtgdVm71UCb2WuBHxeLnzTGOnmlNm+E3Ve8OPlMvbximh0pSi+Sc0NTrDFVbY7EbQPpJ1Rvp4HBHOLdQdiefAkct6sfeBs4Yf6Pyhb4oPH7jlgVOE3utign7Poq6o9wlvgxcNIeowUgwOsW+wSwIdbXVkJxaYpYsm2A26XAWeCKmC93vQhb6DngL8LdyxNp6gNsACbtPa9hX1Srk9cU4ZwzWmND1vZhm98JYBy4f7H4SWOsk1dq82ZrdszGuh9YVi8v878FPFXWNk+9knJD4Wssuvybkw6Hw9FiaJYzbofD4XBcJDxxOxwOR4vBE7fD4XC0GDxxOxwOR4vBE7fD4XC0GDxxOxwOR4vBE7fD4XC0GDxxOxwOR4vhX0h7paMAQC2QAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "for times in range(1):\n", " Steps = 20000\n", " for i in range(Steps):\n", "\n", " #propose new thetas\n", " good = 0\n", " while not(good):\n", " t_new = np.random.normal(size=1,loc=t_curr,scale=t_sd)\n", " good = np.max(np.abs(t_new)) <= 5\n", " #propose new hyperparams\n", " good = 0\n", " while not(good):\n", " beta = np.abs(np.random.normal(size=2,loc=beta_curr,scale=beta_sd))\n", " good = (np.max(np.abs(beta)) <= 100) and (np.min(np.abs(beta)) > 0) \n", " good = 0\n", " while not(good):\n", " beta_t = np.abs(np.random.normal(size=1,loc=beta_t_curr,scale=beta_sd))\n", " good = (np.max(np.abs(beta_t)) <= 100) and (np.min(np.abs(beta_t)) > 0) \n", " lam = np.abs(np.random.normal(size=2,loc=lam_curr,scale=lam_sd))\n", " x[0:N,1] = t_new.copy()\n", " #print(beta,lam,t_new)\n", " new_like = (likelihood(z,x,beta,lam[0],2,\n", " beta_t,lam[1],2,meas_cov, N,M) + beta_prior(beta) + lambda_prior(lam[0]) +\n", " beta_t_prior(beta_t) + lambda_t_prior(lam_curr[1]))\n", " #print(new_like,old_like)\n", "\n", " accept_prob = new_like - old_like\n", " alpha = np.random.rand()\n", " #print(accept_prob)\n", " if (new_like > old_like) or (math.log(alpha) < accept_prob):\n", " #accept\n", " beta_hist = np.append(beta_hist,np.resize(beta,(1,2)),axis=0)\n", " beta_t_hist = np.append(beta_t_hist,np.resize(beta_t,(1,1)),axis=0)\n", " lam_hist = np.append(lam_hist,np.resize(lam,(1,2)),axis=0)\n", " t_hist = np.append(t_hist,np.resize(t_new,(1,1)),axis=0)\n", " t_curr = t_new.copy()\n", " beta_curr = beta.copy()\n", " beta_t_curr = beta_t.copy()\n", " lam_curr = lam.copy()\n", " old_like = new_like\n", " else:\n", " #reject\n", " beta_hist = np.append(beta_hist,np.resize(beta_curr,(1,2)),axis=0)\n", " beta_t_hist = np.append(beta_t_hist,np.resize(beta_t_curr,(1,1)),axis=0)\n", " lam_hist = np.append(lam_hist,np.resize(lam_curr,(1,2)),axis=0)\n", " t_hist = np.append(t_hist,np.resize(t_curr,(1,1)),axis=0)\n", " #np.savetxt(fname=\"d_beta_1_s.csv\",delimiter=\",\",X=beta_hist)\n", " #np.savetxt(fname=\"d_lam_1_s.csv\",delimiter=\",\",X=lam_hist)\n", " #np.savetxt(fname=\"d_theta_1_s.csv\",delimiter=\",\",X=t_hist)\n", " plt.plot(t_hist[0:-1:(times+1),0],label=\"t\")\n", " plt.legend(loc=\"best\")\n", " plt.show()\n", " plt.plot(beta_hist[0:-1:(times+1),0],label=r'$\\beta_{x}$')\n", " plt.plot(beta_hist[0:-1:(times+1),1],label=r'$\\beta_{t}$')\n", " #plt.legend(loc=\"best\")\n", " #plt.show()\n", " plt.plot(beta_t_hist[0:-1:(times+1),0],label=r'$\\beta_{x}^{\\delta}$')\n", " plt.legend(loc=\"best\")\n", " plt.show()\n", " plt.plot(lam_hist[0:-1:(times+1),0],label=r'$\\lambda_{sin}$')\n", " plt.plot(lam_hist[0:-1:(times+1),1],label=r'$\\lambda_{\\delta}$')\n", " plt.legend(loc=\"best\")\n", " plt.show()" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[11.3.4 Draw a sample from the Markov chain and use those values of hyperparamters to construct a GP model using the data and make prediction](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.4-Draw-a-sample-from-the-Markov-chain-and-use-those-values-of-hyperparamters-to-construct-a-GP-model-using-the-data-and-make-prediction)", "section": "11.3.4 Draw a sample from the Markov chain and use those values of hyperparamters to construct a GP model using the data and make prediction" } }, "source": [ "## 11.3.4 Draw a sample from the Markov chain and use those values of hyperparamters to construct a GP model using the data and make prediction" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "nbpages": { "level": 2, "link": "[11.3.4 Draw a sample from the Markov chain and use those values of hyperparamters to construct a GP model using the data and make prediction](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.4-Draw-a-sample-from-the-Markov-chain-and-use-those-values-of-hyperparamters-to-construct-a-GP-model-using-the-data-and-make-prediction)", "section": "11.3.4 Draw a sample from the Markov chain and use those values of hyperparamters to construct a GP model using the data and make prediction" } }, "outputs": [], "source": [ "#GPR with uncalibrated\n", "#construct a GP Model\n", "def GPR(X,y,Xstar,k,sigma_n,M,cov_mat,cov_t,disc=1):\n", " N = y.size\n", " #build covariance matrix\n", " K = np.zeros((N,N))\n", " kstar = np.zeros(N)\n", " for i in range(N):\n", " for j in range(0,i+1):\n", " K[i,j] = k(X[i,:],X[j,:])\n", " if (i < M):\n", " K[i,j] += cov_t(X[i,0], X[j,0])\n", " if not(i==j):\n", " K[j,i] = K[i,j]\n", " else:\n", " K[i,j] += sigma_n**2\n", " \n", " #add in measurement error cov\n", " K[0:M,0:M] += meas_cov\n", " #compute Cholesky factorization\n", " L = np.linalg.cholesky(K)\n", " u = np.linalg.solve(L,y)\n", " u = np.linalg.solve(np.transpose(L),u)\n", " #now loop over prediction points\n", " Nstar = Xstar.shape[0]\n", " ystar = np.zeros(Nstar)\n", " varstar = np.zeros(Nstar)\n", " kstar = np.zeros(N)\n", " for i in range(Nstar):\n", " #fill in kstar\n", " for j in range(N):\n", " kstar[j] = k(Xstar[i,:],X[j,:]) \n", " if (j < M):\n", " kstar[j] += disc*cov_t(Xstar[i,0], X[j,0]) #+ cov_mat[0,0]\n", " ystar[i] = np.dot(u,kstar)\n", " tmp_var = np.linalg.solve(L,kstar)\n", " varstar[i] = k(Xstar[i,:],Xstar[i,:]) - np.dot(tmp_var,tmp_var)\n", " return ystar, varstar\n", "def cov(x,y,beta,l,alpha):\n", " exponent = np.sum(beta*np.abs(x-y)**alpha)\n", " return 1/l * math.exp(-exponent)" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[11.3.5 Test the predictive model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.5-Test-the-predictive-model)", "section": "11.3.5 Test the predictive model" } }, "source": [ "## 11.3.5 Test the predictive model" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "nbpages": { "level": 2, "link": "[11.3.5 Test the predictive model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.5-Test-the-predictive-model)", "section": "11.3.5 Test the predictive model" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 2.49553651 0. ]\n", " [ 2.07438417 0. ]\n", " [-1.60677375 0. ]\n", " [-1.22424983 0. ]\n", " [ 2.83406696 0. ]\n", " [-2.48758094 0. ]\n", " [-1.13871149 0. ]\n", " [-1.12929309 0. ]\n", " [ 0.37743566 0. ]\n", " [ 2.29919926 0. ]\n", " [-2.08565405 0. ]\n", " [ 1.28983723 0. ]\n", " [ 0.36307943 0. ]\n", " [ 1.20791175 0. ]\n", " [-1.14718899 0. ]\n", " [-2.84962614 0. ]\n", " [-0.09367906 0. ]\n", " [ 2.27862724 0. ]\n", " [ 1.97785384 0. ]\n", " [-1.50488606 0. ]] [ 0.40523664 0.81584213 -1.09115008 -1.11729191 0.02750562 -0.40713419\n", " -1.08546614 -1.09051774 0.48270081 0.59459431 -0.81198543 1.12661918\n", " 0.4609217 1.11807748 -1.09694189 -0.01245319 -0.12300681 0.62332479\n", " 0.88761495 -1.12630528]\n" ] } ], "source": [ "Ns = 100\n", "Np = 20\n", "samps = np.random.randint(high=t_hist.size,low=10**4, size= Ns) # The burn- in period used was 10**4\n", "Xstar = np.zeros((Np,2))\n", "ystar = np.zeros(Ns)\n", "varstar = ystar*0\n", "\n", "deltastar = np.zeros(Ns)\n", "delta_pred = np.zeros((Np,3))\n", "Xstar[:,0] = np.random.uniform(size=Np,low=-3,high=3)\n", "ytrue = truefunc(Xstar[:,0]) + np.random.normal(size=Np,loc=0,scale=sd_meas) \n", "print(Xstar,ytrue)\n", "ypred = np.zeros((Np,Ns))\n", "for i in range(Ns):\n", " Xstar[:,1] = t_hist[samps[i],:]\n", " x[0:N,1] = t_hist[samps[i]]\n", " cov_f = lambda x,y: cov(x,y,beta=beta_hist[samps[i],:],l=lam_hist[samps[i],0],alpha=2)\n", " cov_t = lambda x,y: cov(x,y,beta=beta_t_hist[samps[i],:],l=lam_hist[samps[i],1],alpha=2)\n", " ypred[:,i],varstar = GPR(x,\n", " z,Xstar,cov_f,0.00000,M=N,\n", " cov_mat=sd_meas**2*np.identity(N),cov_t=cov_t)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "nbpages": { "level": 2, "link": "[11.3.5 Test the predictive model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.5-Test-the-predictive-model)", "section": "11.3.5 Test the predictive model" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.6488889603921766, 0.7864667181144501, -1.1008164398530547, -1.1211182873475027, 0.675904794959659, -0.7238906493790005, -1.0976983713632702, -1.0944658616679421, 0.47491930176851727, 0.6838666308152755, -0.8998084721272154, 1.1225450177709184, 0.4578613893942037, 1.1108695165054527, -1.1004975526233596, -0.5872057437523103, -0.12425067356416662, 0.6906058697397721, 0.8453541963642139, -1.1244098532731543]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VGX2wPHvyYQACZ3QIYQWOgEN3YKKUkQREQFd6yrqyq4/dZVQVCwoIHZ0XVRE1lWRAIJIiAIiNpAgaUDAEFoIvQRISJt5f39k0OAGCJnJ3JnM+TwPz53yMu95M8k9973lXDHGoJRSyv8EWB2AUkopa2gCUEopP6UJQCml/JQmAKWU8lOaAJRSyk9pAlBKKT+lCUAppfyUJgCllPJTmgCUUspPBVodwPmEhoaa8PBwq8NQSimfsWHDhsPGmHqlaevVCSA8PJz4+Hirw1BKKZ8hIrtK21Z3ASmllJ/SBKCUUn5KE4BSSvkpTQBKKeWnNAEopZSfcksCEJHZInJQRFLO8X4/EckSkQTnv6fd0a9SSqmyc9dpoHOAmcDc87T53hgzxE39KaWUcpFbZgDGmDXAUXd8llJK+bP1O4/y7nfbPdKXJ48B9BaRRBGJFZGO52okImNEJF5E4g8dOuTB8JRSyjqn8gp5enEKI979mU/W7SYnv7Dc+/TUlcC/As2NMadEZDDwBdCmpIbGmFnALICoqCi9Y71SqsL7btshJixMJjPrNPf0Deef17UlOKj8V88eSQDGmBPFHi8TkXdEJNQYc9gT/SullDc6lp3P819tZuGve2ldvxoxD/bh0ua1Pda/RxKAiDQEDhhjjIj0oGjX0xFP9K2UUt7GGENsyn6eXpzC8ZwC/n51a8Ze3ZrKgTaPxuGWBCAinwL9gFARyQCeASoBGGPeBW4BHhKRQuA0MMoYo7t3lFJ+5+CJXJ5anELcpgN0blKTuff2pEPjGpbE4pYEYIwZfYH3Z1J0mqhSSvklYwzzN2TwwtLN5BU6iB7Ujvsua0Ggzbrrcb26HLRSSlUEe47mMH5hMj+kHaZHeB2mDu9My3rVrA5LE4BSSpUXu8Pw0U87eTluK7YA4fmbOnF7jzACAsTq0ABNAEopVS5+O3CScQuS+HX3cfq1rceLwzrTuFZVq8M6iyYApZRyowK7g3dXb+etVWmEVLbx+siuDO3aGBHv2OovThOAUkq5SXJGFk/EJJK6/yRDujRi8o0dCa1W2eqwzkkTgFJKuSi3wM5rK7bx3pp0QqtVZtYdl3Jdx4ZWh3VBmgCUUsoF69KPEL0wmR2HsxndoxnRg9pTs2olq8MqFU0ASilVBidzC5i2PJWP1+4mrE4wn9zXkz6tQ60O66JoAlBKqYv0bepBJixK5sCJXO67rAWPXRfhkeJt7uZ7ESullEWOZufz3Jeb+CIhkzb1q/HOQ33oFua54m3upglAKaUuwBjD0qR9TF6yiazTBTxyTRv+dlUrjxdvczdNAEopdR4HTuQycVEKK7YcoEvTmvz3/p60a2hN8TZ30wSglFIlMMYwb/0epizbQoHdwcTB7bmnb7ilxdvcTROAUkr9ya4j2YxfmMxP24/Qq2Udpt7chfDQEKvDcjtNAEop5WR3GD78cQczvt5KpYAAXhzWmVHdm3lN8TZ30wSglFLA1v0neXJBEol7jnNNu/q8MKwTjWp6V/E2d9MEoJTyP3Y7xMbCxo3kR3bjnSptePu77VSvUok3RnXlxkjvLN7mbpoAlFL+JT8fevTAbN5MQt1woq8PZWuoMDSyEU/f0JG6Xly8zd0qzuFspZS6ELsdevQgZ1MqL152B8PvmEFW5WA+WDqNN6pn+tXKH3QGoJTyJ7Gx/HTSRvS9M9lduxG3bYwlevWH1MjPgYTrYMgQqyP0KE0ASim/cCK3gJfWHubTEc/R/Fgmn34ynt57koveDAqCrl2tDdACmgCUUhXeis0HmPhFMocKQxmz8UseXTWHqoV5ABhA2reHQYOsDdICegxAKVVhHTmVxz8+3ch9c+OpHRzEoof6MMGeRpXKgRjABAUhkZHwyy9g8+26PmWhMwClVIVjjGFJYiaTl2ziVF4hj10bwYNXtiIoMADi4pDYWEhIKNrtM2iQX678wU0JQERmA0OAg8aYTiW8L8AbwGAgB7jbGPOrO/pWSqni9mWdZtKiFFamHqRrs1pMv6ULEQ2q/9HAZis62OtnB3xL4q4ZwBxgJjD3HO8PAto4//UE/uVcKqWUWzgchk/X7+alZanYHYanhnTg7j7h2CpoGQd3cEsCMMasEZHw8zQZCsw1xhhgrYjUEpFGxph97uhfKeXfdhzOJnpBEut2HKVv67q8NKwLYXWDrQ7L63nqGEATYE+x5xnO1/4nAYjIGGAMQFhYmEeCU0r5pkK7g9k/7uCVr7cRFBjAtOGduTWqmV+UcXAHTyWAkr4NU1JDY8wsYBZAVFRUiW2UUmrLvhOMW5BEUkYW13ZowAs3daJBjSpWh+VTPJUAMoBmxZ43BTI91LdSqgLJK7Tz9qo03lm9nZpVKzHztm5c37mRbvWXgacSwBJgrIh8RtHB3yzd/6+Uuli/7j7GuJgkfjt4ipu7NeGpIR2oHRJkdVg+y12ngX4K9ANCRSQDeAaoBGCMeRdYRtEpoGkUnQZ6jzv6VUr5h5z8QmbEbePDn3bQqEYVPrynO1e1rW91WD7PXWcBjb7A+wZ42B19KaX8y49ph4lemMSeo6e5o1dznhzYlupVKlkdVoWgVwIr5QJjDImJiURGRuo+aDfLOl3Ai19tYV78HlqEhjBvTC96tqxrdVgVitYCUsoFCQkJDBkyhISEBKtDqVC+Ts7k2pfiiInfzYNNDbFj++jKvxzoDEAp5TUOncxj8pIUvkreT/tDu5j11WtEntqPfNEL4uL8tmZPedEEoJQLunTpwt///ne6dOlidSg+zRjDoo17eW7pZnJO5/PE2nmM+f5TKjnsRQ3WrSu6h6/W73Er3QWklAvmzZvH+PHjmTdvntWh+Ky9x09zz5z1PPZ5Ii1DQ1hWZQsPr/nvHyt/gOzsouqdyq10BqCUC9LT0zHGkJ6ebnUoPsdRUMh/5yxn6nYHJiCAyUM6cEefFtiWHYOQEDh16o/GISF+eceu8qYzAKVcsG/fvrOWqnTSD5xg1P99wFPbhUt2JBE35x/cPXkMNuMoqs/fsyfZItiBbBHo2dMv79hV3jQBKOWCXr16nbVU51dod/Cv1dsZ+PoaUivV4uWvXmPu50/RbN+OP/bz22wQF0fQggV80KwZQQsW6AHgcqK7gJRSHrEpM4txC5JI2XuCgbbjPPfBI9Q/dfSPBmf28w8ZAjYblYYNY8ywYdYF7Ad0BqCUC5YuXXrW0lsYY0hISKDoInxr5RbYeTkulRtn/sj+rDz+dfslvNu7FvXJP7uh7uf3OE0ASrlg4MCBZy29hbdcoLZh11Guf/N73v52Ozd1bcKKx65gUOdGv+/ndwQHYwccwcG6n98CugtIKRd88sknvy/vucd7ahwWFBRw5MgRCgoKLOk/O6+Ql+O28tHPO2lcsyof3duDKyPq/dHAuZ8/QG/ObimdASjlAofDcdbSW8yYMYPc3FxmzJjh2gfZ7ZyeP5+XgoM5PW8epz75hGcDAzn12Wdgt5f4X9ZsO8R1r63ho593cmev5sQ9esXZK/8zztycfdKk3/f7K8/SGYBSZWW3MyEykj6rVtEvMrJoheglK7GDBw+etSwTux0GDMC+ciVPAmbUKCoBk4Cc0aPh/ffPOjvneE4+L3y1hZgNGbSsF8L8B3oTFV7H5bGo8qMJQKmycK4cr/jhB/oBjnfegaQk7zhd0W6nQ3o6lwNH0tPLnphiY2HdOqqV8FZ1OKs8Q2zyPp5avIljOfk8fFUr/n51G6pU8o5kqM5NE4BSZeFcOVbKywPAlpfnHfVqnInplcxMgoD8zEwYMKBsiWnjxqJTM88lO5uDv6bwzPFGxKbsp2PjGnx0b3c6Nq7p0hCU5+gxAKXKoqSVozfUq3Empqp2Ozagqt3+R2K6WN26FZ2aWQIDzL90MNfmd2Jl6kGeHNiWLx7uqyt/H6MJQKmyKGnl6A3nsbszMTlP1TwF2IFCwAQEsKtGfe4cPYUnrnmIiCZ1iH3kcv7WrzWVbLo68TW6C0ipsjhTr2bVKqoYQ64IId5wHvuZxOSOQmrOUzVtCxcy7a67eGT2h8w/XpXpO0FsATw3uD1/6d2CgAC9E5qvEm+4UvBcoqKiTHx8vNVhKFUyu50769Uj7NgxdteuzdxDh7ziADADBnBy5UqCgRyg+jXXuHxwOu3gKaIXJBG/6xhXRtRjyrBONK0d7LawlfuIyAZjTFRp2uoMQKmystm4Yvp07r//ft6bPt36lb8zJuLieKhuXcKzsthZsyYfu7DyL7A7mLUmnTdW/EZwZRuv3hrJsG5N9P7HFYTutFPKBbHOg6uxZTnIWl5sNvZERjIF2BMZWeaVf8reLIbO/JGX47ZybYcGfPPoldx8SVNd+VcgOgNQygV79+49a+kt6tWrd9byYuQW2Hlj5W/MWpNOnZAg3v3LpQzs1NDdISov4JYZgIgMFJGtIpImItElvH+3iBwSkQTnv/vc0a9SVhs8ePBZS2/RrVu3s5altX7nUQa/8T3/Wr2d4Zc0YcWjV+rKvwJzeQYgIjbgbeBaIANYLyJLjDGb/9R0njFmrKv9KeVNxo8fT2pqKuPHj7c6lLNER0cTGBjIP//5z1K1P5VXyPTlqcz9eRdNa1fl47/25LI2oeUcpbKaO2YAPYA0Y0y6MSYf+AwY6obPVcrrxcTEMG/ePGJiYqwO5Sw2m41x48ZhK8X+/2+3HuS6V7/jP2t3cW/fFsT93xW68vcT7jgG0ATYU+x5BtCzhHbDReQKYBvwqDFmTwltlFLlzW6H2FiO/ZrE8yFdWHhIaF2/GjEP9uHS5rWtjk55kDsSQEmnBPz54oIvgU+NMXki8iDwEXB1iR8mMgYYAxAWFuaG8JQqP7feeiu7d+/m1ltvtTqUC7PbYelSzGOPsSy4Oc/0u5fjJ+3840A8Dz/7NJUrV7I6QuVh7tgFlAE0K/a8KZBZvIEx5ogxJs/59D3g0nN9mDFmljEmyhgTVZYzGJTypOTkZGbNmkVycrLVoZyf8wKxg/c+yAORo3n4+sdpdOIwSz56lMcWvU7lb+KsjlBZwB0zgPVAGxFpAewFRgG3FW8gIo2MMfucT28EtrihX6Us17lzZ8aMGUPnzp2tDuW8zLJY5p+oyvN3vE6+rRLjv53NX9d/QaBxgMgfN2NXfsXlBGCMKRSRsUAcYANmG2M2ichzQLwxZgnwDxG5kaJ6UkeBu13tVylvEBMTw6RJkwgPD2fkyJFWh1Oi3UdymPDzSX64+kF67E5m6vK3aHms2CTdG4rYKUtoLSClXOBwOJg/fz4jRowgIMC7Lqy3OwxzftrJjLit2ByFRK/8gNvWLSag+CG6KlWgb1/vuJGNcgutBaSUhwQEBHjllv9vB07y5IIkNu4+zlVt6zHlxg40Xvc6VAspKg9duTI0bgyvvqr34/VjmgCUqkDyCx28+912Zq5KI6SyjddHdmVo18ZF9Xvi4opuDJOQULTLZ9AgXfH7OU0ASlUQSRnHeTImidT9J7khsjHP3NCB0GqV/2hgsxVt7evBXuWkCUApH3c6387rK7bx3vfp1KtemffujOLaDg2sDkv5AE0ASvmwtelHiF6QxM4jOYzu0YzoQe2pWVUv6FKlowlAKR90MreAqbGp/HfdbsLqBPPJfT3p01rr96iLowlAKR+zKvUAExelcOBELvdd1oLHr2tL1SA9mKsuniYApXzE0ex8nvtyE18kZBLRoBrv3N6HbmFavE2VnSYApbycMYYvk/YxeckmTuYW8Mg1bXj4qtYEBXrXhWfK92gCUMqL7c/KZdIXKazYcoDIpjWZdktP2jWsYXVYqoLQBKCUFzLG8Nn6Pbz41RYKHA4mXd+ee/q2wBagN2RX7qMJQCkvs+tINtELkvk5/Qi9W9Zl6vDONK8bYnVYqgLSBKCUl7A7DB/+uIMZX2+lUkAAL93cmVHdmxWVcVCqHGgCUMoLbN1fVLwtcc9x+revzws3daZhzSpWh6UqOE0ASlkov9DB29+m8c7qNKpXqcSbo7txQ5dGutWvPEITgFIWSdhznCdjEtl24BRDuzbmmRs6UickyOqwlB/RBKCUh53Ot/PK11uZ/eMO6levwgd3RXFNey3epjxPE4BSHvTT9sNEL0hm99Ecbu8ZRvSgdlSvosXblDU0ASjlASdyC3hp2RY+/WUP4XWD+WxML3q1rGt1WMrPaQJQqpyt2HyAiV8kc+hkHg9c0ZL/6x+hxduUV9AEoFQ5OXwqj2e/3MyXiZm0a1id9+6MokvTWlaHpdTvNAEo5WbGGBYnZPLsl5s4lVfIY9dG8OCVrbR4m/I6mgCUcqPM46eZ9EUKq1IP0i2sFtOGdyGiQXWrw1KqRJoAlHIDh8PwyS+7mRqbit1heHpIB+7qE67F25RXc0sCEJGBwBuADXjfGDP1T+9XBuYClwJHgJHGmJ3u6Fspq+04nE30giTW7ThK39Z1eWlYF8LqBlsdllIX5HICEBEb8DZwLZABrBeRJcaYzcWa/RU4ZoxpLSKjgGnASFf7VspKhXYHH/ywg1e/2UZQYADTh3dhRFRTLeOgfIY7ZgA9gDRjTDqAiHwGDAWKJ4ChwGTn4xhgpoiIMca4oX+lPG5z5gnGLUgieW8W13ZowAs3daJBDS3epnyLOxJAE2BPsecZQM9ztTHGFIpIFlAXOOyG/pXymLxCOzNXpfGv1dupFVyJt2+7hMGdG+pWv/JJ7kgAJf3m/3nLvjRtihqKjAHGAISFhbkWmVJutGHXMcYtSCLt4CluvqQJT13fgdpavE35MHckgAygWbHnTYHMc7TJEJFAoCZwtKQPM8bMAmYBREVF6S4iZbmc/EJejtvKnJ920qhGFT68pztXta1vdVhKucwdCWA90EZEWgB7gVHAbX9qswS4C/gZuAVYpfv/lS/44bfDRC9MIuPYae7s3ZwnB7ajWmU9e1pVDC7/Jjv36Y8F4ig6DXS2MWaTiDwHxBtjlgAfAP8RkTSKtvxHudqvUuUpK6eAKcs283l8Bi1CQ/j8gd70aFHH6rCUciu3bMoYY5YBy/702tPFHucCI9zRl1LlbXnKfp5anMLR7Hwe6teKR65pQ5VKWrxNVTw6l1X+y26H2FjYuBG6dePQ5VczeWkqXyXvo0OjGnx4d3c6NalpdZRKlRtNAMo/2e0wYACsW4fJzmbhJQN5rl8epytX5YkBbRlzRUsq2bR4m6rYNAEo/xQbC+vWsVeqMuGWf/Jdyygu3beVaddH0Pqq1lZHp5RHaAJQfsnx60Y+jriSaVfchRFh8jfvcufGZQS0eRYYYnV4SnmEJgDld7YfOkV0YDfWX3sJl+/4lReXz6TZiYNQrRp07Xre/2uMITExkcjISL36V/k83cmp/EaB3cE7q9MY9Mb3bM2vxMs74pi7bDrNTh4qWvn37AmDBp33MxITExk+fDiJiYkeilqp8qMzAOUXUvZmMW5BEpsyTzCoU0OeHdqR+sH9IfY6SEgo2vIfNAhs5z/dMzIykgULFhAZGemhyJUqP+LNF+RGRUWZ+Ph4q8NQPiy3wM5bq37j3e/SqR0cxPNDOzKocyOrw1Kq3IjIBmNMVGna6gxAVVjxO4/y5IIk0g9lc8ulTZl0fXtqBWvxNqXO0ASgKpzsvKLibR/9vJPGNasy994eXBFRz+qwlPI6mgBUhfLdtkNMWJhMZtZp7uodzhMD2hKixduUKpH+ZagK4XhOPs8v3cKCXzNoVS+E+Q/0Jipci7cpdT6aAJTPi03ex1OLN3EsJ5+xV7Vm7NWttXibUqWgCUD5rIMncnl68SaWb9pPx8Y1+Oje7nRsrMXblCotTQDK5xhjiNmQwfNLN5Nb6GDcwHbcf3kLAj1QvE2vBFYViV4JrHzKnqM53Dn7F56ISaJtw+rEPnI5D/Vr5ZGVP+iVwKpi0RmA8gl2h2Huzzt5OW4rAjw/tCO392xOQIBnt8L1SmBVkWgCUF4v7eBJxi1IZsOuY1wZUY8Xb+5Mk1pVLYlFROh6gYJxSvkK3QWkvFaB3cHMVb8x+I0f2H7oFK/eGsmce7pbtvIHcDgczJs3D4fDYVkMSrmLzgCUV0rZm8UTMUls2XeC67s0YvINHalXvbLVYfH555/zl7/8BWMMo0aNsjocpVyiCUB5ldwCO6+v+I33vk+nTkgQ/77jUgZ0bGh1WL+LiIigTp06REREWB2KUi7TBKC8xrr0I0QvTGbH4WxGRjVjwuD21AyuZHVYZ4mMjOTxxx/Xg8CqQtAEoCx3MreA6cu38p+1u2hauyof/7Unl7UJtTqsEsXExDBp0iTCw8MZOXKk1eEo5RJNAMpS3249yMSFyew7kcu9fVvwzwERBAd576/liBEjzloq5ctc+ksTkTrAPCAc2Ancaow5VkI7O5DsfLrbGHOjK/0q33csO5/nl25m4ca9tKlfjQUP9eGSsNpWh6WUX3F1UysaWGmMmSoi0c7n40pod9oYoydPK4wxfJW8j2cWbyLrdAH/uLo1D1/dmsqBvlG8Tc8CUhWJqwlgKNDP+fgjYDUlJwClOHAil0lfpPDN5gN0blKTj+/rSftGNawO66K0atWKKlWq0KpVK6tDUcplrl4I1sAYsw/Auax/jnZVRCReRNaKyE0u9ql8jDGGeet30//V71iz7RDjB7Vj0d/6lLjyN8aQkJCAt96resWKFWRnZ7NixQqrQ1HKZRdMACKyQkRSSvg39CL6CXPepPg24HUROefmk4iMcSaL+EOHDl1EF8ob7T6Sw+3vr2PcgmTaN6rB8v+7ggeuPHfxNm8vtta/f3+Cg4Pp37+/1aEo5bIL7gIyxpzzN11EDohII2PMPhFpBBw8x2dkOpfpIrIa6AZsP0fbWcAsgKioKO/cDFQXZHcY5vy0kxlxW7EFCFOGdWJ097ALFm/z9mJraWlp5ObmkpaWRvfu3a0ORymXuHoMYAlwFzDVuVz85wYiUhvIMcbkiUgo0BeY7mK/yottO3CSJ2OSSNhznKvb1WfKsE40qlm6+j3eXmytZcuWBAYG0rJlS6tDUcplrh4DmApcKyK/Adc6nyMiUSLyvrNNeyBeRBKBb4GpxpjNLvarvFB+oYM3V/7G9W9+z64j2bwxqisf3BVV6pW/17PbWfXYYzyZn8+qxx4Du93qiJRyiXjrwTYo2gUUHx9vdRiqFBL3HGfcgiRS95/khsjGTL6hA3WrWV+8zW3sdhgwgJzVq6lst5NnsxHcrx/ExYHNN05hVf5BRDY4j7lekJaDVi45nW/nxWVbGPbOjxzLyee9O6N4a3S3Mq/8vfYsoNhYWLeOYLsdGxBst8O6dUWvK+WjNAGoMvt5+xEGvbGGWWvSGdk9jG8eu5JrOzRw6TO99iygjRshO/vs17KzISHBmniUcgPvLbqivNaJ3AKmxqbyybrdNK8bzCf396RPK/cUb/Pas4C6dYOQEDh16o/XQkLAiw9YK3UhOgNQF2VV6gGue3UNn/2ym/svb8HyR65w28ofwG638+GHH2L3tgOsgwZBz56cBOzASYCePYteV8pH6QxAlcqRU3k8t3QzixMyadugOu/ecSldm9Vyez+PPvooM2fOxOFw8NZbb7n988vMZoO4OEYHBtIVSACW6gFg5eM0AajzMsawJDGTZ7/czMncAv6vfxv+1q81QYHlM3k8c3GVV15kZbMxaOZMxo4dy8yZM3Xlr3yeJgB1TvuyTjNpUQorUw8S2awW04d3oW3D6uXa586dO89aepvevXtTr149evfubXUoSrlMjwGo/+FwGD5Zt5vrXl3Dj9sPM+n69ix8qE+5r/yx2wn6+msmAUFff+2VF1rpLSFVRaIzAHWWnYeziV6YxNr0o/RuWZepwzvTvG5I+XfsvNDqkbVrCQLy166FAQO87kKr+fPnM3HiRJo3b673A1A+TxOAAoqKt83+YQevfLOVSgEBTL25MyO7N0Pk/MXb3MZ5oVVV51Z/1eIXWg0Z4pkYSiEiIoI6deoQERFhdShKuUwTgCJ1/wnGxSSRmJFF//b1eeGmzjSsWcWzQZzvQisvSgBdu3blrbfe8uqCdUqVliYAP5ZXaOftb7fzzrdp1KxaibdGd2NIl0ae2+ovzkcutEpKSmLChAm0bdtWk4DyeZoA/NTG3ccYtyCJbQdOcVPXxjx9Q0fqhARZF5DzQqu8NWsILCigsFIlKnvhhVZdunThxRdfpEuXLlaHopTLNAH4mZz8Ql75ehuzf9xBwxpVmH13FFe3c61+j1s4L7Sa0KEDVbdt43SLFrziZQeAQWcAqmLRBOBHfko7TPTCZHYfzeEvvcIYN7Ad1atUsjqsP9hsTElMpFevXqxdu9brVv6gMwBVseh1AH4g63QB0QuSuO39dQQIfDamFy/c1Nm7Vv5OKSkppKenk5KSYnUoJUpMTOTxxx/3vmqlSpWBzgAquK837WfSFykcPpXHA1e25NH+EVSp5H1b1mfMmTOHkydPMmfOHKKiSnVPC6VUGekMoII6fCqPsZ/8ypj/bKBOSBBfPNyX6IHtSN2U7H03WynmTIkFby210LVrV5YuXar7/1WFoDOACsYYwxcJe3n2y83k5Nl5/NoIHriyFUFi2PbaayyJjiZ46lQiHnnEK/exjx49msDAQEaMGGF1KCXy9pvWK3Ux9J7AFUjm8dNMXJTMt1sP0S2sqHhbmwbVfy+zcHr1aoLsdvJtNqrq/WyVqpAu5p7AOgOoABwOw39/2c202FTsDsPTQzpwV59wbAHOC7p8pMyCUsqzNAH4uPRDp4hemMwvO45yWetQXrq5M83qBJ/dyEfKLCilPEsTgI8qtDt4/4cdvPbNNoICA5g+vAsjopqWXMbBR8osKKU8SxOAD9qceYInFySSsvcE13VowPM3daJBjfMUbztzP9uVKwkGcoDqXlhmQSnlWS6dBioiI0Rkk4g4ROScBx1EZKCIbBWRNBGJdqVPf5ZXaOeVr7dy48wf2J+Vyzu3X8KoaFANAAALBklEQVS/77j0/Ct/+L3Mwuz+/XkGmN2/vx4AVkq5fB1ACnAzsOZcDUTEBrwNDAI6AKNFpIOL/fqdDbuOcf2bP/DWqjRu7NqYbx69ksGdL6Jyp81G6N13MwUIvftuXfkrpVzbBWSM2QJcaCXUA0gzxqQ7234GDAU2u9K3v8jOK2TG11uZ89NOGtesypx7utOvbf0yfZa3n2OvlPIsTxwDaALsKfY8A+jpgX593ve/HWL8wmQyjp3mzt7NeXJgO6pVLvtXFhAQwMiRI90YoVLKl11wbSIiK4CGJbw10RizuBR9lDQ9OOfVZyIyBhgDEBYWVoqPr3iycgp44avNzN+QQcvQED5/oDc9WtSxOiylVAVzwQRgjOnvYh8ZQLNiz5sCmefpbxYwC4quBHaxb5+zPGU/Ty1O4Wh2Pg/1a8Uj17Tx6uJtSinf5YldQOuBNiLSAtgLjAJu80C/PuXgyVwmL9nEsuT9dGhUgw/v7k6nJjWtDkspVYG5lABEZBjwFlAP+EpEEowxA0SkMfC+MWawMaZQRMYCcYANmG2M2eRy5L7MboelS2H+fAywsN+tPLe3CqcL7DwxoC1jrmhJJZsWalVKlS9XzwJaBCwq4fVMYHCx58uAZa70VWHY7dC/P3z3HRnVQ5kwYCxr0mxcenIn054aSeuGutWvlPIMvRLYU85s9b/yCo7vf+A/l1zPtCvvAuDZb97ljpRvCBjUWGvzKKU8RhOAJ9jtcN118N13bK/ZkHG3TyW+aUcu3/ErLy6fSbMTB4vaaXE2pZQHaQLwhNhYCtauY1b3m3mj72iqFuQx46tXGZ6y6o9zZAMCtDibUsqjNAF4QEp8KuNGTGFTw9YMTv2BySvepX728d/fN4CEhWlxNqWUR2kCKEe5BXbeXPkb/85tR+3qx3l30RQGbvv5f9pJSAhs3qz1eZRSHqXnGpaT9TuPMvjN73ln9XZuvqQpK7d+wsDtv/zRQARq1YKJE+HoUaha1bpglVJ+SWcAbnYqr5Dpy1OZ+/MumtSqytx7e3BFRD0Y/mXRWUAxMUUNb7ml6ICvbvUrpSyiCcCNvtt2iAkLk8nMOs3dfcJ5YkBbQs4Ub7PZYOjQon9KKeUFNAG4wfGcfJ5bupmFv+6lVb0Q5j/Qm6hwLd6mlPJumgBctCx5H08vTuF4TgFjr2rN2Ktba/E2pZRP0ARQRgdP5PLU4hTiNh2gU5MafHRvDzo21jIOSinfoQngIhljmL8hgxeWbia30MG4ge24//IWBGrxNqWUj9EEcBH2HM1h/MJkfkg7TI/wOkwd3pmW9apZHZZSSpWJJoBSsDsMc3/eyfTlWwkQeH5oR27v2ZyAgFLekF0ppbyQJoALSDt4kidjkvh193H6ta3HlGGdaVJLL9pSSvk+TQDnUGB38O/vtvPmyjSCK9t4bWQkN3Vtgohu9SulKgZNACVIzsjiiZhEUvef5PoujXj2xo6EVqtsdVhKKeVWmgCKyS2w89qKbby3Jp3QapX59x2XMqBjQ6vDUkqpcqEJwGld+hGiFyaz43A2I6OaMeH69tSsWsnqsJRSqtz4fQI4mVvAtOWpfLx2N83qVOW/9/Wkb+tQq8NSSqly59cJ4NvUg0xclMy+E7n89bIWPH5dBMFBfv0jUUr5Eb9c2x3Nzuf5pZtZtHEvbepXY8FDfbgkrLbVYSmllEf5VQIwxrA0aR+Tl2wi63QB/7imDQ9f1YrKgVq8TSnlf/wmARw4kcvERSms2HKALk1r8vF9PWnfqIbVYSmllGVcSgAiMgKYDLQHehhj4s/RbidwErADhcaYKFf6vRjGGOat38OUZVvIL3QwYXA77u2rxduUUsrVGUAKcDPw71K0vcoYc9jF/i7K7iM5RC9M4qftR+jZog7ThnchPDTEkyEopZTXcikBGGO2AF5XHsHuMHz44w5mfL2VwIAApgzrxOjuYVq8TSmlivHUMQADfC0iBvi3MWZWeXWUlVPAXR/+QsKe41zdrj5ThnWiUU0t3qaUUn92wQQgIiuAkuohTDTGLC5lP32NMZkiUh/4RkRSjTFrztHfGGAMQFhYWCk//g81qgbSvG4w9/QN58bIxl43O1FKKW8hxhjXP0RkNfDPcx0E/lPbycApY8yMC7WNiooy8fEX/EillFJOIrKhtCfalPupMCISIiLVzzwGrqPo4LFSSikLuZQARGSYiGQAvYGvRCTO+XpjEVnmbNYA+EFEEoFfgK+MMctd6VcppZTrXD0LaBGwqITXM4HBzsfpQKQr/SillHI/vRpKKaX8lCYApZTyU5oAlFLKT2kCUEopP6UJQCml/JRbLgQrLyJyCNhVxv8eCni0+Fw5qihjqSjjAB2LN6oo4wDXxtLcGFOvNA29OgG4QkTiPVl2ujxVlLFUlHGAjsUbVZRxgOfGoruAlFLKT2kCUEopP1WRE0C5lZy2QEUZS0UZB+hYvFFFGQd4aCwV9hiAUkqp86vIMwCllFLnUWESgIiMEJFNIuIQkXMePReRnSKSLCIJIuKVNxu4iLEMFJGtIpImItGejLE0RKSOiHwjIr85l7XP0c7u/D4SRGSJp+M8nwv9jEWksojMc76/TkTCPR/lhZViHHeLyKFi38N9VsRZGiIyW0QOikiJZeWlyJvOsSaJyCWejrE0SjGOfiKSVew7edrtQRhjKsQ/oD3QFlgNRJ2n3U4g1Op4XR0LYAO2Ay2BICAR6GB17H+KcToQ7XwcDUw7R7tTVsda1p8x8DfgXefjUcA8q+Mu4zjuBmZaHWspx3MFcAmQco73BwOxgAC9gHVWx1zGcfQDlpZnDBVmBmCM2WKM2Wp1HO5QyrH0ANKMMenGmHzgM2Bo+Ud3UYYCHzkffwTcZGEsZVGan3HxMcYA14j33YfUF35XSs0U3U726HmaDAXmmiJrgVoi0sgz0ZVeKcZR7ipMArgIZ25Qv8F5/2Ff1QTYU+x5hvM1b9LAGLMPwLmsf452VUQkXkTWiog3JYnS/Ix/b2OMKQSygLoeia70Svu7Mty5yyRGRJp5JrRy4Qt/G6XVW0QSRSRWRDq6+8NduiGMp3n6BvXlyQ1jKWkr0+OndJ1vHBfxMWHO76QlsEpEko0x290ToUtK8zP2iu/hAkoT45fAp8aYPBF5kKJZzdXlHln58IXvpDR+paiswykRGQx8AbRxZwc+lQCMMf3d8BmZzuVBEVlE0fTY4wnADWPJAIpvpTUFMl38zIt2vnGIyAERaWSM2eecgh88x2ec+U7SRWQ10I2ifdZWK83P+EybDBEJBGpi8bS+BBcchzHmSLGn7wHTPBBXefGKvw1XGWNOFHu8TETeEZFQY4zb6h351S6gCnaD+vVAGxFpISJBFB2A9KozaCiK5y7n47uA/5nZiEhtEansfBwK9AU2eyzC8yvNz7j4GG8BVhnnETwvcsFx/Gkf+Y3AFg/G525LgDudZwP1ArLO7Ir0JSLS8MzxJBHpQdH6+sj5/9dFsvpIuBuPqA+jKPPnAQeAOOfrjYFlzsctKToDIhHYRNHuFstjL8tYnM8HA9so2lr2urFQtC98JfCbc1nH+XoU8L7zcR8g2fmdJAN/tTruP43hf37GwHPAjc7HVYD5QBrwC9DS6pjLOI6XnH8TicC3QDurYz7PWD4F9gEFzr+TvwIPAg863xfgbedYkznPWYFePo6xxb6TtUAfd8egVwIrpZSf8qtdQEoppf6gCUAppfyUJgCllPJTmgCUUspPaQJQSik/pQlAKaX8lCYApZTyU5oAlFLKT/0/QspBqTTjfqcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ypred_mean=[]\n", "for i in range(Np):\n", " ypred_mean.append(np.mean(ypred[i,:]))\n", "print (ypred_mean)\n", "for i in range(Ns):\n", " plt.plot(ytrue[0:Np],ypred[:,i],'.',c='black', ms = '1')\n", "plt.plot(ytrue[0:Np], ypred_mean,'.',c='red',ms=10)\n", "plt.plot([-1.5,1.5],[-1.5,1.5])\n", "#plt.ylim([0,1.2])\n", "#plt.xlim([0,1.2])\n", "plt.show()\n", "#compare with Fig. 11.8\n", "#Prediction from the predictive model versus actual at 20 new measurements generated. \n", "#Each point represents the mean of the estimate generated using 100 different samples from the MCMC chain\n", "# and the error bars give the range of those estimates." ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[11.3.5 Test the predictive model](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.5-Test-the-predictive-model)", "section": "11.3.5 Test the predictive model" } }, "source": [ "To make a prediction using the KOH model, we have to modify the difinition of $\\bf{k}^*$ to include the kernel function for the discrepancy function. Each element of the vector is\n", "$$(\\bf{k})^{*} = k({\\bf{x_{i}, t, x^*, t^*}}) + k_{\\delta}(\\bf{x_{i}, x^*}), \\ \\ \\ i = 1, ..., N$$\n", "$$(\\bf{k})^{*} = k({\\bf{x_{i}, t, x^*, t^*}}) , \\ \\ \\ i = N+1, ..., N+M$$\n", "\n", "where $k({\\bf{x_{i}, t, x^*, t^*}})$ is the covariance kernel function for simulations. The prediction requires this definition of $\\bf{k}^{*}$ to inform the prediction vector that the covariance between the predicition should have a different form when compared with the simuation training points versus the measurement point. " ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[11.3.6 Plot surface](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6-Plot-surface)", "section": "11.3.6 Plot surface" } }, "source": [ "## 11.3.6 Plot surface" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.1 Full prediction](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.1-Full-prediction)", "section": "11.3.6.1 Full prediction" } }, "source": [ "### 11.3.6.1 Full prediction" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.1 Full prediction](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.1-Full-prediction)", "section": "11.3.6.1 Full prediction" } }, "outputs": [], "source": [ "\n", "Ns = 100\n", "Np = 100\n", "samps = np.random.randint(high=t_hist.size,low=10**4, size= Ns)\n", "Xstar = np.zeros((Np,2))\n", "Xstar[:,0] = np.linspace(-3,3,Np)\n", "ystar = np.zeros(Ns)\n", "varstar = ystar*0\n", "\n", "deltastar = np.zeros(Ns)\n", "delta_pred = np.zeros((Np,3))\n", "ytrue = truefunc(Xstar[:,0]) + np.random.normal(size=Np,loc=0,scale=sd_meas) \n", "ypred = np.zeros((Np,Ns))\n", "\n", "for i in range(Ns):\n", " Xstar[:,1] = t_hist[samps[i],:]\n", " x[0:N,1] = t_hist[samps[i]]\n", " cov_f = lambda x,y: cov(x,y,beta=beta_hist[samps[i],:],l=lam_hist[samps[i],0],alpha=2)\n", " cov_t = lambda x,y: cov(x,y,beta=beta_t_hist[samps[i],:],l=lam_hist[samps[i],1],alpha=2)\n", " ypred[:,i],varstar = GPR(x,\n", " z,Xstar,cov_f,0,M=N,\n", " cov_mat=sd_meas**2*np.identity(N),cov_t=cov_t)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.1 Full prediction](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.1-Full-prediction)", "section": "11.3.6.1 Full prediction" }, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8Tfcfx/HXN0sSYgWtLSUVZJAEsYOKFLUp2kpDrRqtFaN2rVKzNUqNaK3WKDVjrxqNUQ1itJSIFSTIkHG/vz8O+QVBEknOTfJ9Ph73kdx7zz3nfSPyud9zvkNIKVEURVGUlDDRO4CiKIqSdaiioSiKoqSYKhqKoihKiqmioSiKoqSYKhqKoihKiqmioSiKoqSYKhqKoihKiqmioSiKoqSYKhqKoihKipnpHSC9FSpUSJYpU0bvGIqiKFnK8ePHw6SUhV+3XbYrGmXKlCEwMFDvGIqiKFmKEOK/lGynTk8piqIoKaaKhqIoipJiqmgoiqIoKZbtrmkkJy4ujpCQEGJiYvSOomRDlpaWlChRAnNzc72jKEqGyxFFIyQkBBsbG8qUKYMQQu84SjYipeTu3buEhIRgZ2endxxFyXA54vRUTEwMtra2qmAo6U4Iga2trWrFKjlGjigagCoYSoZRv1tKTpIjTk8pimIcHj16xLFjxzh37iaXL5sRGmpC6dIOVK3qSK5cBtzdH/DWW/n1jqm8Qo5paejN1NSUypUrJ96uXLnyyu3LlClDWFgYAHny5HnlPh0dHWnXrh1RUVFpzrd3716aNWsGwMaNG5k8efJLtw0PD2fu3LmJ90NDQ2nbtm2aj52Up6cnpUqVIuna9S1btnzpz0Axfo8fP+bff2HKlEfky1eShg0b0qfPaaZNa8/KlW2ZPNmRNm2gWTMTihYtT+3atWnTZjNt24azdSvExur9DpSkVNHIJFZWVpw6dSrxlh5TnTzdZ1BQEBYWFsyfP/+Z56WUGAyGVO+3efPmDB069KXPP180ihUrxpo1a1J9nJfJnz8/hw4dSjzWjRs30m3fSuZISEhg2bIVONj7UbLQScqWhSFD8uBrqMZWYCfrWMIHHKUyZ3mXU7iwLW9jhpctSPT166xbd4C1awVNmkDhwgl06wbnzun9rhRQRUNXS5cupU+fPon3mzVrxt69e9O0rzp16nDp0iWuXLlChQoV+Pzzz3F1deXatWsEBARQo0YNXF1dadeuHY8ePQJg27ZtODg4ULt2bdatW5dsrlu3btGqVStcXFxwcXHhjz/+YOjQofzzzz9UrlyZwYMHc+XKFRwdHQGt04Gvry9OTk5UqVKFPXv2JO6zdevWeHt7Y29vj5+f30vfS4cOHVi1ahUA69ato3Xr1s88P3XqVKpWrYqzszOjR49OfLxly5a4ublRqVIlFixYkPh4njx5+Oqrr3BxccHDw4Nbt26l6WespMyuXbtwsq+Pj09Nzl+awsNHxbAzG8tbVk5crXAN74MHaXhhM1PLBVPX4hzt7eJZXK8AMdUM+EU/5PiVK4RazWaMcyMKF/ShceNYli8HX9/UfwBS0l/Ou6bx5Zdw6lT67rNyZZg585WbREdHU7lyZQDs7OxYv359uh0+Pj6erVu34u3tDcD58+dZsmQJc+fOJSwsjPHjx7Nz505y587NN998w/Tp0/Hz86Nbt27s3r2bcuXK8eGHHya77379+lGvXj3Wr19PQkICjx49YvLkyQQFBXHqyc8x6am2OXPmAPD3338THByMl5cXFy5cAODUqVOcPHmSXLlyUb58efr27UvJkiVfOGbDhg3p1q0bCQkJrFq1igULFvD1118DEBAQwMWLFzl27BhSSpo3b87+/fupW7cuixcvpmDBgkRHR1O1alXatGmDra0tkZGReHh4MGHCBPz8/Fi4cCEjRoxIt5+/8n/TBk9n0LcDKQUUFAHck5uJYTN5KzlSr4o7VapUgVq1APj8yy+5cuUKp0+fZuGBA8yOjqZ1q1as7d+fosuXM/qnnxgZcxwTGzNu7RvJ+z1G0rdvfgYMmMDMmXkZNQpsbfV9vzlRzisaOnl6Kik9JS1EderUoWvXroSGhlK6dGk8PDwAOHLkCGfPnqXWk/+osbGx1KhRg+DgYOzs7LC3twfg448/fubT+VO7d+9m2bJlgHYNJV++fNy/f/+lmQ4ePEjfvn0BcHBwoHTp0olFo2HDhuTLlw+AihUr8t9//yVbNExNTalduzarV68mOjr6mVN5AQEBBAQEaH980C6sXrx4kbp16zJ79uzEYnzt2jUuXryIra0tFhYWiddr3Nzc2LFjR0p+vEoq3A29z4hmf7P45GcMMZ/JGL/O7HMtxK1HbfDy+oG33377hdf07t078fvHjx9z5MgRChYsCE5O/Fu8OL3On+fbEiVwWr6cfMuXU8vdnTlz/mD58hgePFjAihWCqVPBxwdUB7bMk/OKxmtaBJnJzMzsmWsOqe3r/7JClDt37sTvpZQ0atSIlStXPrPNqVOnMqSraNIL2M/LlStX4vempqbEx8e/dNsOHTrQqlUrxowZ88L+hw0bRo8ePZ55fO/evezcuZPDhw9jbW2Np6dn4s/T3Nw88b2+7rhK6sTGxvJJs69Yt+NT4qkLfEe1H6dj2bktjVOxn1y5clGvXr3E+1euXCHw9GmqHDjA5507M/bmTb7bupXOTk589HAnERGu5M69CV/f4mzZAgsXwpPPI0oGU9c0dFSmTBlOnTqFwWDg2rVrHDt2LN2P4eHhwaFDh7h06RIAUVFRXLhwAQcHBy5fvsw///wD8EJReaphw4bMmzcP0C5uPnjwABsbGx4+fJjs9nXr1mX58uUAXLhwgatXr1K+fPlU565Tpw7Dhg2jY8eOzzzeuHFjFi9enHhd5vr169y+fZuIiAgKFCiAtbU1wcHBHDlyJNXHVFLn/v37OJYaxi87xhNPQcoV7UJgYE1ad37znnQNGjTgwoULdO/enTn+/lQ4cYIdfn5UDQkh8OZNWrlbYG7egHHjHrNuHQwcmA5vSEkRVTR0VKtWLezs7HBycmLQoEG4urqm+zEKFy7M0qVL6dixI87Oznh4eBAcHIylpSULFiygadOm1K5dm9KlSyf7+lmzZrFnzx6cnJxwc3PjzJkz2NraUqtWLRwdHRk8ePAz23/++eckJCTg5OTEhx9+yNKlS59pYaSUEIJBgwZRqFChZx738vKiU6dO1KhRAycnJ9q2bcvDhw/x9vYmPj4eZ2dnRo4cmXh6TskYVy5dola5cly85YjgMBNH/ErwtYW4ubml2zFsbW2ZO3cugYGBFCpUiF/u3YOgIPK6u/PrsWMcatyIkcPN2LkzjoED7wKgGpGZQEqp2w1YDNwGgl7yvABmA5eA04Dr6/bp5uYmn3f27NkXHlOU9JSTfsei7zyQ1fI5yvwgl3s1k38ePp7hx4yMjJSRkZFSSikvBAXJGz4+UoKUjRvLrp98IsuVKyfPnv1X1qsn5dSpUhoMGR4p2wECZQr+buvd0lgKeL/i+fcB+ye37sC8TMikKMpLRN+KwLHEMYIi1rJnxDg6bf8dd4/0byE/z9raGmtrawwGA207daL6nj38PWoU7NpF16NHuXf3Lp6enlhaRjB4MPTrBwkJGR4rR9K1aEgp9wP3XrFJC2DZk0J4BMgvhCiaOekURUkqcM8RChc7xj+PG+JWYQtOY4ZnegYTExOWLFlCfHw8tWbMYNvIkdS4do2DefNiSgwnTpTHx+cu338PXbuqwpER9G5pvE5x4FqS+yFPHlMUJROd3HeM6g0eEGloiKfjDPad+QJTU1Ndsri6unL06FHKli1Ls3Hj+HngQCqEh7MHMMXAoUMejBqVgL8/vGJiAyWNjL3LbXJ9Ql/o0ymE6I52+opSpUpldCZFyVHCQkLwqP8HBvrhVeV7tp/or3ckSpQowYEDB2jRogXzdu+m4549lG/cmD3A/QkTqNHeFBsbeDI8R0lHxl40QoCko79KAKHPbySlXAAsAHB3d3/5QAFFUVIlOjKS5pUrI6WBJi6RbD7xld6REuXJk4dNmzbx+PFjTPPnJ377dhy8vGDAAHBzo1ChA+TL1xgpixIQAI1TM3BEeSljPz21EegsNB5AhJRSzV6nKJlBSobVmsrZuw9Z2fkDNp8ynoLxlJWVFfnz5ycmJobGgwYx3ccHoqMJrVuXPr174+3tzZIlkXh7w/TpeqfNHnQtGkKIlcBhoLwQIkQI0VUI0VMI0fPJJluAf9G63C4EPtcp6hubNWsWjo6OVKpUiZlJRqXfu3ePRo0aYW9vT6NGjRKn6Fi7di2VKlWiTp063L2r9UH/559/6NChw0uPUaZMGZycnHBxccHLy4ubN2+mOW/SSQgDAwPp16/fK7efOHHiM/dr1qyZ5mMn9emnn752Bt29e/fyxx9/pMvxXnecZjnofEfvunOZ9dcY3rOfSxt/f73jvJKZmRmFChVi4LRpzOzShWJRUazPn59z586xdGlTWrVKYOBAWL1a76TZQEr65WalmzGO0/j7779lpUqVZGRkpIyLi5MNGzaUFy5ckFJKOXjwYDlp0iQppZSTJk2Sfn5+Ukopa9SoIR88eCAXLFggZ8+eLaWUskOHDomvS07p0qXlnTt3pJRSDhs2TPbt2/eFbeLj41OU+fLly7JSpUopfo+5c+dO8bap4ePjI3/99ddXbjN69Gg5derUVO03Li4u1Vn27NkjmzZtmuxzev+Opbf+7SZIiJT5zP6Qjx7E6B0nRWJjY2WbNm0kIGf37y+ltbVcWaqUFELI1q07yTp1DNLCQsp9+/ROapzIIuM0coRz587h4eGBtbU1ZmZmibPGAmzYsAEfHx8AfHx8+O233wCta+Hjx4+JiorC3NycAwcOULRo0cQJBl+nbt26iVOH5MmTh1GjRlG9enUOHz7M8ePHqVevHm5ubjRu3DhxvYrjx4/j4uJCjRo1EmerhWc/YT969Chx6nNnZ2fWrl3L0KFDEydP/OijjxKPCdqHksGDB+Po6IiTkxOrn3zU27t3L56enrRt2xYHBwc++uijV85bBVpLavTo0bi6uuLk5ERwcDBXrlxh/vz5zJgxg8qVK3PgwAHu3LlDmzZtqFq1KlWrVk1cm2PMmDF0794dLy8vOnfuTPXq1Tlz5kzi/j09PTl+/DjHjh2jZs2aVKlShZo1a3L+/PkU/cyzi63LNjPj147APfbstiW3TepH9OvB3NyclStX0rJlS/rNmMGiHj3ocOMGU0uVYt26FQwceAA7O/jwQ3iD9cqUlFSWrHRLSUujXr16L9zmzJkjpdRGnib3/JIlS6SUUt65c+eF517n7Nmz0t7eXoaFhcnIyEjp4eEh+/TpI6WUMl++fM9smz9/fimllAEBAdLV1VU2a9ZMhoeHSy8vL3nv3r1XHidpS6N3796JrRZArl69WkqpfRqrUaOGvH37tpRSylWrVklfX18ppZROTk5y7969UkopBw0alNjSSPoJ28/PT37xxReJx3ya6fmWxtP7a9aske+9956Mj4+XN2/elCVLlpShoaFyz549Mm/evPLatWsyISFBenh4yAMHDrzwnpK2NEqXLp3Y6pozZ47s2rWrlPLFlkbHjh0T9/Xff/9JBweHxO1cXV1lVFSUlFLK6dOny1GjRkkppQwNDZX29vZSSikjIiISWyI7duyQrVu3fuHn8Lzs0tKIuHVLmrJGQoycPmSt3nHS5PHjx7JLly4yKChIyl9/lQYh5LGaNaWMjZXBwVIGBOid0DiRwpaGsfeeyhYqVKjAkCFDaNSoEXny5MHFxQUzs1f/6Bs1akSjRo0A8Pf3p0mTJpw/f55vv/2WAgUKMGvWLKytrV94Xf369TE1NcXZ2Znx48cD2syubdq0AbS1NoKCghL3nZCQQNGiRYmIiCA8PDxxptFPPvmErVu3vrD/nTt3Ji6QBFCgQIFXvo+DBw/SsWNHTE1Neeutt6hXrx5//vknefPmpVq1apQoUQIgcQnc2rVrv3J/TxdkcnNze2bhqOcznj17NvH+gwcPEidYbN68OVZWVgC0b9+eRo0aMXbsWH755RfatWsHQEREBD4+Ply8eBEhBHFxca/MlF1IKfm8dm0SMKFNjf/oP3mA3pHSxMLCgkWLFgEgK1bkr+HDqTphAnz2GTd9fYmLiwKacPKkthSOmlY9dXJk0XjV6njW1tavfL5QoUJpWl2va9eudO3aFYDhw4cn/rF86623uHHjBkWLFuXGjRsUKVLkmddFRUXh7+/P9u3b8fLyYsOGDaxYsYLly5fTrVu3F46zZ8+eFyb5s7S0TByIJaWkUqVKHD58+JltwsPDUzRVupQyVVOqy1ecckrNVOnPv+ZV2xsMBg4fPpxYHJJKOm188eLFsbW15fTp06xevZoffvgBgJEjR1K/fn3Wr1/PlStX8PT0fG2u7GDbqLksv3iRcbVqMfJg1iwYz1u0aBE9Jk1iZbt2tFu2jOG7dvFXeDhz5pzE19ee6dO1ddmUlFPXNDLJ7du3Abh69Srr1q1LnPK7efPm+D/pmeLv70+LFi2eed2UKVP44osvMDc3Jzo6GiEEJiYmRKXxpGz58uW5c+dOYtGIi4vjzJkz5M+fn3z58nHw4EGAxOnNn+fl5cX333+feP9pby9zc/NkP5HXrVuX1atXk5CQwJ07d9i/fz/VqlVLU/aXeX6q9uczvmrxqw4dOjBlyhQiIiJwcnICtJZG8eLaxANLly5N16zG6tzu03wwviW183zH8Gy0SFXHjh2pVasWndatY4O3N79ev05+MzNGjGhI48Yx+PlBBqxIkOmio6PZt29fphxLFY1M0qZNGypWrMgHH3zAnDlzEk/rDB06lB07dmBvb8+OHTsYmmTeg9DQUAIDAxMLycCBA/Hw8MDf359OnTqlKYeFhQVr1qxhyJAhuLi4ULly5cTuqkuWLKF3797UqFEj2U/pACNGjNDWUXB0xMXFJXEN8O7du+Ps7Jx4IfypVq1a4ezsjIuLCw0aNGDKlCnJruL2Jj744APWr1+feCF89uzZBAYG4uzsTMWKFZk/f/5LX9u2bVtWrVpF+/btEx/z8/Nj2LBh1KpVi4QcMHlR1MNH1PIKIYFC9PnaCdOX/NtnRblz52bTpk24u7vTftcuTtWqxe8REdy7fYtbt5pStKiBDh0gPFzvpGnn7++Pra0tnp6eb9TNPsVScuEjK92Mscutkv1l5d+xdwuNkCBlI8cFekfJMPfv35eurq4yT548Mqx2bbnBxEQKIeSXX66SZmZStmmTdaZTv3Dhghw4cKA8cuSIlFLKwMBA2adPHxkQECBjY2PTvF/UhXBFUV5n9rCFXAgbSi6THWw71VXvOBkmf/78BAQEcPjwYWzr1qW5pyf7z56lZruSlC5t/BfDpZTs2rWLmTNnsnnzZszMzChdujTVq1fHzc0tXRe/eh11ekpRcqjI8HBGTfkFuMGWX/JhYpq9/xzY2tpq443y5uW3fv24V7AgJs2a0bL8Vt5553ejLRwGg4E6derQqFEj/vzzT0aPHs3Vq1fp27evLnlUS0NRcqih779PhOEI6wf9SIM2k/WOk2mklExbtIgjd+6wPG9efm3Vit+lZMzY0+zbV56NG8HcXO+UEBsbi7m5OSYmJvj6+tK1a1c6deqUpuWT01P2/mihKEqy9i89wKkjNRlcviItp+acggHa+vObNm2ievXqdLh/H1dTU0oYDEyaMJlt2+C5adR0cfDgQVxcXPjll18Arcu+r6+v7gUDVNFQlBzHEBdPq88MHGQUvos26R1HF/ny5WPHjh20aNGC4VFR1BcCk0h/8tr8xtdfS9264UZERNCrVy/q1KlDdHT0C2OujIEqGoqSw9R1GM+9hHq0q7aOCrXs9I6jGysrK9asWUOvXr2wadOG9VZWRD38FCvLe/j4QExM5uZZu3YtFSpUYMGCBQwYMIAzZ87QsGHDzA2RAqpoZIK7d+9SuXJlKleuzNtvv03x4sUT78fGxqZoH+vWrSM4ODjxfu3atV85aE1RkhOwMoBD//bGlCP8vP9jvePoztTUlDlz5vDt8uV47tnDLMvHTMrVl+BgeDKnaIaSUiaOBUpISKB06dIcPXqUadOmPTN7gTFRRSMT2NracurUKU6dOkXPnj3p379/4n0LCwtA++UxGAwv3cfzRUNRUstgMNDyk+tAfr4fE4pFLiO42msEns6yIKtW5cfSpRl+byVjberz+N8JGXrcP//8kwYNGjB5snZNqV27dvzxxx+4u7tn6HHflCoaOrp06RKOjo707NkTV1dXrl27Rv78+ROfX7VqFZ999hkHDhxgy5Yt9O/fP3Fiv6fPV6tWjfLly2fKIkRK1rZk0CCiExZRodAkeo5urXccoyOE4LeAACo4OjL64V58R4ygf/uvSO/5Ks+fP8+HH35ItWrVOHPmTOIMCUKIVM3rppcc2eU2ufnn2reHzz/X5tlv0uTF5z/9VLuFhUHbts8+l4b5CxOdPXuWJUuWMH/+/JdOwFenTh2aNGlC27ZtadmyZeLjUkqOHTvGxo0bGTduHNu2bUt7ECVbexAWxtDZs6ltac6+q9lnbqn0VqpUKQ6eOMGEwYMZO2sTM38dyV9nVxJwqt1rZ6ZOiWnTpuHn54elpSUjR45k0KBB5M2bNx2SZx7V0tBZ2bJlqVq1appem3Sa8KetD0VJzsCmmyieMJ3pk6Zhko3mlsoI5ubmjJk5k8Nbv8fKZBN7zrSinK0Hp0+cSPW+YmNjWbt2LRcvXgSgVq1aDBw4kMuXLzNu3LgsVzAgh7Y0XtUysLZ+9fOFCr1Zy+J5SS92mZiYPDOVeMxrum+kZJpwRbl89B8WHWuBjdlfuPatq3ecLMPD25uLF6J51yGB8AcTueHbBecdAez6+28sLCyoWbNm4pIDSUVHR7N79242bNjA+vXrCQsLY/jw4UyYMAEPDw88PDwyJnB8PNy7B88tr5DecmTRMFYmJiYUKFCAixcvUrZsWdavX0/hwoWBF6f/VpSUkFLiUnsPkk+ZPyUW02w+VUh6K17Wim9mQN++XrQ4vYS9Dg6MLlKEQ+fPY2lpSbFixShWrBj16tVLXPTM1dWV4OBgbGxsaNKkCT4+Pnh5eaVvMCnh3DnYvx8CA+GvvyAoCKpW1R7LQKpoGJlvvvkGb29vSpUqRcWKFXn8+DGgrQvQo0cPpk2blriOuKK8zpDOM3gY/yVv515Mx/6f6R0nS+rVC5YsieXKP1XwiviFX+7f54GbG3+6uxP68CHXr1/n6tWridt/9tlnODo64unpmb4juK9ehe3bISBAO90RFqY9bmurLUH4+eeQUa2YJETS0yHZgbu7uwwMDHzmsXPnzlGhQgWdEik5gTH+jsVER5Pb+iAGKhN09D6Vqr2rd6QsKy4Obt++znvvvceVS5dYZ2LC+6am0LMnDB4MRYum/0FjY+HQIdi8GbZs0VoWAMWLQ8OGUK8e1K0LZcumyzS9QojjUsrX9vdVLQ1Fyaa+694dA4dp7dqOStUm6R0nSzM315YHnjz5MEOG9GCUxTkaV6mCyezZMHcu+PrCJ59on/RN0ngKUEq4cAF27tRaE7t3w6NHYGGhFYjPPoPGjaFiRV3nclctDUVJB8b2OxZ5P5yShWypmTs3m+7fh2Qu2CqpExMDdnZQokQ8GzfepWjRt4g5e5Zc336LWLECHj+GUqWgdWuoVg1cXcHePvkikpAAly9DcDCcOQOHD8Mff8CdO9rzdnbg5QXvv6+1KvLkyfD3p1oaz5FSZomBM0rWY4wfvL5ssgkbw2+M/vq2KhjpxNISvvkGfHzM2LbtLXx8DHw4bBiWlpYsuXIF6x07YPVqmDcPZs7UXmRhAQUKQL58WtfMR4+0tWXDw7XeTk/Z22sDxGrVggYNtFNORipHtDQuX76MjY0Ntra2qnAo6UpKyd27d3n48CF2dsYx+V/o2euUrGSBlelZwmNqY2amikZ6kRLq1NHOIgUHS378cSpDhw7FxcWF5cuXU7FiRe0CyLlzcPy49jU8HCIitJHDNjZaASlQAMqVgwoVwMFBu68z1dJIokSJEoSEhHDnadNPUdKRpaUlJUqU0DtGosruazDwBd8Mvq0KRjoTAr7/HtzcYPRowXff+eHo6IiPjw+urq5MmjSJL774AhNnZ3B21jtuhsgRLQ1FySlWz/mNDn0ak8dsAw/jOugdJ9saPhyKFYM+fbT7t27dolu3bhw7doyzZ89SsGBBfQOmgWppKEoOI6WkW/9QwJQfZ9roHSdbe351v7feeosNGzYQEhJCwYIFiYuLY9iwYfTt25fSpUtnWI6wsDD++usv/vrrL2rWrJlxo82TUMNDFSWb2Ll0KQ/jvsK9SG8+7N1U7zjZnsEAS5dq4+1Am6W2ZMmSABw/fpw5c+Zgb29P+/bt2blz5yuXPkiNhw8f0rhxY4oVK0bhwoV57733GDhwIDt37kyX/b+OOj2lKNlE3cJF+O9uGBf++49cT/54KRknLg5cXLSvQUHw/ODva9euMWPGDPz9/bl37x52dnYcPXqUwoULEx8f/8pZc6WU3L9/n5MnT3L06FGOHj1K2bJlmT59OlJK6tWrxzvvvIOTkxPOzs5Urlw5ccqhtFKnpxQlB9ny3UGCwrYzrvEyVTAyibk5zJgB3t7w3XcwaNCzz5csWZLp06czceJE1q9fz6ZNmxLX/P7ss89Yv349pUqVonjx4piZmfH222/z448/AuDp6cn+JHNI2dvb4+TkBGgtmv0ZPL/Uq6iWhqJkcVJKSlnvJiSmCqcP3cSpZkW9I+UozZrBgQNw6RKk9MO+v78/x48f5+rVq1y/fh2DwUCpUqVY/2SN2cWLF3P//n2cnZ1xd3enQCZ0yU1pS0MVDUXJ4vq2ncb3awdSrcT3HL3WR+84OU5wMDg6Qo8eMGeO3mnSTp2eUpQcID4+nnlrnYHbLN/8vt5xciQHBxg/HipV0jtJ5tC195QQwlsIcV4IcUkIMTSZ5z8VQtwRQpx6clNzOytKEn3aTCeBRlR6aynlnI136onsbuhQ+OADvVNkDt2KhhDCFJgDvA9UBDoKIZI7GbtaSln5ye3HTA2pKEYsLi6OzdvGkYfVKOC4AAAgAElEQVSu/L67vd5xcrzoaBg9Gvbs0TtJxtKzpVENuCSl/FdKGQusAlromEdRspTlI0cSEhvJqs9MsKtYRu84OZ4Q4O8PAwZoYziyKz2LRnHgWpL7IU8ee14bIcRpIcQaIYTqS6goaBPnTfuuNs0tutJk1iy94yhos+BOngynTsHy5XqnyTh6Fo3kppt9vivX70AZKaUzsBPwT3ZHQnQXQgQKIQLVpIRKTuA/fDtBUc2ItquMsLbWO47yRPv24O4OX32lrb+RHelZNEKApC2HEkBo0g2klHellI+f3F0IuCW3IynlAimlu5TS/U1HRSqKsYuPj6fHN7mAUBb/rs7oGhMTE5gyBa5d0wb8ZUd6Fo0/AXshhJ0QwgLoAGxMuoEQIunCu82Bc5mYT1GMUt923xErPXF8exkl7NUZW2NTvz6MGgXvvad3koyh2zgNKWW8EKIPsB0wBRZLKc8IIcYBgVLKjUA/IURzIB64B3yqV15FMQYJCQks3OAE3OK3gHZ6x1FeYuxYvRNkHF0H90kptwBbnntsVJLvhwHDMjuXohirNd98Q4LcT7WSjpR1+lbvOMor3LihXdsYOVJb8ju7UCPCFSWLMBgMTJg8mQomkfxxepXecZTXMBhg5UptFtyfftI7TfpR62koShaxde4Rcj38ipGtfDHNn1/vOMprFC8OX3yhdb/96y+906QfVTQUJYv4ctgDAumB88D+ekdRUmjIEMiXD4Zlo5PsqmgoShYwb9yvXHrkhaPtSirVyCEz42UDBQpo64lv3Qp79+qdJn2oaxqKkgX4fR0HRDNrfgW9oyip1KcP3LoF776rd5L0oYqGohi5VXO28Ci+Pba5FtKgbS+94yipZGUF32ajjm7q9JSiGLnvJk4EfmXetGJ6R1HewIkT4OsL8fF6J3kzqqWhKEbs/JEjHA49xLBK4bTrHaR3HOUNXL0KS5dC7drQtaveadJOtTQUxYgtHnSY2lTky7lz9Y6ivKEWLaB6dRgzRlt7I6tSRUNRjNTdaw+YeqgLF3NNpEjdunrHUd6QENrU6SEhWXstcVU0FMVIta6/Ckk+BnW9q3cUJZ14ekLjxjBxIoSH650mbdQ1DUUxQrdCwtj/zweYspP+332qdxwlHU2apI3bsLDQO0naqJaGohihtg2XAkXpWO8wJibqv2l2UqWKNuAvq66dpX4bFcXIxD5+zNELdxDs48etg/WOo2SQNWu0axxZjSoaimJkVgwfThxT+Ln7SnJZWeodR8kgO3dqizX9+6/eSVJHFQ1FMSJSwr4Vl3AzM6fj7Fl6x1Ey0KhRYGoKo0frnSR1VNFQFCOyatJBlt7cQF2PGYhcufSOo2SgYsX+P3X66dN6p0k5VTQUxYgM+voxcJs+3zfSO4qSCZ5Onf7VV3onSTnV5VZRjMTiKb8TGvMBZfJO4x2XgXrHUTJBgQIwdao2qaGU2gBAY6eKhqIYiYEjHwBR/DDXUe8oSib67DO9E6SOOj2lKEbgzOEThMfWIa/5Mrw+aqx3HCWTPX4MU6ZAQIDeSV5PtTQUxQgsHtwPQSD+UxfoHUXRgYkJLFigDfg7dUq7b6yMOJqi5AyR9yJZ/ccxOrxdgJZfdNY7jqIDc3MYPx7+/htWrNA7zaupoqEoOuvXYhv35Hk+9/tG7yiKjtq316YYGTlSO11lrFTRUBQdxT5O4OdDVTGIEGr07aR3HEVHJibaZIZXrsAPP+id5uVU0UhiyxZYvFjvFEpO0qnhPGJlKdpUP4ipmbrEmNN5ecGAAVC1qt5JXk5IKfXOkK7c3d1lYGBgml7bsqU2H8z581C8eDoHU5TnGAwSC9OTJGBN+O3C5Ctsq3ckJQcTQhyXUrq/bjvV0khi+nRt0fchQ/ROouQEY3v+RAKuOL61XBUM5Rm3b2tTjNy+rXeSF6mikcQ778DgwdpcMAcP6p1Gye6O/j4MC5rzy4Z2ekdRjMz9+9qSsF9/rXeSF6mi8ZyhQ6FECejbFxIS9E6jZFcXDxwg4GYoQ6rdokJ1Z73jKEamfHltpPgPP8A//+id5lmqaDwnd274/nvo0ydrzAOjZE39fW9Sg+F8/t13ekdRjNTo0dr4DWObzFAVjWS0aAFduxr3qEwl67p67i6b//mAq1blebtaNb3jKEaqaFEYOBBWr4Y//9Q7zf+pPn6vMHcuhIdr6/kqSnr54L11QDfG9FdNWeXVBg+GW7egSBG9k/yf6nL7Cr6+2pD+c+e0i+SK8qbC70ZRoFAkphwlztAUoc6BKkYiS3S5FUJ4CyHOCyEuCSGGJvN8LiHE6ifPHxVClMnMfBMmaOcU/fwy86hKdta+wRKgMG1q/KEKhpJiZ87A558bR+cc3YqGEMIUmAO8D1QEOgohKj63WVfgvpSyHDADyNTJeYoV03pTrV0L+/Zl5pGV7EhKSdC5nzHjW/x3jNA7jpKFnDsH8+bB0qV6J0lB0RBC9BFCFMiAY1cDLkkp/5VSxgKrgBbPbdMC8H/y/Rqgocjkj2cDB0LJktrXbHYmT8lk++bN40bcEeZ1OI5lbmu94yhZSJs2UKOGNplhZKS+WVLS0ngb+FMI8cuT00np9Ue7OHAtyf2QJ48lu42UMh6IADJ16KyVFcyfD5Mnqy64ypv5fuJj3jNx4KPZs/WOomQxQsC338KNGzBtmr5ZXls0pJQjAHtgEfApcFEIMVEIUfYNj53cn+DnP8unZBuEEN2FEIFCiMA7d+68YawXNWkC772X7rtVcpDt/n+z9np/4ov3xKpwYb3jKFlQzZrQtq22wt/Nm/rlSNE1Dal1sbr55BYPFADWCCGmvMGxQ4CSSe6XAEJfto0QwgzIB9xLJt8CKaW7lNK9cAb9h0xI0E5RzZyZIbtXsrlufS4DD5i5sLreUZQsbNIkbU6q3Ln1y5CSaxr9hBDHgSnAIcBJStkLcAPavMGx/wTshRB2QggLoAOw8bltNgI+T75vC+yWOvURNjXVZr8dMwbCwvRIoGRVR3ae59qjJuQ188elsYfecZQsrFw5rVenjY1+GVLS0igEtJZSNpZS/iqljAOQUhqAZmk98JNrFH2A7cA54Bcp5RkhxDghRPMnmy0CbIUQl4ABwAvdcjPTlCnw8KFxTiKmGK+POxwCYGw/1ZNCSR87dkCPHvp0zlGD+1Kpe3et21twsBrwp7xebGQk1nnmYCKKEGv4VO84SjYxZ442P95vv2nTHqWHLDG4LysaMwbMzGCE6mavpMCqQYNIYAjLBwfrHUXJRnr0gAoVYNAgiI3N3GOropFKxYppS8KOGqV3EsXYxcdJdqz+j8q5ctF24gS94yjZiJmZ1vX20iWt1ZGZVNFIgw4dwMFB7xSKsZvccyc/39/CR02/RZia6h1HyWbefx+8vWHsWMiAkQYvpYpGGoWFaaM0t23TO4lijKSEb5cVwoTzdJvTXu84SjY1cyZMnQoFC2beMVXRSKO8eeHUKW09cYNB7zSKsZk+bAsR8VWoUHg5+d42onmtlWylfHno1k0bEpBZVNFIIwsLrevt6dOwcqXeaRRjM3Y6QBg/LqmvdxQlB/j5Z2jaNHM+wKqi8QY6dIDKlbVJxDK7B4NivP7ac4KHcVUpaPEjHk1V0VAynsEAW7bATz9l/LFU0XgDJibaRIaXL8OCBXqnUYzF2rEDgDIsnv78/JuKkjE+/lib5sgjEyYcUIP73pCU2rKwHTqAbabOv6sYo8iwSCoWyYdrkUKs13NWOUVJpZQO7lNrhL8hIaB3b71TKMais9du7skgho06oncURckQ6vRUOjlxAurXh9u39U6i6OVhRBwbTtYAk4u49/hE7ziKkiFU0Ugn1tawfz9MnKh3EkUvHRr+RAKF+MTzOCZqMJ+STamikU4cHMDXV1vH97//9E6jZLb4eMm243WBo0xZ86XecRQlw6iikY5Gj9aucYwZo3cSJbMN+nglBsrhVnwFeQrk1zuOomQYVTTSUcmS2nTFy5bB2bN6p1Ey05ndA7GgBb9u7aF3FEXJUKr3VDobNgzKlNFW2FJyhrPbtrHzzk3G1L6HnVNFveMoSoZSRSOd2dpqrQ0l5+jmK6kn+tF7Xje9oyhKhlOnpzLIqlXw0Uf6LMeoZJ5jAdf54+b73MlXmkKOjnrHUZQMp4pGBgkLgxUrICBA7yRKRmrb7igQyYwpZfSOoiiZQhWNDNK9u3ZtY9gwNXV6dvXXketce/ABliZL8OrWWu84ipIpVNHIIE+nTj95En79Ve80SkZo13wvIPDrHKZ3FEXJNGrCwgyUkABVqkB0tNYF19xc70RKeol59AhbG28w8eBh3BRMTNTnLyVrUxMWGgFTU5g9Gx4+1BaCV7IP/y++IIpD7B7rrQqGkqOoP2UZzNNT7wRKeot8JPl5VVU65T2G57BhesdRlEylPiJlAoNBW91v1iy9kyjpYbTPPg5G9aRI9XYINTGhksOoopEJTEy0C+JjxsD9+3qnUd5EbKxk9vp3MOUQ41aqhVSUnEcVjUwycSJERGjLwypZV4+WvxAnS1Gl5E/YqKUalRxIFY1M4uysjRCfPRtCQvROo6RFQgL8tLUKcIp1OwboHUdRdKGKRiYaN077wzN2rN5JlLTYMmcpCRygQqH5lCz/rt5xFEUXqvdUJrKzg7lzwf21PaEVYzRn0jAKc5MDRy7pHUVRdKOKRhLx8fE8evSI/PkzbhGdzz7LsF0rGWjn0iCib5ZgUL3y2JYtq3ccRdGNOj2VxPLly7Gzs2PcuHFERERk2HHu3IFPPoHDhzPsEEo6khK69InjAGvxmT1X7ziKoitVNJJwdXXF09OT0aNHU6ZMGaZOncrjx4/T/ThWVrBjBwwZoqZOzwoWTf2Ta5FVcLJdxFvOapElJWdTRSMJJycn1q9fz4kTJ6hZsyZ+fn60atUq3Y+TJ4+2nviBA7B5c7rvXklnX371GAhlxneV9Y6iKLpTExa+wrZt27CwsKBBgwZER0dz9+5dSpQokS77josDR0dtTqq//lJzUxmrRdOO8tmg6tjmGkJYzDd6x1GUDJPSCQt1aWkIIQoKIXYIIS4++VrgJdslCCFOPbltzOyc3t7eNGjQAIDx48dTqVIlFixYQHoUWnNzmDRJm/126dI33p2SQaZOWA4E88P0CnpHURSjoNfpqaHALimlPbDryf3kREspKz+5Nc+8eC/q0qULbm5u9OjRg+bNm/PgwYM33merVtoI8aZN0yGgku4uHTnCxfvf8WnZ5rT5/FO94yiKUdCraLQA/J987w+01ClHipUtW5Zdu3bx3XffsW3bNjw8PLh06c366wuhXQwvWjSdQirpamn/teRDMMl/id5RFMVo6FU03pJS3gB48rXIS7azFEIECiGOCCFeWliEEN2fbBd4586djMj79Dj06dOHgIAAoqKiiIqKSpf9BgWBtzfcupUuu1PSwf4Nt5hwZCp1io3h7Vq19I6jKEYjwy6/CiF2Am8n89RXqdhNKSllqBDiHWC3EOJvKeU/z28kpVwALADtQniaAqdC/fr1uXDhAhYWFgBERESQL1++NO/P3Bx27dJmwZ03L51CKm/E1+cyYEKX4aX1jqIoRiXDWhpSyveklI7J3DYAt4QQRQGefL39kn2EPvn6L7AXqJJReVPracGYOnUqLi4u3HqDZkL58tCzJyxYoF0YV/TlP/sE/0Z4UMBiBs0/76x3HEUxKnqdntoI+Dz53gfY8PwGQogCQohcT74vBNQCMvZP6ty52nDtVGjQoAF37tyhZcuWREdHp/nQo0eDjQ0MHpzmXSjppO/gSOAmsyeUQAihdxxFMSp6FY3JQCMhxEWg0ZP7CCHchRA/PtmmAhAohPgL2ANMllJmXNG4cAH69YOyZbUuTSksAG5ubvz8888cOXKELl26pLk7bqFC8NVXsGUL7N6dpl0o6eDAbwd5GFuCfObT+GhgL73jKIrxkVJmq5ubm5tMs3PnpGzeXEqQsmRJKX/+WcqEhBS9dPLkyRKQY8aMSfPho6OlnDlTyqioNO9CeUPt7e2lFeZy10+r9Y6iKJkKCJQp+BurphFJysEBNmyAvXuhSBH4+GOoWROOHn3tS/38/OjRowd2dnZpPrylJXzxhTY3VTYbqJ8lnNx6gQMXrzHApSINPm6vdxxFMUqqaCSnXj04dgyWLIH//gMPD/DxgZs3X/oSIQTz58+nc2ftwumbTHS4Zw/UqAHpMH5QSSGDAZq1lUSzjX6LF+sdR1GMlioaL2NiAp9+ql3rGDoUVq6Ed9+FGTO0iaNeYePGjZQtW5YTJ06k6dA2NlrjZvz4NL1cSYOZw08SGlWeErbrKeLqqnccRTFaqmi8jo2NNklUUBDUrg0DBkCVKrB//0tf4ujoiJmZGQ0aNODIkSOpPqS7u1avZs6ENxx0rqRAbKxkyBQb4DSLflZzuijKq6iikYTBYODRo0fJP/nuu9o85hs2wKNH2iksH59kh3G/88477N+/n8KFC9OoUSP2v6LAvMzEiZArFwwalOqXKqnUq90W4mU53sn/LdW8G+kdR1GMmioaSfj7++Pg4MCaNWuS7zorBDRvro3AGz5cO2Xl4AALF2onxZMoVaoU+/bto0SJEjRu3Jjg4OBUZSlaVOuCu2GDWuEvIyUkJPDz7zHAH6zb1FPvOIpi9FTRSKJSpUoULlyYdu3a0bRpUy5fvpz8htbWMGECnD4NLi7QvTvUraudwkqiWLFi7N+/n3HjxlG+fPlU5/nyS/j1V+06vJIxfho2jFjZls9rTMSlVk294yiK8UtJv9ysdHujcRpSyri4ODljxgyZJ08eaW1tLZcuXfrqFxgMUi5ZIqWtrZTm5lKOHKkNuEhGcHCwHDFihExI4diPpB4/TvVLlNe4cytBNsxdTla3sJAGNThGyeFQ4zTSxszMjC+//JKzZ89Sr149ChcuDPDykd5CaFetg4OhQwf4+muoXFlby/U5a9asYfz48XTq1ClVXXI3bAA7OwgNTcs7Ul6mV7MT7Ik8xsh+IxBWVnrHUZSsISWVJSvd3rSlkZTBYEj8fvjw4bJdu3YyKCjo1S/atk3KMmW0UeW9e0v54MEz+/vmm28kIBs0aCAjIiJSlOPSJSlz5ZKyU6c0vQ0lGQd3hkqIk5Zitrx/967ecRRFd6iWxptLOlldnjx52Lp1K05OTnTs2PHlF7YbN9aubXz5pTYBoqMjbN+euD8/Pz/8/f3Zv38/9erV4/btZCf4fUbZsuDnBytWaIPVlTfXqsU5IBK/Ty6Tv2BBveMoStaRksqSlW7p2dJ4XlhYmBw6dKjMnTu3NDExkbNmzXr1C/74Q8oKFbRWR9euUoaHJz61detW6e3tLaNfcv3jeZGRUtrZSengIGVMzJu8C2XeN8clSJnLZKh8rC4WKYqUUrU0MoStrS2TJk3i8uXLDBw4kHr16gEQHh5OXHKjxGvUgBMnYNgwbUoSR0fYtg0Ab29vtmzZgqWlJeHh4ezbt++Vx7a2hjlztEsnAQHp/tZyDCklI0cFABeZOSJv4rooiqKkUEoqS1a6ZWRL42XatWsnnZyc5IEDB16+0dGj/291dOv2zLWOXr16SVNTUzl79uxnrqMk58yZ9EqdM/36ZDZi34rVXvuzVpScBNXSyDwff/wx9+7do06dOnh6erJ9+3a0f4MkqlXTWh2DB8OPP2rjO56MFJ88eTJNmjShX79++Pr6EhMT89JjVayofQ0OVjPhptbtW5JfpuzAxcyMhQe2qgWWFCUtUlJZstJNj5aGlFI+fPhQTp8+XRYvXlwCctKkSS/f+OBBKcuWlVIIKQcNkjImRiYkJMjRo0dLQLq7u8uQkJCXvnz/filNTKRcvjwD3kg21sb9lIRouaLbcL2jKIrRIYUtDd3/yKf3Ta+i8VRMTIxctGiRDAsLk1JqA/qefv+MR4+k7NlT+ydwcpLy9GkppZS//fabrFChggwNDX3pMeLjpaxeXcpChaS8fTtD3ka2s275JQkJMpf4Vt65dUvvOIpidFJaNNTpqXSWK1cuunTpgq2tLVJKOnfuzLvvvsvChQsxJJ2fKndumDcPNm2C27e1qW1nzKDFBx/w999/U7RoUeLj49mdzNqvpqawaBFEREDfvpn45rKo2FhJp84xQCgjut2kUJEiekdSlKwrJZUlK930bmk87/Tp07Ju3boSkNWqVZOBgYEvbnT79v+XmW3cWMobN6SUUs6ePVsCcvLkycnue9w47SW//ZaR7yDr+9ArQIKUBXN1kHFxcXrHURSjhDo9ZTwMBoP86aef5FtvvSWFEHLbtm3JbSTlvHlSWllJWbiwlJs3y8ePH8uOHTtKQPr5+b3Q2yc2Vspq1aScMyeT3kgWFH73rrQUgyWskge2JvNzVxRFSqmKhlEKDw+XX3/9deKAsgsXLrw4eeHZs1I6O2v/NAMGyIToaNmrVy8JyG7dusn4+PhnNn/urvKc3nXqSBOQq/r20zuKohi1lBYNoW2bfbi7u8vAwEC9Y7xWVFQU7777LhUqVGDZsmUULVr0/0/GxGirL82ZA25uyFWrGLl0KdOnT+fEiRM4ODi8sL/fftOudXzwQSa+CSO3/sfbzO/ZC8figUy7ckWbXFJRlGQJIY5LKd1ft526EK4TKysrRo8ezaFDh3B2dub333///5OWlvD997BuHfzzD8LNjfGVKxMUFJRYMO7du5e4eUKCtp64ry/cvJnZ78Q43b4l+aSnGTsShvDJd3NUwVCUdKKKhk6EEHTr1o0TJ05QokQJmjdvTqdOnYiOjv7/Rq1awcmT2uqA7drxzowZ8PgxS5YsoXz58hw8eBDQWhg//QSRkdC1qxr0JyXUqXyIyITc1Cs7HpcP1LrfipJeVNHQmYODA0eOHGH06NFERUVhaWn57AZlymhrc/Tvr7U+6tShtp0dBQsWpGHDhqxatQqAChVgyhTYsgV++CHz34cxGTvoGBdu1saU0azYN0+N/FaU9JSSCx9Z6WbMF8Jf52nvqMuXL0sPDw+5d+/eZzdYt07KvHmlLFhQ3l29WtapUydx9LnBYJAJCVJ6eUlpaSnlf//p8AaMQOj1SCm4I+GInDd2gt5xFCXLQA3uy3qefiK+fv06oaGheHp68uGHHxISEqJt0KoVHD8OJUtSsEMHdtSpQ8cOHRg2bBhHjx7FxEQ7TbVwIZQqpeMb0dH4j5ohGYRr8RH0GDlM7ziKkv2kpLJkpVtWbmkkFRkZKceOHSutrKxknjx5nl27IypKyk8/lRJkQuPGcs+GDYlPJe3C+4rpq7KlbQtWSUAOLFVKJqhBfIqSKqiWRtZmbW3NqFGjOHPmDHXq1OHcuXP/f9LKChYvhh9+wGTPHjy/+AJOnuTAgQNUr16dq1evcuIE2NvD0qW6vYVMFXjoMS17NKa9eRMm7t+PiZmZ3pEUJVtSRcPI2dnZsXnzZmbNmgXAiRMnWLp0qdaFtHt37SJ5fDzUrEncli1cuHCBGjVqAH/h4QG9emlntLKz8PAEmnmFESMfkrd+XixKl9Y7kqJkW6poZAFCiMQV5r7//nt8fX3x9fUlMjJSW6fj+HHw8KDB5MkcbNoUIQSennXo3Xs/RYpol0JSsBR5liQlVKt4hFtRb1MqT0++27BE70iKkq2popHFLFy4kJEjR+Lv74+zszN79uyBIkVgxw7o3x+nlSs5UqwYpYsXp2PH95gw4SxhYdC2LSS3Im1W93HzQ1y8UQvBELbs+/rFLsuKoqQrVTSyGFNTU8aNG8fu3bsRQtCgQQO2b98OZmYwfTqsWEGJoCAOhIczpksXOnVyYNEiqFJF7+TpLzgwkNWbDgMrWTKtOJVcXfWOpCjZnioaWZSnpyenT59m2rRpNGzYEICLFy9i+PBDOHKE/NbWDF+8GJOFC6lZ4woWFoOBOCIj9c2dXiLuh9Oyfn0KMJgVXwXjM6C/3pEUJUfQpWgIIdoJIc4IIQxCiJdOkCWE8BZCnBdCXBJCDM3MjFmBtbU1AwYMwMzMjAcPHlC7dm08PDw4Gh0Nf/4JDRtCz55s6tiRb7/9lgYNuuLgYOCnn/RO/mbu3IF6Drco+qgca/r0oeP4sXpHUpQcQ6+WRhDQGtj/sg2EEKbAHOB9oCLQUQhRMXPiZT02NjZMnz6dkJAQPDw86Dp4MLcXL4aRI+l95Ag/lirF4cNruXfvT7p0kezcqXfitHn0SFK/8jX+ul2Km/mKUvdJrzJFUTKHLkVDSnlOSnn+NZtVAy5JKf+VUsYCq4AWGZ8uaxJC8NFHH3H+/Hn8/PxYtmwZ71aowH9du8LGjXSNiCDA2hRz0Ropz9G8eQJP5jvMMuLjwblsIGdCi2Fj+jG/H56GMFFnWBUlMxnz/7jiwLUk90OePKa8go2NDd988w1///03X375JaVKlYIPPuD6pk00eOcdjkaG0tiuJyVKwPvvZ50xHAkJUN3xGJdvV8WEz9m1+wvKVaigdyxFyXEyrGgIIXYKIYKSuaW0tZDc1KTJTvothOguhAgUQgTeuXMn7aGzEQcHB8aMGYMQgn///ZdyjRrRuVIl8nbsyOZLB9hXqD0tGj3g5MnVekdNke/6D+bE+XvAcDb+XJeqdevqHUlRcqaUzDWSUTdgL+D+kudqANuT3B8GDHvdPrPL3FPp6dGjR3L48OHSwsJC2tjYyOkdOshYKys5xdpaArJnz8Fyxw7jnKspNlbKHwaOk4D0trKRW5Yt0zuSomRLZIO5p/4E7IUQdkIIC6ADsFHnTFlS7ty5mTBhAkFBQdSuXZsBq1bhVrIkve3s+BKYP78YjRrBt9/ee+2+MtOjR9C81g2GT/OmZ77CbDj3N+9/8onesRQlR9Ory20rIUQIWmtisxBi+5PHiwkhtgBIKeOBPsB24Bzwi5TyjB55swt7e3s2b97Mhg0b6ODjg3VgIDP69mUWIzFlF4MHF8TX9yoGg95J4Z9/Yilb7B+2/VmECJbSaSEU2CEAAAcgSURBVOkCNaeUohgBobVKsg93d3cZGBiod4ws49ChQzSsX58PTS3ZFjOT23TB2yuBn5abUqiQPpl2bLtHk6axxBussTLpyLbfe1O3SRN9wihKDiGEOC6lfOm4uaeM+fSUkgns7Oz46JNP+OnxI2LNe9GanpzdfYPebT5ky5YtmZ5n37r1vP/+f8QbYnjL6j3OBM9UBUNRjIgqGjlcsWLFWLRoEadOnaJ6g/qs4wfMceDv/b/QtGlzKpRbyPHjFzM8x5UrMN2nD/XbtKYI7WlQvhMXbu7Ezt4+w4+tKErKqaKhAODs7My2bdvYv38/X/84h5MjRvCZiSfB/3TF3T037zdcSHj4g3Q/7sOHMLjbbd59J4aZyyrQtVAhLhxfza7gP8ibN2+6H09RlDejrmkoL3Xot9+o3WoCMB9w4528/zFuhBmtettibf1mU5A/eAATvrrA9Dn5iZdFgBXULjWPLSc3YFOwYHrEVxQlFdQ1DeWN1WrZkjNn/PFpNRlT0Zl/Hzykq18Y5Qvkx8vRkRkTlvHgwcMU789ggKjIaJaPGEHZIkuY8v27xMvzFMlVl60/Gdh/Zb8qGIpi5FRLQ0mRe/fusWrhItYt2Ej1O3+x/KGB/7gNhJA31wm8XE3p1sODcm5WCOsHWFoV5ERgNEHHbnDqz9tcCrYlKMQed9O2HIzdRQnKYZqnNKOHNuDT4cMQIrkJABRFySwpbWmooqGknpT/a+/eQqSs4zCOfx83TfEUkeAxExIpRPQiCYsIM7MITaIzFXTlRWgXgZGgdJCIIAKvChQKtBA2QajAykJFLEu3tFZDAk8dNEtsCQ3118W8wrZt+vednfnPzD4fGNh3md15fszuPLyHmT9d23Yz6/4N7Dl+MzADGAvAtSzmEKuA6cDubj90kDY+5e7R61ny+DRmL1/OgGHD6p/dzHrl0rC6OHPmDPs6OtjWvpXtW04wetBRpo78g19OnGbjoesZOeIUUya2sfDRudzy0IMMLNY6N7PG4tIwM7NkPhFuZmZ9zqVhZmbJXBpmZpbMpWFmZslcGmZmlsylYWZmyVwaZmaWzKVhZmbJWu7NfZKOAwer+BXXAL/1UZycWmUO8CyNqlVmaZU5oLpZJkbEqEvdqeVKo1qSvkp5V2Sja5U5wLM0qlaZpVXmgPrM4sNTZmaWzKVhZmbJXBr/9VbuAH2kVeYAz9KoWmWWVpkD6jCLz2mYmVky72mYmVkyl0YPkl6S9K2kDkmbJI3NnaksSa9J2lfMs0HSVbkzlSXpAUnfSTovqemudJE0T9J+SQckPZc7TzUkrZF0TNLe3FmqIWmCpM8kdRZ/W0tyZypL0mBJX0r6ppjlhZo9lg9P/ZukERFxqvh6MXBjRCzKHKsUSXOBzRFxVtKrABGxNHOsUiTdAJwH3gSejYimWWlLUhvwA3AncATYCTwSEd9nDVaSpNuALuCdiJiaO09ZksYAYyJil6ThwNfAfc34vEgSMDQiuiQNBLYBSyJiR18/lvc0erhQGIWhQNO2akRsioizxeYOYHzOPNWIiM6I2J87R0kzgQMR8WNE/A28ByzInKm0iNgC/J47R7Ui4ueI2FV8/SfQCYzLm6qcqOgqNgcWt5q8drk0eiFppaTDwGPA8tx5+shTwEe5Q/RT44DD3baP0KQvTq1K0nXADOCLvEnKk9QmqQM4BnwcETWZpV+WhqRPJO3t5bYAICKWRcQEYC3wdN60F3epWYr7LAPOUpmnYaXM0qTUy/eadg+21UgaBrQDz/Q40tBUIuJcREynckRhpqSaHDq8oha/tNFFxJzEu64DPgBW1DBOVS41i6QngXuBO6LBT2BdxvPSbI4AE7ptjwd+ypTFuimO/7cDayPi/dx5+kJEnJT0OTAP6POLFfrlnsbFSJrcbXM+sC9XlmpJmgcsBeZHxF+58/RjO4HJkiZJGgQ8DGzMnKnfK04erwY6I+L13HmqIWnUhasjJQ0B5lCj1y5fPdWDpHZgCpUrdQ4CiyLiaN5U5Ug6AFwJnCi+taOJrwRbCKwCRgEngY6IuCtvqnSS7gHeANqANRGxMnOk0iS9C9xO5RNVfwVWRMTqrKFKkHQrsBXYQ+X/HeD5iPgwX6pyJE0D3qby9zUAWB8RL9bksVwaZmaWyoenzMwsmUvDzMySuTTMzCyZS8PMzJK5NMzMLJlLw8zMkrk0zMwsmUvDrMYk3VSsaTJY0tBivYOm/Uhx69/85j6zOpD0MjAYGAIciYhXMkcyK8WlYVYHxWdO7QROA7Mi4lzmSGal+PCUWX1cDQwDhlPZ4zBrSt7TMKsDSRuprNg3icoSow29TovZ/+mX62mY1ZOkJ4CzEbGuWC98u6TZEbE5dzazy+U9DTMzS+ZzGmZmlsylYWZmyVwaZmaWzKVhZmbJXBpmZpbMpWFmZslcGmZmlsylYWZmyf4B5H7zrBEgIo8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#plt.plot(Xstar[:,0], ypred[:,0],'o')\n", "plt.plot(Xstar[:,0], np.mean(ypred,axis=1),'-',c='red',label='Full Prediction Mean')\n", "plt.plot(Xstar[:,0], np.percentile(ypred,q=95,axis=1),'--',c='black',label=\"90% Prediction Interval\")\n", "plt.plot(Xstar[:,0], np.percentile(ypred,q=5,axis=1),'--',c='black')\n", "plt.plot(Xstar[:,0], truefunc(Xstar[:,0]),'k--' ,c='blue',label='Truth')\n", "plt.legend()\n", "plt.xlabel('x')\n", "plt.ylabel('y')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.2 Prediction without a discrepancy](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.2-Prediction-without-a-discrepancy)", "section": "11.3.6.2 Prediction without a discrepancy" } }, "source": [ "### 11.3.6.2 Prediction without a discrepancy\n", "The evaluation of the expected simulation result from the predictive model can be accomplished by removing the $k_{\\delta}(\\bf{x}_{i}-\\bf{x}^*)$ term from Eq.(11.23) to get a prediction without a discrepancy. This simulation prediction can then be used to evaluate the discrepancy function via substraction from the full prediction." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.2 Prediction without a discrepancy](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.2-Prediction-without-a-discrepancy)", "section": "11.3.6.2 Prediction without a discrepancy" } }, "outputs": [], "source": [ "\n", "ystar = np.zeros(Ns)\n", "varstar = ystar*0\n", "\n", "deltastar = np.zeros(Ns)\n", "delta_pred = np.zeros((Np,3))\n", "ytrue = truefunc(Xstar[:,0]) + np.random.normal(size=Np,loc=0,scale=sd_meas) \n", "ypred_sim = np.zeros((Np,Ns))\n", "\n", "# prediction without discrepancy by setting disc=0\n", "for i in range(Ns):\n", " Xstar[:,1] = t_hist[samps[i],:]\n", " x[0:N,1] = t_hist[samps[i]]\n", " cov_f = lambda x,y: cov(x,y,beta=beta_hist[samps[i],:],l=lam_hist[samps[i],0],alpha=2)\n", " cov_t = lambda x,y: cov(x,y,beta=beta_t_hist[samps[i],:],l=lam_hist[samps[i],1],alpha=2)\n", " ypred_sim[:,i],varstar = GPR(x,\n", " z,Xstar,cov_f,0,M=N,\n", " cov_mat=sd_meas**2*np.identity(N),cov_t=cov_t,disc=0)\n", " " ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.3 Simulation $\\eta(x,t)$](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.3-Simulation-$\\eta(x,t)$)", "section": "11.3.6.3 Simulation $\\eta(x,t)$" } }, "source": [ "### 11.3.6.3 Simulation $\\eta(x,t)$" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.3 Simulation $\\eta(x,t)$](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.3-Simulation-$\\eta(x,t)$)", "section": "11.3.6.3 Simulation $\\eta(x,t)$" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8T9cbwPHPSYSIGJGoWUKramSIIEYlaJTao0ZpbR1W+ytFh1HaqlG7LUqoUpTapcSoamlEpfYuDWLFTpD1/P648W1IZCc347xfr/tKvveee+/zjcjzvfec+xwlImiapmlaWlmZHYCmaZqWM+iEommapqULnVA0TdO0dKETiqZpmpYudELRNE3T0oVOKJqmaVq60AlF0zRNSxc6oWiapmnpQicUTdM0LV3kMTuAzOTk5CTOzs5mh6Fpmpat7Nu375qIFEuqXa5KKM7OzgQGBpodhqZpWrailDqXnHb6lpemaZqWLnRC0TRN09KFTiiapmlaushVfSgJiYyM5Pz589y/f9/sUDQtSba2tpQpUwYbGxuzQ9G0eHJ9Qjl//jwFCxbE2dkZpZTZ4WjaE4kIoaGhnD9/nvLly5sdjqbFY+otL6XUfKXUFaXUoSdsV0qp6UqpU0qpA0opjzjbuiulTsYu3VMbw/3793F0dNTJRMvylFI4Ojrqq2ktyzK7D2UB0DSR7c2AirFLP+BrAKVUUWAUUBuoBYxSSjmkNgidTLTsQv+ualmZqbe8RGSnUso5kSatge/EmKd4j1KqiFKqJOADbBGR6wBKqS0YiemHjI1Y07T0dPcuHDgAFy8ay82bUKQIDBwISkFMDFiZ/bFXS7as/k9VGgiO8/p87LonrY9HKdVPKRWolAq8evVqhgWaFp9++ilVq1bF1dUVd3d3/vzzTwD69OnDkSNH0uUczs7OXLt2LdE2n3322SOv69atmy7n7tGjB+XLl8fd3R0PDw92796dpuPFfS9JxbhgwQIuXrxoeZ1eP9MFCxaglGLr1q2WdatWrUIpxYoVK9J8/JxKRFi3bj8TPvqIe8uW8Wr136hXD155BQYPhlGj4L137jD45WbcDQqiRw9wdTUSTEAAiJj9DrREiYipC+AMHHrCtg1A/TivtwI1gKHAR3HWfwy8l9S5atSoIY87cuRIvHWZ6Y8//hAvLy+5f/++iIhcvXpVLly4kO7nKVeunFy9ejXRNgUKFEj384qIdO/eXX788UcREfnll1/ExcUlXpvIyMhkHy857+Uhb29v2bt3b7KPnVx+fn7i4uIivXv3tqzr2LGjuLm5Wd5rRjH7dzY1Tp8+I107fiN2NpsEogVcxAEE3AWaC7gIOEod24LiRhEpDOIF8prDh/LcU/vFJs8DAZHq1UUWLDD73eQ+QKAk4+95Vr9COQ88Hed1GeBiIuuznZCQEJycnMiXLx8ATk5OlCpVCgAfHx9LqRh7e3uGDRtGjRo1ePHFFwkICMDHx4cKFSqwdu1awPjUPGDAAMuxW7RowY4dO+Kds02bNtSoUYOqVasyZ84cAIYPH869e/dwd3ena9eulnOC8aFj6NChVKtWDRcXF5YtWwbAjh078PHxoUOHDjz//PN07dr1YYJ/ogYNGnDq1CnL+/vggw/w9vZm2rRpXL16lfbt21OzZk1q1qzJ77//DkBoaChNmjShevXqvPHGG4+c42GMABMmTMDFxQU3NzeGDx/OihUrCAwMpGvXrri7u3Pv3r1HfqY//PADLi4uVKtWjWHDhj1yzA8//BA3Nze8vLy4fPlygu/lhRdeICAggMjISO7evcupU6dwd3e3bN+3bx/e3t7UqFGDl156iZCQEADmzp1LzZo1cXNzo3379oSHhwPGldygQYOoW7cuFSpUyDFXOt99vZtnnrnI4uVv8CCyOq0KTefQkG60a9mSRfMHcfr0dK5d2869e+f5PfwWQfcvsXbePG6XKMGiG5/y75XqREY5kc9qABfOh7B//3+DEvQVSxaTnKyTkQuJX6E0BzYCCvACAmLXFwX+ARxil3+AokmdK8krlMGDRby903cZPDjRzH/nzh1xc3OTihUryltvvSU7duywbIv76RqQn3/+WURE2rRpI76+vhIRESFBQUHi5uYmIsan5v79+1v2b968uWzfvl1EHv1UHxoaKiIi4eHhUrVqVbl27ZqIxL9Cefh6xYoV8uKLL0pUVJRcunRJnn76abl48aJs375dChUqJMHBwRIdHS1eXl7y22+/xXuPca9Qli9fLrVq1bK8v7feesvSrkuXLpb9z507J88//7yIiAwcOFDGjBkjIiLr168XwPJeHsb4888/S506dSQsLOyR9/j4FcrD1xcuXJCnn35arly5IpGRkdKwYUNZtWqV5We9du1aEREZOnSojB07Nt57evizfvfdd2XdunXy/fffy+jRoy3vNSIiQurUqSNXrlwREZGlS5dKz549RUQsP28RkQ8//FCmT59u+Tl16NBBoqOj5fDhw/LMM8/EO69I9rhCiYqKkqOHDsmdqd+KPTdEcVmgnzT0rC8SE5OsY8TExMimTZvE18tLACkExldbe1mxfLls2iTSsKHIiRMZ/Ga07HGFopT6AdgNVFJKnVdK9VZKvamUejO2yc/AGeAUMBd4G0CMzvixwN7Y5ZPYddmOvb09+/btY86cORQrVoxOnTqxYMGCeO3y5s1L06bGgDgXFxe8vb2xsbHBxcWFs2fPpuic06dPt3z6Dg4O5uTJk4m237VrF126dMHa2prixYvj7e3N3r17AahVqxZlypTBysoKd3f3J8YydOhQ3N3dmTNnDvPmzbOs79Spk+V7f39/BgwYgLu7O61ateL27dvcuXOHnTt30q1bNwCaN2+Og0P8AX3+/v707NkTOzs7AIoWLZroe9q7dy8+Pj4UK1aMPHny0LVrV3bu3AkYP+sWLVoAUKNGjUR/vp07d2bp0qUsXbqULl26WNYfP36cQ4cO4evri7u7O+PGjeP8+fMAHDp0iBdeeAEXFxcWL17M4cOHLfu1adMGKysrqlSp8sQro6wuODiYujU64uXqRr93+nCX9pQr3ZiNG9uyNWCn0dueDEopXnrpJTbv3s22bduYMGIE+93dqX3/LqUmTODWv7cICgIPD1i8OIPflJYsZo/y6pLEdgH6P2HbfGB+ugY0dWq6Hi65rK2t8fHxwcfHBxcXFxYuXEiPHj0eaWNjY2MZMmplZWW5RWZlZUVUVBQAefLkISYmxrJPQs8r7NixA39/f3bv3o2dnR0+Pj5JPtcgidxXeBjHw/fxMJbHTZw4kQ4dOsRbX6BAAcv3MTEx7N69m/z588drl9RwWRFJ0ZDaxN5T3J91Yu8JjIR66NAh8ufPz3PPPffI8atWrZrgAIQePXqwevVq3NzcWLBgwSO3JeP+PBOLMatavXoNr3bewb0HS3jZuj+rbL5jxHu1+HjkyAT/XZOrYcOGNGzYED79lDfefJO+c+ey5qPn6NygIztPjaFbt6L4+8PMmRDnV0rLZFm9DyXHO378+CNXCEFBQZQrVy5Vx3J2diYoKIiYmBiCg4MJCAiI1+bWrVs4ODhgZ2fHsWPH2LNnj2WbjY0NkZGR8fZp0KABy5YtIzo6mqtXr7Jz505q1aqVqhgT06RJE2bOnGl5HRQUZDn/4tiPoBs3buTGjRsJ7jt//nxLf8T168YFa8GCBblz50689rVr1+bXX3/l2rVrREdH88MPP+Dt7Z2quD///PN4I+QqVarE1atXLQklMjLSciVy584dSpYsSWRkpOV95QRfTp5O27Y3uPdgCg0K/Ml3uz/gfEgIn33+eZqSySOUwqFTJ0IKFaLWtWtsWTOTo0dK0KxZIAsXwtKl6XMaLXV0QjHZ3bt36d69O1WqVMHV1ZUjR44wevToVB2rXr16lC9fHhcXF4YMGYKHh0e8Nk2bNiUqKgpXV1c+/vhjvLy8LNv69euHq6urpVP+obZt2+Lq6oqbmxuNGjViwoQJlChRIlUxJmb69OkEBgbi6upKlSpV+OabbwAYNWoUO3fuxMPDg82bN1O2bNkE31erVq3w9PTE3d2dSZMmAcbVwJtvvmnplH+oZMmSfP755zRs2BA3Nzc8PDxo3bp1quJu1qyZ8ek5jrx587JixQqGDRuGm5sb7u7u/PHHHwCMHTuW2rVr4+vry/PPP5+qc2Y1YbcimfRxVaAHMJoxP0XgWLMCjo6O6X6uRo0aEbBvHyWee45/lMJVItm4sSavdZtEjx7GFXp0dLqfVkuO5HS05JQlKw4b1rSUykq/s1FRURJ64YL87DVSFBEC/aT/22+naBh4at26dUsaNWwoCqRzbId9r5495fBhkeefF9m/P8NDyDXIDp3ymqZlXyLCG7374PXss8zb8wnCc4wcWYIZM2eSJ0/Gd88WKlSIdevXs8DPjx8GDOBT4OWQEKythPBwePFFiDPeQcsEOqFompZiIsKgAe8zb2EXnO69yEpgwoS3GTNmTKbWG7Ozs+P1Hj1g+nRe7taN6E2bqLR0DFOnHiRvXsHXF2Ife9IygU4omqal2KiRY5n5lTfwIoN6DeDPP/9k6NCh5gWkFOPu3aOblRV+Y8bwSgd3vL3HEREhNG4MFy6YF1pukuvnQ9E0LWWWLVvO2HHOQAuGv7CYzvO6JrVLppg7dy5Hjhzh3ZMneT0qCr+lI+nbtxh37rxJEo8laelEX6FompYify8oDrwOfMR9j71mh2Ph4ODAzz//jK2jI9vy5aOzUsyd+xZ16kwnf34IC9OjvzKaTiiapiVLaGgokdu2c3jTAWAxbVofZtLkyWaH9QhnZ2c2bNjAVWtrnOztaZMvH4MHD8bffw/168Pw4WZHmLPphJIFTJs2jWrVqlG1alWmxnla//r16/j6+lKxYkV8fX0tD/StXLmSqlWr8sILLxAaGgrA6dOn6dy58xPP4ezsbCmc2KRJEy5dupTqeM+ePUu1atUACAwMZNCgQYm2z8iy+EkVUNyxY4fl+Y+MtGPHDku5lpzowYMHNG3UiBZNX2Kn1Tu4VZvE4iWLsba2Nju0eGrUqMHOnTv5cudOfsiTh4XlytG4jgv168OkSeDnZ3aEOZdOKCY7dOgQc+fOJSAggL///pv169dbnpwfP348jRs35uTJkzRu3Jjx48cDMHnyZPbs2cPrr7/OkiVLAPjoo48YO3Zsoufavn07f//9N56envH+yANEp+J+gKenJ9OnT0+0zePnyow/8A+lJqEkVmoltxo84AMCD0wkLLoa1oUKsXrdKkvdtKyoRo0a2Li7c2f2bIqcO4fq25e33zpBvXr3efttY1IvLf3phGKyo0eP4uXlhZ2dHXny5MHb25tVq1YBsGbNGrp37w5A9+7dWb16NWDU73rw4AHh4eHY2Njw22+/UbJkSSpWrJisc8YtIW9vb8/IkSOpXbs2u3fvfmLJ9X379uHm5kadOnWYNWuW5VhxP5nfvXuXnj174uLigqurKytXrsy0svjOzs6MGjUKDw8PXFxcOHbsGGfPnuWbb75hypQpuLu789tvvz2xRP7o0aPp168fTZo04fXXX6d27dqPFG308fFh3759BAQEULduXapXr07dunU5fvx4sn7m2dmaNWuZ/a0HikaMGzuN3/fswdnZ2eywkuWDHTtob2XFjh9+4OUGdbl1qwWFC8fQsaMxW6SWzpLz9GNOWZLzpLy3t3e8ZdasWSIiEhYWluB2Pz8/ETEmx3p8W1KOHDkiFStWlGvXrklYWJh4eXnJgAEDRESkcOHCj7QtUqSIiIhs3rxZPDw8pEWLFnLz5k1p0qSJXL9+PdHzxC1f379/f3n//fdFRASQZcuWiYgkWnLdxcXFUlp/yJAhUrVqVRER2b59uzRv3lxERN5//30ZHKdc/8OYMqMsfrly5Sxl4GfNmmWZ+GrUqFEyceJEyz5PKpE/atQo8fDwkPDwcBER+fLLL2XkyJEiInLx4kWpWLGiiBhPZz98CnzLli3Srl27eD+HjJaZT8oHBwdLgXxvCIj8z+OnTDtverlx44Y8++yzUjJfPvne2lqsrKzEx2eMVK8eI+fOmR1d9kEyn5TXw4ZNVrlyZYYNG4avry/29va4ubkl+ZSxr68vvr6+ACxcuJCXX36Z48ePM2nSJBwcHJg2bVqCtyMaNmyItbU1rq6ujBs3DjCq6bZv3x54tOQ6GLfASpYsya1bt7h586aleOJrr73Gxo0b4x3f39+fpXGq8yVUZj6uJ5XFL1SokKUsPmApi1+/fv1Ej9euXTvAuN3x008/JdjG39//kSmAH5bIB2jVqpWliGHHjh3x9fVlzJgxLF++nFdeeQUwimt2796dkydPopRKsJhmTrJv0z+EP5iMYjuXn1sJtDU7pBQpUqQIK1eupHbt2szPk4dxtrZ8sGMUU6c6ULbsQLPDy3F0QnlMQjMcPmRnZ5fodicnp0S3P0nv3r3p3bs3AB988IHlD2nx4sUJCQmhZMmShISE8NRTTz2yX3h4OAsXLuSXX36hSZMmrFmzhiVLlrB48WL69u0b7zzbt2/HycnpkXW2traWjlWRhEuu37x5M1lPP4ukXwn55JbFT2ifxNonViI/bin90qVL4+joyIEDB1i2bBmzZ88G4OOPP6Zhw4asWrWKs2fP4uPjk2Rc2VZ0NGs/CsWKezg6vsOU6f5mR5Qqrq6uzJo1i969e+MbGUmL4sUZOvQ9XF1fYMkSdz74AMqXNzvKnMHsCbaaKqWOK6VOKaXiDehTSk1RSgXFLieUUjfjbIuOs21t5kaevq5cuQLAv//+y08//WSZqKlVq1YsXLgQMK5EHq+GO2HCBAYPHoyNjQ337t1DKYWVlZWlhHtKPankepEiRShcuDC7du0CeGLJ9cfLzz8clWZmWfzHy9c/qUR+Qjp37syECRO4desWLi4ugHGFUrp0aYAEJ0LLKY4fP877L75I9OUORNOAJcu+pFixYmaHlWq9evVi6tSp9B4zhu8uX+adBg0oWbISy5ZBr14QZxohLQ1MSyhKKWtgFtAMqAJ0UUpVidtGRN4VEXcRcQdmAHHvY9x7uE1EWmVa4Bmgffv2VKlShZYtWzJr1izLraLhw4ezZcsWKlasyJYtWxgeZxD9xYsXCQwMtCSZ9957Dy8vLxYuXMirr76aqjgSK7nu5+dH//79qVOnzhPntvjoo4+4ceMG1apVw83Nje3btwPmlsVv2bIlq1atsnTKP6lEfkI6dOjA0qVL6dixo2Xd+++/z4gRI6hXr16qRsVlB9HR0XRuM4yvdhxiIdEMH9aKxo0bmx1Wmg0ePJhiH35IwWbN+PC333j+wQk+//w+O3YYE3NpaacSu+2QoSdWqg4wWkRein09AkBEPn9C+z+AUSKyJfb1XRGxT8k5PT09JTAw8JF1R48epXLlyql4B5pmjoz+nZ0w/kuGjfCljIqh69vf8smXk8mbN2+GnS8ziQi+3t7kCwjg+6efpo6yIlrWceHCcwQFQZxJN7U4lFL7RMQzqXZm3vIqDQTHeX0+dl08SqlyQHlgW5zVtkqpQKXUHqVUm4wLU9Nyj1OnTvHBB/cAF75+N5TxM2fkmGQCxlTSrV95hZ8fPGDxqVPUVXDqlA/W1hEMHmx2dNmfmQklod7bJ10udQZWiEjcewxlYzPmq8BUpdQzCZ5EqX6xiSfw6tWraYtY03K43q+OJ1qG4WCzhOrv5syP6wMGDKBp06YMzZOH/idOUOMZO2Ji2vHBB2fMDi3bMzOhnAeejvO6DHDxCW07Az/EXSEiF2O/ngF2ANUT2lFE5oiIp4h4ZudORU3LaDHRwo2jg1Bcp7jzdJxy6P8XpRR+fn4UdHCgd/78/HD1Kvnz/cGbb7bk1q3bpHJMi4a5CWUvUFEpVV4plRcjacQbraWUqgQ4ALvjrHNQSuWL/d4JqAcceXxfTdOSJzo6mrDFqwm/ewIYyqIlMx8Zup3TlChRgm+//Zbw4sXJExHBcmdnChUqTJs2+UhgxL2WTKYlFBGJAgYAvwBHgeUiclgp9YlSKu6orS7AUnl09EBlIFAp9TewHRgvIjqhaFoqDR08mHZ9O3OGVxjQvxCenkn2v2Z7rVq14tDx45SfMYNG+/fzR9s2eHvnY8kS2LzZ7OiyJ9NGeZlBj/LScoL0/p09ePAgbq4LKM16op2uc+z0aQoVKpRux8/qwsPC+MLTk6GnTnF/0w6cW5ejQIHC/PtvQXLwRVqKZIdRXlqsTz/9lKpVq+Lq6oq7uzt//vknffr0eaRESFo4Oztz7dq1RNtkVIl5LWsTEXp2nokwmTZVJ7J5+/ZclUwAgv7+m7HHjzMkb14Kvd2LCs6TuXKlIIMHnzU7tOwnOQW/csqSnOKQme2PP/4QLy8vuX//vogYBSYvXLiQrueIWxjySR4v4KhlXen5O7vqp9UCe6Uw5+VucOIFRnOyIUOGCCC/gFx77TUpUGCLWFkdkyNHjpsdWpZAMotD6isUk4WEhODk5GTpAHVycqJUqVL4+Pjw8Pacvb09w4YNo0aNGrz44osEBATg4+NDhQoVWLvWGMewYMECBgwYYDluixYtEqwr1qZNG2rUqEHVqlWZM2cOQKaVmNeynv+9+QfgiW3Bcdg8VSDJ9jnV2LFjqVy5Mr0LFiTPokVs/fg8RYs2oUWLZujHDZJPJ5TH+PjEX776ytgWHp7w9oclna5di78tKU2aNCE4OJjnnnuOt99+m19//TVem7CwMMt8HAULFuSjjz5iy5YtrFq1ipEjR6bo/c2fP599+/YRGBjI9OnTCQ0NZfz48eTPn5+goKB4dbp++ukngoKC+Pvvv/H392fo0KGWOVL279/P1KlTOXLkCGfOnLHMLaJlD3ev3efmtf8Bu+n5VuEc9QBjStna2rJw4UJCwsN538mJ2l/8j3VzpxETY8P+/YnfLtb+oxOKyezt7dm3bx9z5syhWLFidOrUKV7Rwbx589K0aVMAXFxc8Pb2xsbGBhcXF86ePZui802fPh03Nze8vLwIDg62zA75JE8qMQ9YSsxbWVlZSsxr2UN4eDhR06djG7MAx0Kj+OCjD80OyXQ1a9Zk9uzZDFmyBCIj8Zo0iTKlDzNyZGVE9EyeyaHL1z8mserzdnaJb3dySnz7k1hbW+Pj44OPjw8uLi6WCsMP2djYWMrCW1lZWW6PWVlZWX7J8+TJQ0yckqn379+Pd54dO3bg7+/P7t27sbOzw8fHJ8F2cSV2Gys1Jea1rOGDd95h3bffEoKwcMZCChYsaHZIWcLDaSTkm2+I6NaNXs1X02tDe9q2XYKV1QqWL1+e5HxFuZm+QjHZ8ePHH7lKCAoKoly5cik+jrOzM0FBQcTExBAcHExAQEC8Nrdu3cLBwQE7OzuOHTvGnj17LNvMLDGvZa6zZ88yY25pwuVFarm60q1bN7NDylJEhC7r1tGrQgVe39AJl/J32LWrOatWradXr17ZalI1ESEqKuqRD5sZSScUk929e5fu3btTpUoVXF1dOXLkCKNHj07xcerVq0f58uVxcXFhyJAheHh4xGvTtGlToqKicHV15eOPP8bLy8uyzcwS81rmGtBjGjGMol21QWzcvh0rK/1nIC6lFFWqVGHJmTOsKl2CL268QWhoYZo3X8eiRYto1KiRpR8xqzl8+DADBgzAw8ODfPnyYWVlhY2NDfv27cuU8+sHG/WDjVo2k5bf2QMHDuDmdpF81OTSiRiKVMyZ9brSKjIykjp16nDuzBkO3X/Aqza/kq+OB691X0afPn146qmnOHbsmOnlaaKjo9m8eTPOzs5UrlyZnTt38vLLL+Pl5UX16tWxs7MjT5489OrVyzIxXGok98FGfTNQ03KR4W/+CIxFWb+PdYmPzQ4ny7KxseG7777Dw8ODN11dWb63CQ7PdMWqywxcXFw4fvy4qckkKiqKxYsX8+mnn3Ly5EkGDRrEtGnTqFevHjdv3jStn0df62paLhETLZz7uwtwjp49wnVHfBKqVKnCZ599xu9nzxLWtwNWX80k9KtllCxZjfbt2wPw/fffM3LkyEx9Bmvp0qVUqlSJHj16YGdnx7Jly5g4cSJgDI4xc9CAvkLB6Lh6OIpK07KytPzherBuPXnCN2Brc4sxn09Px6hyrnfeeYfXXnuNYg4O3Dl6nuf6v8ir2y8x40ejH/GPP/7g66+/5uzZs3zzzTfY2dlleEx79uyhcOHCrF69mlatWmWpv125/grF1taW0NBQ/ZS3luWJCKGhodja2qZ43+3btlG2Q1sOMJuPPqqMnhsoeaysrChWrBjRSrGohTet7Tcze0VRzu0yJpudNWsWn3zyCYsWLcLd3Z1du3alewwhISH06dPH8tDz559/TmBgIK1bt85SyQR0pzyRkZGcP38+yecxNC0rsLW1pUyZMtjY2CR7HxGhWrmBnA6OxqHwj5y6cI4CBXJvmZXU2LNnD3Xq1OHV5m+xYsMUXiu8jm//aQwODgBs27aN3r178++//3Ls2DEqVqyY5nOGh4czefJkvvjiCyIiIpg0aRKDBg1K83FTI7md8qYXbMzMJaHikJqW0236ebPACSmd56DcvJZ7C0Cm1fvvvy+AvFTrD7EmUk7U7iZy755l+507d2TJkiWW10FBQRITE5Oqc33xxRdStGhRAaR9+/Zy6tSpNMefFiSzOKTuQ9G0HExEeLvHNuBzpvXfRmHHamaHlG2NGzeOXbt28VtQN/LaHGXDn46888orsHIl5M2Lvb09Xbp0AYznQTw8PGjUqBHNmzfH2dmZp59+msqVK2NnZ8eff/7J6tWruXfvHmFhYYSGhnLp0iWWL19OmTJlsLW1pUmTJgwYMIB69eqZ/M5TIDlZJ6MWoClwHDgFDE9gew/gKhAUu/SJs607cDJ26Z6c8+krFC238f9lu8A/An/K1i3+ZoeT7QUHB4ujo6O4uPhK9KxZIiDStq1IRMQj7SIjI2XGjBni5OQkgGXZuXOniIgsWbJEbGxspFChQlK8eHGpWrWqNG7c2PQrkSchmVcopvWhKKWsgROAL3AeY475LhJnKl+lVA/AU0QGPLZvUSAQ8MT4h9oH1BCRG4mdM6E+FE3LyWZ1382A7+pQuuirnL38na5DlQ62bt3ZaHmmAAAgAElEQVRKgQIF8PLy4upncyn2YT945RVYvBge69sSEa5fv84///xDcHAwderUoUSJEtluZGl2eLCxFnBKRM4AKKWWAq2B5ExT+BKwRUSux+67BeNq54cMilXTsh2JiuLCui+BF5k0o6VOJumkcePGACxfDt1G9+HA+3l4fkIvuHEDVqyAwoUtbZVSODo64ujoiKen5yPrcyIzhw2XBoLjvD4fu+5x7ZVSB5RSK5RST6dwX03Ltdp6eTH3xgpcyn5Gx86dzA4nx7l69UciI8MZHNQM/PyMUuP16sG5c2aHZhozE0pCKfrx+2/rAGcRcQX8gYd13ZOzr9FQqX5KqUClVKCeeU3LLX779XfW7GvMLRwZNWmSLgCZAbp1a0LRosvYvLkY28o2hl9+gfPnoXZt2LbN7PBMYeZv2Xng6TivywAX4zYQkVAReRD7ci5QI7n7xjnGHBHxFBFP/TCXllsM7P4L8AWz+vjRNrZMiJa+ChcuzPr1PkAEHTrs426tWvDHH8Ytr8aN4d134d49s8PMVGYmlL1ARaVUeaVUXqAzsDZuA6VUyTgvWwFHY7//BWiilHJQSjkATWLXaVquFxiwj7/PdaWE9UH6fP2yvjrJQHXqVKBt2yvcuOHLa68NQipXhv37oX9/mDoVPD3B3x8yc/DTvXvw11/www8wcSIMHgzt20Mm3KExrZdORKKUUgMwEoE1MF9EDiulPsEYorYWGKSUagVEAdcxhhEjIteVUmMxkhLAJw876DUtt+vfbS0whmef+QCV5zOzw8nx5swph4vLHJydXzA62+3sYOZMaNUK+vYFX1/w9oZPPzX6WNJTWJiRPAICYO9e4/tTpx5NYAULQpkyxqCBDL5Lk+tLr2haTiIxQql8x7gUFcPSxQfp9Gpns0PKVaKiICYmgrx58xorHjyAOXOMZHL5MlSvDl26QKdOULZsyg9+9Cjs22ckj9274cABiI42tpctCzVqgKsrVKsGlSvD009DoUJpfl/JHTasE0oy/PwzjBsHW7dC/vwZEJimpZPrq7bj3O4mBQtvJfj6dH27K5NERcHLL0OBAicJCmrCr7/+Stm4CSMsDObNM55VeTg9d8WKRoJxdzeuIAoVMq4moqLg5k1jCQ6GkyeN5ejR//pkChaEWrXAy8sYBFCrFhQvnmHvLzs8h5JtFChgfBjw84O33zY7Gk1L2KVLl3i1d3vucINvpvrpZJKJ8uQx7iatXl0Ba2vh5ZdfZteuXRQpUsRoUKAADBpkLKdOGc+rBAQYy/LlTz6wlRU4O8Nzzxm3zWrUMJaKFcHaOlPeW0roK5RkEIG6deHSJeODgn4+TMuK+rYZwbdrVlK2yFVOX72qH2TMZAcPGnebunc/w5Ilz1O/fn02btyY9MyOt27BlStw546x5MljjBQrUsTIUiZPMwzJv0LRH2GSQSkYPhzOnk38w4SmmeXWrVssWNuAfPzKuo3+OpmYwMUFWraEdesq8PXXi9i+fTu9e/cmyQ/thQsbVxweHsZVSL16Rh9ImTJZIpmkhE4oydSypdHHNX585o4A1LTkGDVwHlHSjN41duPqVSPpHbQMMWIEXL8OYWGd+Oyzz3jqqaeSTig5iP4Yk0xWVjB5Mty/bySUHFqKR8uGIiIi+HpxGeA2XcdkXMeslrQ6deD7740Rw/b2wy01uy5cuEDJkiVzfL9Wzn536axZM2jb1kgumpZVHP31XyJi2pPP+luqN/IwO5xcr2tXYxDWw2Ry7do1atasSb9+/YiJiTE5uoyl/zSm0O3bMHq0MQxc07KCX8ZtBsIY3DuM/Hpce5awbp3xqIkIODo60qdPH+bNm0eHDh24e/eu2eFlGJ1QUsjKCqZNgy++MDsSTYN9v/7Kpt8HYW/9NCO+GGh2OFqs0FBjAM/mzcaVyieffMLUqVNZs2YNdevW5ezZs2aHmCF0Qkkhe3t46y346Sc4fdrsaLTcbsBrQ9keHU2/zi3/e+ZBM92rr0KpUkYprYcGDx7Mxo0bCQ4OZuTIkeYFl4F0QkmFgQONidm+/NLsSLTcbO8f+9kTvJ7KdrN4b8IEs8PR4sibF955x6iusW/ff+ubNGlCQEAAM2bMAODs2bPcuJHoRLPZik4oqVCyJHTrZjw5f+2a2dFoudXg7luAp/h8SBVKlSpldjjaY/r1MzrnJ09+dH3FihUpXLgwIkK3bt2oUqUK3333HVFRUeYEmo50Qkml994ziojeuWN2JFpudPFCCLtPtcZO7aPlyAZmh6MloHBhoyZkixYJb1dKMX36dEqVKkX37t15/vnnmT9/PhEREZkbaDrSCSWVqlSBNWugfHmzI9FyoznDfwUq8UzppVhZ6//GWdXAgUZ/ypN4eHiwd+9eVq1aReHChenduzeLFi0C4N69e2lKLsuWLaNnz55Uq1aNpUuXpvo4KaEfbEyjkyeNMjzpPc2BpiVm5epiQDBfLWxldihaEm7ehG+/NW6BJVRJ3srKijZt2tC6dWs2b96Mp6dRMsvPz493332XqlWr4u7uzrPPPouDgwM9e/bE1taWPXv2EBQURGhoKOfOnePcuXPcvn2b3bt3A7By5Up27NhBrVq1Mm3Ahk4oadSli1FR+tAh/fS8ljlO/fwzN+++gntJb+o3+tnscLQknDoFQ4caxYHffffJ7ZRSvPTSS5bX7u7uvPPOOwQFBbF+/Xquxs642L17dwCWL1/OlClTAHjqqacoV64cFSpUICLCmI/Fz88POzs7ywOWmcHUasNKqabANIwZG78VkfGPbf8f0AdjxsarQC8RORe7LRo4GNv0XxFJ8qNaRkywtWgRvP46bNoEcX4XNC1DiAhl7QtyPjyMNYsW0apbN7ND0pKhQQP4918juaS2buf9+/e5efMmxYsXRynF9evXefDgAYULF8bOzi59A35Mlq82rJSyBmYBzYAqQBelVJXHmu0HPEXEFVgBxB0beU9E3GMX0677O3UyRn3pIcRaZlg2ez3nw3fj4dSaFondnNeylPfeg3PnYOXK1B/D1taWEiVKWK44ihYtSsmSJTM8maSEmb15tYBTInJGRCKApUDruA1EZLuIhMe+3AOUyeQYk5Q3r9HxtnmzcdtL0zLSRx9cBKqw+LvxOb7QYE7SsiU8+yxMnWp2JBnLzN/I0kBwnNfnY9c9SW9gY5zXtkqpQKXUHqVUmyftpJTqF9su8OE9yPT2xhvg4AB6unotI/395yFO33iFZ+w283yz580OR0sBKysYPNh4LiUHl/IyNaEk1FOUYIeOUqob4AnEKWRA2dh7eq8CU5VSzyS0r4jMERFPEfEsVqxYWmNOUNGicOEC9OiRIYfXNAAGvrYZKIpX3T/NDkVLhf79jTsZ9vZmR5JxzEwo54Gn47wuA1x8vJFS6kXgQ6CViDx4uF5ELsZ+PQPsAKpnZLBJeVjk9coVM6PQcqqYaOHA6RYo9jJ1yQCzw9FS4eFgq/Pnc+7fCTMTyl6golKqvFIqL9AZWBu3gVKqOjAbI5lcibPeQSmVL/Z7J6AecCTTIn+C998HNzd48CDptpqWEheXLScs5kNauP+IUzEns8PRUunGDWO238fLseQUpiUUEYkCBgC/AEeB5SJyWCn1iVLq4aitiYA98KNSKkgp9TDhVAYClVJ/A9uB8SJiekLx9YVLl/S881r6iomJoXav7kSzgsnfdzc7HC0NHByMDvo5c3JmX4qpz6Fktox4DiUuEahWDfLlMyqM6gcdtfTwzailvPXJIWqWXkXA+cNmh6Ol0e7dULcuzJxp9KtkB1n+OZScSCljJMf+/bBrl9nRaDnFuMkxwIes2bjF7FC0dODlBbVqwYwZkNNmBNYJJZ1162aM+po92+xItJzgj017uRDWFk/HjZR00SXqcwKlYNAg46n5AwfMjiZ96Vpe6czODjZsMG59aVpa9Xp9J1CTV7pdNzsULR298opRjuXpp5Num53oPhRNy6Ii70VRwC4EUScIf9AAGxsbs0PSMkB0tFE4MivTfSgm27LF6HgLCzM7Ei272vnFXCIJopvPAZ1MciARaNXK6HfNKXRCySAFChijOWLnytG0FImJieHdiUOwU62Z8uPrZoejZQClwNERFiww5kzJCXRCySB16kCNGjB9uvFJRNNSYt6oBRwML079ihUp4uhodjhaBhk82LiLMW+e2ZGkD51QMsjDIcRHj4K/v9nRaNnNmC8LoviLr5etTbqxlm25uxud8zNnGn0p2Z1OKBmoY0d46injKkXTkmvXugAuhLfCs9hmKrhXMjscLYMNGgRnz8L69WZHknZ62HAGypcPxo83+lM0Lbl6dP8dqMWHIx3MDkXLBK1bGx86X3jB7EjSTg8b1rQs5MHdCOwKXsNaHeBB9EuZOh+4pj2JHjachYSGwhdfwJ07ZkeiZXXf9J9PDE4MbP2vTia5zLJlMHFi0u2yMp1QMsGpUzB8OHz3ndmRaFmZiLDsp6E4WTkz7vvXzA5Hy2RbtsCoUUaJ++xKJ5RMULs21KyZM4vBaeln4ahP2X33Lg1dniJ/gfxmh6NlsoED4d49+PZbsyNJPZ1QMsmgQXD8uB5CrD3ZqMmVsWIdX3ynn4bNjdzcwNsbZs3KvkOITU0oSqmmSqnjSqlTSqnhCWzPp5RaFrv9T6WUc5xtI2LXH1dKvZSZcafGK69A8eJ6CLGWsP3+B/k3vAWuTncp7+pidjiaSQYNgnPnYN06syNJHdMSilLKGpgFNAOqAF2UUlUea9YbuCEizwJTgC9i962CMWVwVaAp8FXs8bKsfPngrbeMBx4jI82ORstqOnXaCuRjwhc5rPysliKtWsHLLxt/L7KjJIcNK6UGAItFJF27ipRSdYDRIvJS7OsRACLyeZw2v8S22a2UygNcAooBw+O2jdsusXOaPWxYRM/iqMUXfjOcAg43sVEHiIhpanY4mhZPeg4bLgHsVUotj71FlV5/EksDwXFen49dl2Cb2DnobwGOydw3y3n4kzt7NmfOJ62lzsddVwKleKvFWbND0bKI27dh2zazo0i5JBOKiHwEVATmAT2Ak0qpz5RSz6Tx3Aklpscvl57UJjn7GgdQqp9SKlApFXj16tUUhpj+TpyAZ57RQ4g1g4gQ8NsIilq9wcTlvcwOR8sihg2Dli2z3xDiZPWhiHFf7FLsEgU4ACuUUhPScO7zQNwbxmWAi09qE3vLqzBwPZn7Pox9joh4iohnsWLF0hBu+qhY0ahCPGOGrkKswXdjxrDrzgVef+E4eW3zmh2OlkW8+SaEh8P8+WZHkjJJJhSl1CCl1D5gAvA74CIibwE1gPZpOPdeoKJSqrxSKi9GJ/vjpVXXAt1jv+8AbItNbmuBzrGjwMpjXEEFpCGWTKOUMd782DE9hFiDsZPtsaYb786caXYoWhbi5mbU9spuQ4iTc4XiBLQTkZdE5EcRiQQQkRigRWpPHNsnMgD4BTgKLBeRw0qpT5RSrWKbzQMclVKngP/xX2f8YWA5cATYBPQXkWzzY9dViDWA/f4HOH13IC5OzSlbrZrZ4WhZzKBB8M8/sGGD2ZEkny4OaZKRI2HCBDh/HpyczI5GM4NL8RkcujIQf789NO7hZXY4WhYTFQUVKhgfQCdNMjeW5I7y0gnFJKGhEBEBJUuaHYlmhtCQaziVisBGHSQiJss/l6uZ5MYNcMgCsxjoasNZnKPjf8kkF+V0LdbnfTcBpej24lGzQ9GysIfJJDzc3DiSSycUE92+DT4+8PXXZkeiZbYd23/ClhV8veYts0PRsrh586BMmewxhFgnFBMVLGh88tBViHOXBSNHsi98FUOazCVf/mxaY0PLNJ6eRjLJDkOIdUIxkVLGSA49hDh3GTX5GOBAvylTzA5Fywbc3KBBA5g5M+sPIdYJxWS6CnHusmPlLv4NX0Tt4l/zdJXHa6FqWsIGDTJKNq1fb3YkidMJxWT58hlPxW7YACdPmh2NltEGv/03kI9pM3Uy0ZKvdWsoWzbrf/DUCSUZoqOj+eSTT7h582aGHP+NN2DKFONKRcu5/j15jgNX2mFv/Qu1O+g5T7Tky5MHFizI+rM56oSSDH/99Rfjxo2jQYMGXLyYYMmwNClZEt55BwoVSvdDa1nIZ29sBUrySuPDZoeiZUMNG0L58mZHkTidUJKhZs2abNiwgTNnzlCvXj1OnDiR7ucQMUZxLFuW7ofWsgIR/H+/hzVHmfmTHiqspc6hQ9C2LVy7ZnYkCdMJJZl8fX3ZsWMHd+/epUGDBhw7dixdj6+UMd78o4/0EOKcaMW4cfwTMYB3X/wAuwL5zQ5Hy8ZWr866t750QkkBT09Pdu7cib29PRkxt8qgQXDqFPz8c7ofWjORiPDG2BnEAIO/SsuMD1puV60aNG5sVCHOilOJ64SSQpUrV+bo0aO88MILAISFhaXbsdu1g9KlYdq0dDuklgUsnbmK65HnaOo8kjIVK5odjpbNDR5sFJVdtcrsSOLTCSUVbGxsAJg9ezYuLi6EhISk03Ghf3/jIcfDut82x/jw4xAgL1Pm9TA7FC0HaN7cmPV16lSzI4lPJ5Q08PDw4MqVKzRt2pRbt26lyzH79oW6dY06X1r2F/DrXv651Zmn82/m+UZZfIiOli1YWRnTXzRvnvWenM9jdgDZWc2aNVm1ahXNmzendevWbNq0CVtb2zQd08kJfv89nQLUTDfqrd+BmrRrccrsULQc5PXXzY4gYaZcoSiliiqltiilTsZ+jVfxXynlrpTarZQ6rJQ6oJTqFGfbAqXUP0qpoNjFPXPfwX98fX1ZuHAhv/76K127diUmnYZo3bgBe/aky6E0s8TE8MfxRljzF58v7Gt2NFoOExlpPGaQAY/GpZpZt7yGA1tFpCKwNfb148KB10WkKtAUmKqUKhJn+1ARcY9dgjI+5Cfr0qULU6dOxcfHB6VUuhyzRw+jkz4iIl0Op5lg9+TJ3I55me4+i8mfP21Xrpr2uPPn4dVXjaKRWYUpMzYqpY4DPiISopQqCewQkUpJ7PM30EFETiqlFgDrRWRFSs6bWTM23r17F3t7+zQdY9MmaNYMFi2Cbt3SKTAt04SFheFUsCARIvz7zz+UdnY2OyQtB2rXDn79FYKDwc4u486T1WdsLC4iIQCxX59KrLFSqhaQFzgdZ/WnsbfCpiilMnZSiRQk3d9//x1nZ2d27dqVplO+9BJUrmzU+NIzOmY/X/xvLvflF9pWa6+TiZZh3n0Xrl+H774zOxJDhiUUpZS/UupQAkvrFB6nJLAI6CkiDzsoRgDPAzWBosCwRPbvp5QKVEoFpvphxNGjYeDAZN1/qly5MkWLFqVt27YEBwen7nwYT84PHgx//QVpzE1aJouOjmaaXyEULzDrxzlmh6PlYPXrGxNwTZ2aNSpsZFhCEZEXRaRaAssa4HJsoniYMK4kdAylVCFgA/CRiOyJc+wQMTwA/IBaicQxR0Q8RcSzWLFiqXkjxrSKM2eCt7dxbZmIokWLsm7dOu7fv0+nTp2ISEMnyGuvGXPPb9uW6kNoJvCb8j23I7vQoJQ/xZ8vanY4Wg6mlHGVAlmjc96sW15rge6x33cH1jzeQCmVF1gFfCciPz627WEyUkAb4FCGRaoUTJwIP/5oPG3o4QFbtiS6S6VKlZg3bx67d+9m2LAnXjwlyc4Ojh+HUaNSfQjNBCNHXwLy0+K1ULND0XKBTp3gyBFj3nmzmZVQxgO+SqmTgG/sa5RSnkqph2XPOgINgB4JDA9erJQ6CBwEnIBxGR5xhw4QGAglShgdHOPHJ9q50bFjRwYOHMjdu3fTNJTY0dH4eudOqg+hZaL718O5FtaDvFYbGTz2VbPD0XIBa2vjYcewMLh82dxYTBnlZZZ0GeUVFgZ9+sDSpUaSmT8fChZMsGlMTAxWVmnP2XPmwPvvw5kzUFTfQcnS9rw/ijoTw3izdQm+Xj3E7HC0XCIqCipUMOZMWbgw/Y+f1Ud5ZV8FCsCSJTBpEvz0E9SpA6dPJ9j0YTI5ePAgbdq04e7du6k6Zd26cOsWfPNNqqPWMsGxI0d4adJYbNWXfDa/l9nhaLlInjzQpg388IO5fSk6oaSGUvDee7B5M4SEQM2asHXrE5tfuXKFdevW0bt3b1JzRVitmnGXbcYMePAgLYFrGem912dzR7rR+YVGOOhLSS2TvfOOUdvLzHnndUJJBhHhq6++il8AsnFjCAiAUqX++4ufQMJo3Lgxn332GcuXL2dqKkuE/u9/cOmS8QlEy3rOnz/Pxn0tsVPjmbV2vdnhaLlQhQrQvr1xJ8O0PlcRyTVLjRo1JDUOHTok1tbW4uzsLLt3747f4PZtkVatREDkzTdFIiLiNYmJiZG2bduKtbW1bNu2LcUxxMSIuLiIVK+emnegZbROL74vIDKs8S9mh6LlYgEBxp+hxYvT97hAoCTjb6y+QkmGqlWrWp58r1+/PuPHj3905FbBgsZsN8OGGR8PmjUzqjvGoZRiwYIFPPfcc0xLxQxaShn9/2viDbDWzHb9+nV+9HcDbtPuo1Q866Rp6aRmTTh40KjxZQY9yisFbt68yRtvvMHy5cvp1KkTS5cujd9owQLo1w/Kl4cNG+DZZx/ZfPHiRZycnMibN2+q49CyllNbTlCxSQWc8s/mStjb6VYgVNPSIjraGFKcHvQorwxQpEgRli5dyuzZs+nSpUvCjXr0MKZcvHbNGAH2xx+PbC5VqhR58+YlNDSU0aNHE53CGXL++Qd8fY2uGy1rWPXxTOBvxowsrJOJliWMG2eUZcn064Xk3BfLKUtq+1ASM2XKFBk5cqRERUU9uuHECZFnnxXJl09k6dJ4+/n5+Qkgr732mkRGRib7fLdvixQpItKhQ1oj19KD39SpUhaknL19iv4dNS0jffut0ZeyeXP6HI9k9qGY/kc+M5eMSCh9+/YVQBo1aiQhISGPbrx6VaRePePH/MUXRs96rJiYGBk7dqwA0qFDB3nw4EGyzzlihIhSIidPpte70FLjwYMHUtS2oUBBmTJihNnhaJrF/fsipUqJNGqUPsfTCSWTEoqIyPz58yV//vxSokSJ+CO47t0T6dTJ+FG//bbIY1cyX375pQDy8ssvS3h4eLLOFxIikjevyBtvpNc70FJj1uSvBa5IzSJb5M6dO2aHo2mPmDTJ+LPz559pP5ZOKJmYUEREDhw4IJUqVRIbGxs5d+7coxujo0WGDjV+3K1aiYSFPbJ59uzZ8uyzz0pwcHCyz9evn3E37eLF9IheS6nIyEhxtBsuILJzzhGzw9G0eG7fFnFwEGnXLu3HSm5C0aO80tGdO3fw9/enbdu2gDFrX4ECBf5rMGsWDBoEtWrBunXg5GTZdP/+fWxtbYmJiSEqKirJUWCnT8PKlfDWW08sJaZloO++XUj3vg0pYH2eO5F1dGe8liWtW2dM1PfYYNMU06O8TFCwYEFLMtm6dSvly5dn5cqV/zXo398og79/vzEE4+xZyyZbW1tEhL59+9KxY0ciIyMTPdczzxgFI3UyMcffS62AsjSosUUnEy3Latky7ckkJXRCySClS5embNmydOjQge7duxMeHm5saNfOmE/l8mWj6uOBA5Z9lFJ4eHiwZs0aunTpkmRSAaNO5bffJtlMS09RUWz9LQL4mxmLu5kdjaYl6sQJY0qnFD6hkDrJuS+WU5aM7ENJSEREhIwcOVKUUlK/fn25cePGfxsPHRIpXVqkcGGRnTsf2W/q1KkCSKdOnZIcitqypUjRoiK6TzhzxMTEyIhWrcQepL1XE7PD0bQk3b//yADTVEF3ypufUB5atmyZ2NjYyJw5cx7dcO6cSKVKIra2ImvWPLJp4sSJAkivXr0SPfbu3ca/4pdfpnfUWkLWrFotUEoA+Ssw0OxwNC1TZOmEAhQFtgAnY786PKFdNBAUu6yNs7488Gfs/suAvMk5r1kJRUTk2LFjEhP7MeGRhyCvXhWpWVPE2lrEz++RfSZOnCj+/v5JHrthQ5GSJY0RylrGiYmJkWeK9xJ4IB+3nWx2OJqWaZKbUMzqQxkObBWRisDW2NcJuSci7rFLqzjrvwCmxO5/A+idseGmXaVKlVBKcfDgQapWrcpff/1lbHBygm3bjKnWevaEOIUjhwwZQuPGjQFjkq4n+fhjY1qWefMy9C3keuvWrOX05b44Wl3m4yWDzQ5H07IcsxJKa+DhRJULgTbJ3VEZQ2oaAStSs7/ZbGxsuHfvHt7e3vj7+xsr7e1h/Xqjw/6dd2DMmEeK8GzZsgU3Nze++uqrBI/p42OUECtdOuPjz61EhP+9uRLw4tVGf2Jjm05V9zQtJ0nOZUx6L8DNx17feEK7KCAQ2AO0iV3nBJyK0+Zp4FAi5+oXe4zAsmXLpsvlX1pduHBBXFxcxMbGRr7++mvLrTCJjBTp0cO4E/nuu5aetMjISGnZsqUopWTlypUmRp573b1zVwpZ/S7wr/y8Lp0KJGlaNoHZfSiAP3AogaV1ChJKqdivFYCzwDNAsQQSysHkxGRmH8rjbty4IS+99JIAsmDBgv82REeLDB5s/NP062cp1RIWFiZ16tQRW1tbCQgISPCYd+6ITJsmkoKyYFoyHZzlLxApzo6j/vsAoGm5hOkJJdGTwnGgZOz3JYHjydhnAdABUMA1IE/s+jrAL8k5b1ZKKCIi0dHRMnv2bLl///6jG2JiRD74wPjn6drVuHIRkcuXL4uzs7OUKFFCrl+/Hu94mzYZuzw+mExLm1937JCPS5QQcJaVy9aaHY6mZbqsnlAmAsNjvx8OTEigjQOQL/Z7J4wRXVViX/8IdI79/hvg7eScN6sllLguX74sPj4+cuDAgf9Wfvqp8U/Uvr3lsuPw4cPy1VdfJXiMmBiRWrVEypXTVynpJSoqSp4r+azYgFQvW1ZfnWi5UlZPKI4Yo7tOxn4tGrveE/g29vu6wEHg79ivvePsXwEIAE7FJpd8yTlvVk4ox+gCJQ4AABRASURBVI4dk1KlSomDg4P8Gbc86NSpYikq+diVzJEjRyTisfnrN240mj8h52gptGC+n8DvUtXGT7am1+QSmpbNZOmEYtaSlROKiMiZM2ekQoUKYm9vL7/88st/G2bNMv6pmjWzPGwSEhIiBQsWlK5du0p0dLSlaUyMSP36xlwIyayGrz3BgwcPpHjhLkaC7rHb7HA0zTTJTSi6llcWUr58eXbt2kWFChVo1qwZK1bEjox++22YOxc2bYLWreHePUqUKMHw4cNZvHgxQ4YMeXjlhlLG9J/PPWfMQqyl3ry533L51v+wV+foPr262eFoWpaXx+wAtEeVLFmSXbt2MWzYMLy9vf/b0KcP5MkDvXoZSWXNGkaMGMHly5eZMmUKxYsXZ9iwYQB4e8P27Sa9gRwk8McIwJOnig0nv/3nZoejaVmevkLJggoWLMhXX31FsWLFiIiI4LPPPuP+/fvG04vz54O/P7Rujbp/nylTptClSxeGDx/Oli1bHjnOhQvGRY2WChER7Py9FnCCWX6NdIl6TUsGfYWSxW3fvp0PP/yQ33//nZ9++ol8PXoYG2KvVKzWrsXPz48aNWrg4+PzyL6DBxu55/RpcHTM9NCzrcuXL7Nl6FBuR63F/ZnGvNRsRdI7aZqmO+Wzg9mzZwsgzZs3/++ZFT8/EaWMjvo4o78uX74sx44dExGRgwdFrKxE/vc/E4LOxt7o9YaAlQCy67ffzA5H00yH7pTPOfr168c333zDhg0baNWqFbdv3zZuf82ZAxs3wiuvQEQEIkK7du1o0qQJly5dolo1o9nMmY9MDqkl4sSJE8z1K0gh9vNe17epV7++2SFpWvaRnKyTU5bseoXy0Pz588XR0VEOHz7838qvvhIBkXbtRCIjJTAwUOzs7KRWrVoSHh4uwcEi+fMbD9xrSWv+4isCodLoqb1mh6JpWQb6CiXn6dmzJ6dPn6ZKlSqICCEhIfDWW0bJ+59+4v/t3Xl0VPX5x/H3k7AkomwlsgqREgoqNGwB+ZEUIWGLBmhFjaXGgxWBVkDEBoFipIAIilRQWVzAnwhVRIkGfgQEgyBYVhMou1QJshkiyCZM8vz+mNETkS3JTG5m8rzOycncJXc+35MwD/d7v/d+SUqiVWQk8+bNY8OGDSQlJVGnTj6PPw4VK5bQFKB+bNWqVaStaAVUZfTzFZ2OY4zfsYvyfqZKlSoAvPLKK4wePZolS5bQbvBgOHMGnnwSrruOXjNnMnnyZIYPH05UVBRjxw7HBild3defHQKGEsQ8GkbHOB3HGL9jBcVP9ejRgylTphAbG8sHH3xA7IgR7qLyj39AaCjDpk4lODiYvn37/lRMNm2C06chxj4rf0mV5dMFcPHnB3bQoMGfnE5kjN+xguKnwsPDWbNmDV26dCE+Pp4FCxbQ++mn3RVjyhSkcmWGjhsHwPnz59m370sefLAJZ8/C9u3uLjDjlpuby6vDhvHfw29RJeR2nv1nqtORjPFLdg3Fj9WqVYuMjAxatmxJYmIi2QcPwnPPwcMPw/jxMGkSAAMHDiQmJponnjjMvn0/m2XYAGNGjeFvcxayFhcTn7uXqlWrOh3JGL8k7gv4ZUPr1q1148aNTsfwuhMnTpCRkUFCQoJ7RV4e9O0LCxbAyy+zu3Nn2rVrR+3atQkP38rq1eXZvRtq13Y2d2mwZcsWWrV8iYqMo2/XFF75aDrlytmJuzEFicgmVW19tf3sDCUAVKlS5adismLFCjZs3gxvvgl33gl/+QuNN21i4cKF7Nq1izNnBvHDD8rIkQ6HLgXy8vL4c9JQYALNq+Qwa+kMKybGFIMVlADicrkYPHgw3bt3Z/f+/fDOO+4r8A88QKezZ5k2bRqffPIqbduuJCICytDJ6SXNnj2bzVmJKNUZM/m0jYQzppisoASQcuXKkZqaSlBQEN26dePwiROQmgq//S3cfTcDb7mFsWPH8vLLNzJyJGX+AzRkbw2gP8Eynaadazgdxxi/50hBEZHqIrJcRPZ4vle7xD53iMjWAl/nRKSXZ9scEdlfYFtkybeidGrUqBFpaWkcOXKE+Ph4vhdxP3I4PBzuuou/x8fTrFkzVJXXXz/OzJlOJ3bIuXN8OONb4BueTD5Dw4YNnU5kjN9z6gxlBPCxqkbgngJ4xMU7qOoqVY1U1UigE3AGSC+wyxM/blfVrSWS2k+0adOGd999ly+++ILZs2dDjRqwfDlUqwZdu8LOnYwfP56BAz9jyJB8vvzS6cQlKy0tjaS2bdl8eiANa/dkdMrjTkcyJiA4VVB6AnM9r+cCva6y/93AUlU949NUAaRHjx6sX7+exx57zL2iXj33s+yDgqBLF+7p0IGQkGQuXDhL//6uMnM9JTc3l35Jf2dJ5mn+C8z630lUtJtyjPEKpwpKTVU9BOD5fuNV9r8PmH/RuvEikikiL4jIZT8RRKS/iGwUkY3Hjh0rXmo/07p1a0SE/fv307NnT76tVg2WLYOTJ2n8yCO892oKqqP4+ONyzJ2b73TcEjF08BCO5kwiX9bw2tQZdO7c2elIxgQMnxUUEVkhItsu8dWzkMepDTQDlhVY/STQBGgDVAeSL/fzqjpLVVurauuwsLAitMT/7d27l/T0dGJiYsiuUQPS0uDAAWInTGDas/WBTxkw4AeOHnU6qW+lpaXx5lvXAbFM7H+QfkMecTqSMQHFZ4PuVTX2cttE5IiI1FbVQ56CcaWPsnuA91X1QoFjH/K8/EFE3gCGeyV0gIqLi2Pp0qUkJCTQvn170tPTabJoESQk8JfFi8jsd46Q668jLKyV01F9Jj8/n6GDJiF8RGjwSv4woYXTkYwJOE51eaUCSZ7XScDiK+ybyEXdXZ4ihLgn+u4FbPNBxoDSsWNHMjIyOH/+PB06dCCrbl2YNw/WrWPmwdX8c9JtiMDhwyecjuob511cf2wCCtzRaT7Vq/9iYKExppicKigTgTgR2QPEeZYRkdYi8uqPO4lIOHATkHHRz88TkSwgC6gBjCuBzH6vRYsWrF27lk6dOhEeHu6e6XH2bPd1lcREkp9YTZ0651i6dLfTUb0qMzOT08mjOHh2C9eHjOKNeROcjmRMQLJneZVhp0+fZvPmzURv2QJDhrA+7iHar5hMuXIH2LnzVzRsWNfpiMWWlZVFm1ataH3hAmuBRYsW0bt3b6djGeNX7Fle5qpGjx5N586dWVinDkyYQLvlr/F81AwuXGhOVFQGJ074d/fXqVOn6NP7QfTCR+RUuJ1B/ftbMTHGh6yglGEpKSm0adOGe++9l1fDwmDUKB77fCS9b15MTs79REe/gMvlcjpmkagqSQ8ksWvfcFx0YtasOUx58UWnYxkT0KyglGFVqlQhPT2dLl268PDDDzM+JAQdPpwF+/twc+WdVK/eieDgYKdjFsnEiRNZ9H59IJEnu68nOqmx3cBojI/Zs7rLuEqVKpGamkq/fv2YNn06/TMzCVPlP89HEtK8PxDNgQMHqFevHuJHT5Msv60O8DdgEU3vP+d0HGPKBCsohvLlyzN37lyys7MJu/FG8iZO5Py5c4RMm8aHe6py98omPPpoJpMnP1Pqi8rJkyepvGcP8+ffAGxn0COf8ce+zzkdy5gywbq8DABBQUHUr18fgKdSUohasYJdDz3Eof87xPnz9/P88zVJSUmhNI8K/Prrr7m1SROGduxIpt5Lx/ZP88/pE52OZUyZYQXF/ELXrl05fvw4bRcupNb9ZxjMVOAxxo7NZcyYMaWyqOTk5NClcwJHDv2dZadD+XV4Pd5Pe81mYDSmBFlBMb8QHR3Nxo0badSoET3ffpuQjmn0ZBHwIuPGHeStt95yOuLPnDp1ivhuCeze+wx59GdE8nt8tHw5VatWdTqaMWWK/ffNXFL9+vVZs2YNQ4YMYeqcOax7OpazTy3jcMg99Lk9wul4P8nLy6NrXDc+3/hXoDszBm0h6Zlop2MZUybZGYq5rJCQEGbOnElWVhYtxyTz/ofl+SjoPkI6/o7DyzMYNmwYZ8+edTSjK+cU32eOBBIpHzySmEdDHc1jTFlmBcVcVePGjQFYcu44TfJ/4I3T5WnbpRovvOAiLi6OnJycEs+UnZ3Np4sXs6VDPDvORFA++AmWLY+jSZMmJZ7FGONmBcVcs+joaCJbtqTfd4cpH/IN8CLr1t5Fy5at2LBhQ4nlWLNmDS2ax9KzdyJ37llLlRuiWfNZH+64444Sy2CM+SUrKOaa1axZk5UrVzJoUD/2nYunRugc8knm2IGp/E/7eFJTU336/qrKjBkz6Pi7UeTmfkyr4CncGB7Ouk2fEhUV5dP3NsZcnRUUUygVK1bkpZdeYvHi98kPHc79MYu5oPHUdU2n3bp14HL5ZFixy+Wiz+//wMCBu8nL/5gGFfN5Lq03WXv3EhFRegYJGFOW2ePrTZHl5uZSrVo1/p3+HR8//ieabvuINhEdeCA0n98/nMiAgQOL/SwwVUVE2DNzJe0GVeB4fgfgPTZ/fhston7jnYYYY66oVD++XkT6iMh2EckXkcuGFJFuIrJLRPaKyIgC628Wkc9FZI+I/EtEKpRMclNQtWruWQ9bx1bmg+uO0hu4bd9jrM58l78+uoHIiN+wYP588vLyCn1sVWXJkiW0a9acBS1a8OcBD3E8vwE1Kj9ORsaNVkyMKYWc6vLaBvweWH25HUQkGHgJ6A7cAiSKyC2ezc8CL6hqBJALPOTbuOZKgoKCWLt2LTNmzKBS7fm4OADMZef+D0m8fz2NazbhYFbWNR3r8OHDvPryyzS7KY74+K/I3P4MA7ZuJTP0CJMm/IvsoxOIibH7TIwpjRzt8hKRT4DhqvqLfigRuR1IUdWunuUnPZsmAseAWqrquni/K7EuL9/Ly8vjww/TGDliC0HfP8j2bxpQm7F05Ska12zExkotCKp+kAb1a/HriAgqhIbyw/HjdGrQgFUrcxiypDIXNBZoRTnO8ac2u0kYvIOYHnFUr17d6eYZUyZda5dXab5Tvi5woMByNtAW+BXwnaq6Cqz3/7lqA0RwcDC9eiXQq1cCAFu3wvK5FZk8uxJzjtwKvANfAhu/B44DUJk7Ock2YACQQoWgz2kaPpuFS/vQqHFzoLkzjTHGFIrPCoqIrABqXWLTKFVdfC2HuMQ6vcL6y+XoD/QHfnqarik5kZEQGZnMEy8ks2PHMea9mcnOLd9z/JiLahVqoflKYveR5FXK5ob6t9Ls9lPUr98B6OB0dGNMIfmsoKhqbDEPkQ3cVGC5HvAN8C1QVUTKec5Sflx/uRyzgFng7vIqZiZTDE2bhjHumbBLbLG7240JBKX5PpQNQIRnRFcF4D4gVd0XfVYBd3v2SwKu5YzHGGOMDzk1bLi3iGQDtwNpIrLMs76OiCwB8Jx9/BVYBuwA3lHV7Z5DJAPDRGQv7msqr5V0G4wxxvyc3dhojDHmikr1jY3GGGMCjxUUY4wxXmEFxRhjjFdYQTHGGOMVVlCMMcZ4RZka5SUix4CvivjjNXDfVBkIAqUtgdIOsLaUVoHSluK2o4GqXuqu5J8pUwWlOERk47UMm/MHgdKWQGkHWFtKq0BpS0m1w7q8jDHGeIUVFGOMMV5hBeXazXI6gBcFSlsCpR1gbSmtAqUtJdIOu4ZijDHGK+wMxRhjjFdYQSkEEfmHiGSKyFYRSReROk5nKioRmSwiOz3teV9EqjqdqShEpI+IbBeRfBHxy9E4ItJNRHaJyF4RGeF0nqISkddF5KiIbHM6S3GIyE0iskpEdnj+toY4namoRCRERP4tIl942vK0T9/PuryunYhUVtWTnteDgVtUdYDDsYpERLoAK1XVJSLPAqhqssOxCk1EmgL5wExguKr61eOkRSQY2A3E4Z5UbgOQqKr/cTRYEYhIDHAKeFNVb3M6T1GJSG2gtqpuFpEbgE1ALz/9nQhQSVVPiUh5YA0wRFXX++L97AylEH4sJh6VuMLUw6WdqqZ75pwBWI975ku/o6o7VHWX0zmKIQrYq6pfqup5YAHQ0+FMRaKqq4HjTucoLlU9pKqbPa+/xz0fU11nUxWNup3yLJb3fPnsc8sKSiGJyHgROQD8ERjjdB4v6QcsdTpEGVUXOFBgORs//fAKRCISDrQAPnc2SdGJSLCIbAWOAstV1WdtsYJyERFZISLbLvHVE0BVR6nqTcA83DNKllpXa4tnn1GAC3d7SqVraYcfk0us89sz30AiItcD7wFDL+qd8Cuqmqeqkbh7IaJExGfdkeV8dWB/paqx17jr20Aa8JQP4xTL1doiIknAnUBnLcUX0wrxO/FH2cBNBZbrAd84lMV4eK43vAfMU9VFTufxBlX9TkQ+AboBPhk4YWcohSAiEQUWE4CdTmUpLhHpBiQDCap6xuk8ZdgGIEJEbhaRCsB9QKrDmco0z4Xs14AdqjrF6TzFISJhP47gFJFQIBYffm7ZKK9CEJH3gN/gHlX0FTBAVQ86m6poRGQvUBHI8axa748j1kSkNzANCAO+A7aqaldnUxWOiPQApgLBwOuqOt7hSEUiIvOBjrifbHsEeEpVX3M0VBGISAfgUyAL9791gJGqusS5VEUjIs2Bubj/toKAd1R1rM/ezwqKMcYYb7AuL2OMMV5hBcUYY4xXWEExxhjjFVZQjDHGeIUVFGOMMV5hBcUYY4xXWEExxhjjFVZQjHGQiLTxzEkTIiKVPHNW+O2j303ZZjc2GuMwERkHhAChQLaqPuNwJGOKxAqKMQ7zPMNrA3AOaK+qeQ5HMqZIrMvLGOdVB64HbsB9pmKMX7IzFGMcJiKpuGdqvBn31LOlep4dYy7H5kMxxkEi8gDgUtW3PfPLfyYinVR1pdPZjCksO0MxxhjjFXYNxRhjjFdYQTHGGOMVVlCMMcZ4hRUUY4wxXmEFxRhjjFdYQTHGGOMVVlCMMcZ4hRUUY4wxXvH/Mq5ySENMxzkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(Xstar[:,0], np.mean(ypred_sim,axis=1),'-',c='red',label='Simulation Prediction Mean')\n", "plt.plot(Xstar[:,0], np.percentile(ypred_sim,q=95,axis=1),'--',c='black',label=\"90% Prediction Interval\")\n", "plt.plot(Xstar[:,0], np.percentile(ypred_sim,q=5,axis=1),'--',c='black')\n", "plt.plot(Xstar[:,0], simfunc(Xstar[:,0]),'k--',c='blue',label='Simulation')\n", "plt.legend()\n", "plt.xlabel('x')\n", "plt.ylabel('y')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.4 Discrepancy $\\delta(x)$](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.4-Discrepancy-$\\delta(x)$)", "section": "11.3.6.4 Discrepancy $\\delta(x)$" } }, "source": [ "### 11.3.6.4 Discrepancy $\\delta(x)$" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "nbpages": { "level": 3, "link": "[11.3.6.4 Discrepancy $\\delta(x)$](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.03-Contributed-Example.html#11.3.6.4-Discrepancy-$\\delta(x)$)", "section": "11.3.6.4 Discrepancy $\\delta(x)$" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XdcVfX/wPHXYYMhoIgLEQfKUETEPXBvxV3uVabhSnPvkZqWqyxT07Q09/qW5QpS03KiuUUFtyIIInu8f39cvT9RVDLginyej8d9dO89h3Pe54b3zed8Pp/3RxMRFEVRFCUjjAwdgKIoipJzqKShKIqiZJhKGoqiKEqGqaShKIqiZJhKGoqiKEqGqaShKIqiZJhKGoqiKEqGqaShKIqiZJhKGoqiKEqGmRg6gMxmb28vzs7Ohg5DURQlRzl27Nh9ESnwqv3euqTh7OzM0aNHDR2GoihKjqJpWmhG9lO3pxRFUZQMU0lDURRFyTCVNBRFUZQMe+v6NNKTlJTEjRs3iI+PN3QoipIpLCwscHR0xNTU1NChKLlMrkgaN27cwNraGmdnZzRNM3Q4ivKfiAjh4eHcuHGDEiVKGDocJZfJFben4uPjyZ8/v0oYyltB0zTy58+vWs6KQeSKpAGohKG8VdTvs2IouSZpKIqivM2uX7+eLedRSSObGBsb4+XlhYeHBxUqVGDu3LmkpqYCcPToUQYPHmzgCLNWSEgIlpaWeHl54e7uTv/+/fXX/zq+//57Bg4cCMDixYtZtWrVS8+9Zs0a/evM/LydnZ2pXbt2mve8vLwoV65cphxfUV7lyb+j6Ohozp49m+XnyxUd4W8CS0tLgoKCALh37x5dunQhKiqKKVOm4OPjg4+Pz386fnJyMiYmb/b/zlKlShEUFERycjL169dn69attGvXTr89JSUFY2Pjf33c/v37v3T7k6TRpUsXgEz5vJ8WHR3N9evXKVasGOfOncu04yrKy9y5c4fx48cTFxfH6tWrcXd3R0Sy/LwGbWlomtZU07QLmqYFa5o2Op3t/TVN+0fTtCBN0w5omuZuiDgzm4ODA0uWLOGrr75CRAgMDKRly5YA/PHHH3h5eeHl5UXFihWJjo4GYPbs2ZQvX54KFSowerTuo6pbty5jx47F19eXBQsWEBYWRvv27alcuTKVK1fmzz//BGDy5Ml0796d+vXr4+LiwtKlS/WxzJkzh8qVK+Pp6cmkSZMA3Zesm5sbH3zwAR4eHjRu3Ji4uDgAgoODadiwIRUqVMDb25vLly/TvXt3tm3bpj9m165d2b59+wuv38TEhBo1ahAcHExgYCD16tWjS5culC9fHoAff/yRKlWq4OXlxYcffkhKSgoAK1asoEyZMvj6+uqv7cn1ff755y+Mb/To0ezfvx8vLy/mzZuX5vOOiIigTZs2eHp6Uq1aNU6dOqU/Zp8+fahbty4lS5Zk4cKFL7yeTp06sW7dOgB++uknOnfurN+WkpLCiBEj9J/xt99+C8CjR49o0KAB3t7elC9fXv/5veyzVxTQDeyZNWsWLi4urFq1isKFC+tbG9nS1yUiBnkAxsBloCRgBpwE3J/ZJ+9Tz1sDv73quJUqVZJnnT179v9fDBki4uubuY8hQ54757Py5Mnz3Hu2trZy584dCQgIkBYtWoiISMuWLeXAgQMiIhIdHS1JSUmyY8cOqV69usTExIiISHh4uIiI+Pr6yoABA/TH69y5s+zfv19EREJDQ8XV1VVERCZNmiSenp4SGxsrYWFh4ujoKDdv3pSdO3fKBx98IKmpqZKSkiItWrSQP/74Q65evSrGxsZy4sQJERHp2LGj/PDDDyIiUqVKFdm8ebOIiMTFxUlMTIwEBgaKn5+fiIhERkaKs7OzJCUlpbnWq1evioeHh4iIxMTEiI+Pj+zYsUMCAgLEyspKrly5ov9/1bJlS0lMTBQRkQEDBsjKlSvl1q1bUqxYMbl3754kJCRIjRo1xN/fX399c+bMeWF8T3++IpLm9cCBA2Xy5MkiIrJ3716pUKGC/pjVq1eX+Ph4CQsLk3z58uljelrx4sXlwoULUr16dRER8fLykjNnzuiv9dtvv5Vp06aJiEh8fLxUqlRJrly5IklJSRIVFSUiImFhYVKqVClJTU196Wf/rDS/10qucOTIESlRooQA4ufnJxcvXsy0YwNHJQPf3Ya8n1EFCBaRKwCapq0F/AD9TTkRefjU/nmArG97ZSNJpylZs2ZNhg0bRteuXWnXrh2Ojo7s2bOH3r17Y2VlBUC+fPn0+7/77rv653v27ElzT/Phw4f6loqfnx+WlpZYWlpSr149Dh8+zIEDB9i1axcVK1YEdH/9Xrp0CScnJ0qUKIGXlxcAlSpVIiQkhOjoaG7evEnbtm0B3QQzAF9fX/z9/bl37x6bN2+mffv26d4qu3z5Ml5eXmiahp+fH82aNSMwMJAqVaro5xvs3buXY8eOUblyZQDi4uJwcHDg77//pm7duhQoUEB/3RcvXkxz/BfF9zIHDhxg06ZNANSvX5/w8HCioqIAaNGiBebm5pibm+Pg4MDdu3dxdHR87hj58uXDzs6OtWvX4ubmpv//BLBr1y5OnTrFxo0bAYiKiuLSpUs4OjoyduxY9u3bh5GRETdv3uTu3bsA6X72Su6WlJSEqakpTk5OFClShCVLltCwYUODxGLIpFEUeLq7/wZQ9dmdNE3zB4aha43U/89nnT//Px8iM1y5cgVjY2McHBzS3AcfPXo0LVq0YMeOHVSrVo09e/YgIi9sdubJk0f/PDU1lUOHDmFpafncfs/+vKZpiAhjxozhww8/TLMtJCQEc3Nz/WtjY2Pi4uJeer+0e/furF69mrVr17J8+fJ093nSp/GyaxARevbsycyZM9Pss3Xr1lc2vV8W37/5mSfnefYzSE5OfuFx3n33Xfz9/fn++++fO/6XX35JkyZN0rz//fffExYWxrFjxzA1NcXZ2Vk/7yK9z17Jne7fv8+ECRP4559/2LdvHw4ODhw4cMCgMRmyTyO9b4Dn/gWLyCIRKQWMAsaneyBN66dp2lFN046GhYVlcpiZLywsjP79+zNw4MDnvggvX75M+fLlGTVqFD4+Ppw/f57GjRuzfPlyYmNjAd19+PQ0btyYr776Sv/66S/obdu2ER8fT3h4OIGBgVSuXJkmTZqwfPlyHj16BMDNmze5d+/eC+POmzcvjo6ObN26FYCEhAR9TL169WL+44Ts4eHxbz8SvQYNGrBx40Z9HBEREYSGhlK1alUCAwMJDw8nKSmJDRs2ZDg+a2trfYvrWXXq1GH16tUABAYGYm9vT968ef913G3btmXkyJHPJYcmTZrwzTffkJSUBMDFixeJiYkhKioKBwcHTE1NCQgIIDQ0Q1WplVwiKSmJBQsW6PsgK1WqRGJi4nP7icDatRAZmX2xGbKlcQMo9tRrR+DWS/ZfC3yT3gYRWQIsAfDx8Xkjb2HFxcXh5eVFUlISJiYmdO/enWHDhj233/z58wkICMDY2Bh3d3eaNWuGubk5QUFB+Pj4YGZmRvPmzZkxY8ZzP7tw4UL8/f3x9PQkOTmZOnXqsHjxYgCqVKlCixYtuHbtGhMmTKBIkSIUKVKEc+fOUb16dQDeeecdfvzxx5eOYPrhhx/48MMPmThxIqampmzYsIGSJUtSsGBB3NzcaNOmzX/6nNzd3Zk+fTqNGzcmNTUVU1NTFi1aRLVq1Zg8eTLVq1encOHCeHt76zvIXxWfp6cnJiYmVKhQgV69eulvx4Guw7t37954enpiZWXFypUrXytua2trRo0a9dz777//PiEhIXh7eyMiFChQgK1bt9K1a1datWqFj48PXl5euLq6vtZ5lbdPcHAwfn5+nD17lkaNGjF//nzc3Z8fA3TwIAwbBn//DXPmwCefZFOAGen4yIoHuoR1BSjB/3eEezyzj8tTz1uRgY6aV3aE50JPdxRnlZiYGClZsqRERkZm6XmU/5fbf6/fNk8GWsTFxUmjRo1k+/btkpqa+tx+V6+KdOokAiKFC4usWCGSkvLfz5+R71cRMdztKRFJBgYCO4FzwHoROaNp2lRN01o/3m2gpmlnNE0LQtev0dNA4SovsWfPHlxdXRk0aBA2NjaGDkdRcpRHjx4xbtw4ypUrR2xsLBYWFuzatYtWrVql2483bBj8738waRJcugS9eoFRNn6Ta5INk0Gyk4+Pjzy73Ou5c+dwc3MzUESKkjXU73XOJiL89NNPjBw5kps3b9K9e3fmz5+fZnQkQHIyfPcdNGgApUtDSAiYmEA6A/n+E03TjonIK2e9qjIiiqIo2SwiIoI6derQtWtXChUqxMGDB1m1atVzCWPnTvDygv794UmlHGfnzE8Y/4ZKGoqiKNnkybBtOzs7HBwcWLZsGYcPH9YPRnni7Flo3hyaNoX4eNi8GaZMMUTEz1NJQ1EUJYulpKTw9ddf4+Liwu3bt9E0jU2bNtG3b1+M0umQWLxYNzrqiy90CaRtW3hTquGrpKEoipKFDhw4QKVKlfD396dEiRLpTtZMSNANm30yb2/KFAgO1nV6m5llc8CvoJJGNlmwYAHlypXDw8NDPwkOdPc2GzVqhIuLC40aNeLBgwcAbNq0CQ8PD2rXrk14eDigm/j33nvvvfAczs7O+qKGjRs35s6dO68db0hIiL68d0ZKiT87b6RGjRqvfe6n9erVS1+C40UCAwM5ePBgppzvVed5UuhQUV4lJSWF7t27U7t2bSIiIli/fj179+6lZMmS+n1EYMMGcHODkSPhSZ1POzuwtzdQ4K+gkkY2OH36NEuXLuXw4cOcPHmSn3/+mUuXLgEwa9YsGjRowKVLl2jQoAGzZs0C4IsvvuCvv/6iR48e+rUgxo8fz7Rp0156roCAAE6ePImPj0+6EwDTmxD3Kj4+Pi+t8grPJ43s+BJ/4nWSxstKgijKf/FkRKqxsTEWFhaMGzeOc+fO0bFjxzRDaI8cgdq1oVMnsLaG3bth9mxDRZ1xKmlkg3PnzlGtWjWsrKwwMTHB19eXLVu2ALryHj176qaf9OzZU18Cw8jISF8Gw9TUlP3791O4cGFcXFwydM46deoQHBwM6GZ6T5w4kapVq3Lo0CGOHTuGr68vlSpVokmTJty+fRuAY8eOUaFCBapXr86iRYv0x3r6L+xHjx7Ru3dvypcvj6enJ5s2bWL06NH6Ge9du3bVnxN0/4BGjBhBuXLlKF++vL6EeGBgIHXr1qVDhw64urrStWvXV9aOcnZ2ZtKkSfpy4ufPnyckJITFixczb948vLy82L9//0tLxPfr14/GjRvTo0cPqlatypkzZ/THr1u3LseOHePw4cPUqFGDihUrUqNGDS5cuJChz1xR9u7di6enJydPngRgyZIlTJ8+PU19tScOHNDdglqyBI4fBwPVH/z3MjIDMCc9MjIj3NfX97nHokWLREQ3szm97StWrBARXRnrZ7e9ytmzZ8XFxUXu378vMTExUq1aNRk4cKCIiNjY2KTZ19bWVkREdu3aJd7e3tKyZUuJjIyUxo0bS0RExEvPU7x4cQkLCxMREX9/fxk5cqSIiACybt06EdHNOq1evbrcu3dPRETWrl0rvXv3FhGR8uXLS2BgoIiIfPLJJ/ry3k+XEh85cqQMeaoU/JOYni39/uT1xo0bpWHDhpKcnCx37tyRYsWKya1btyQgIEDy5s0r169fl5SUFKlWrZq+rPvTevbsKRs2bNBf38KFC0VEZNGiRdK3b18ReX7G+8tKxHt7e0tsbKyIiMydO1cmTpwoIiK3bt0SFxcXERGJiorSl3bfvXu3tGvX7rnP4U2gZoS/OUJDQ6VDhw4CSMmSJdP9XY6OFhk/XmTNGt3rhASRhw+zOdCXIAeURs813NzcGDVqFI0aNeKdd96hQoUKr1xlr1GjRjRq1AiAlStX0rx5cy5cuMDnn3+OnZ0dCxYsSFOC+4l69ephbGyMp6cn06dPB3TN5Pbt2wNw4cIFTp8+rT92SkoKhQsXJioqisjISHx9fQFd1dpff/31uePv2bOHtWvX6l/b2dm99DoOHDhA586dMTY2pmDBgvj6+nLkyBHy5s1LlSpV9KXGvby8CAkJoVatWi893pOV/ipVqsTmzZvT3edlJeJbt26trwLcqVMnGjVqxJQpU1i/fj0dO3YEdOXLe/bsyaVLl9A0TV9sUFHSM3fuXCZMmICIMG3aND755JM0ZflTUuD772H8eLhzR9e53bmzroM7Uzq5IyJ0Ezp++QXy5IHHC31llVyZNAIDA1+4zcrK6qXb7e3tX7r9Rfr27Uvfvn0BGDt2rP7LsmDBgty+fZvChQtz+/ZtHBwc0vxcbGwsK1euZOfOnTRu3Jht27axZs0aVq9ezQcffPDceQICArB/pgfNwsJCX4RQRPDw8ODQoUNp9omMjMzQql8iLy7T/qL9X+TflB5/9mdetv/LSsQ/fZugaNGi5M+fn1OnTrFu3Tr9qnoTJkygXr16bNmyhZCQEOrWrfvKuJTcKzIykiZNmjBv3jyKFy+eZtuff4K/P5w8CdWrw9atUPW5BSBew4ULul7z//1Pd5LUVF3P+VPr62QV1aeRTZ6U+r527RqbN2/WLwnaunVrfWXVlStX4ufnl+bnZs+ezZAhQzA1NSUuLg5N0zAyMtKXJP+3ypYtS1hYmD5pJCUlcebMGWxtbbGxsdHX6n9SLvxZz5ZffzLay9TUNN2/yOvUqcO6detISUkhLCyMffv2UaVKldeK/UWeLX3+shLxz3rvvfeYPXs2UVFR+uVmo6KiKFq0KMBz62MoSmhoKO3ateN///sfoOsr27x583MJAyAsTFe2fO1a3Xf7ayeMlBTdAUaMgDJlwNVVN9zq4UMYMwYOHdI1Y576vc8qKmlkk/bt2+Pu7k6rVq1YtGiR/rbO6NGj2b17Ny4uLuzevVu//jfArVu3OHr0qD6RDB8+nGrVqrFy5Uq6dOnyWnGYmZmxceNGRo0aRYUKFfDy8tKPPFqxYgX+/v5Ur1493b/SQTeC68GDB5QrV44KFSoQEBAAQL9+/fD09NR3hD/Rtm1bPD09qVChAvXr12f27NkUKlTotWJ/kVatWrFlyxZ9R/jChQs5evQonp6euLu768vDp6dDhw6sXbuWTp066d8bOXIkY8aMoWbNmq812kx5OyUkJDBjxgzc3Nz47bff9EPan56cFx4OQ4bAp5/qXvv56RoF7777GpPzEhJgxw744AMoUgRq1YIFC6BECVi0CEJDISgIpk+HatXgJUsaZKqMdHzkpIcqja7kFur3Ovvs3btXXFxcBJD27dtLaGhomu0JCSJz54rY2ooYGYkMG/aaJ4qJEdm0SaRzZxFraxHQ/fe990TWrhXJwqUHUB3hiqIomePatWsA/Pbbb8+tzrh/P/Tpoxs+27ixrvTH43mxGRMbq2tRrF+v68yOjYX8+aFjR2jfXlfe9qn+P0NTSUNRFOUZiYmJzJs3Dzs7O/r160ePHj3o3LlzmsEbqam6dSzy5NF9p+/YAc2aZfAE8fHw66+wbp2uMzs2FhwcoEcP6NABfH119c/fQG9mVIqiKAby+++/4+/vz/nz5+nZsyf9+vXDyMhInzBu3YJx43R9FMuXg7c3nDqVgYWQkpNh715Yswa2bIHoaN2Ipx49dNPC69TJvn6J/0AlDUVRFOD27dsMHz6cn376iZIlS/Lzzz/TokUL/faYGPj8c12pj+Rk+PhjXe0oTXtJwhDRLeK9erWuVREWBjY2utZE585Qr94b26J4kZwVraIoSha5cOECW7ZsYdKkSYwaNSrNCMIDB+C99+DmTd33/WefwVN1B593+TL88AP8+KPuuYUFtGoFXbro7mG9QX0U/5ZKGoqi5FoHDx7UV3GuW7cuoaGhaSbYxsWBpaUuQbi46OZbvLBoQWSkrjWxapVuMQxN07Ukxo2Ddu10LYy3gJqnkQ3Cw8Px8vLCy8uLQoUKUbRoUf3rxMTETDvPnj17sLGxoWLFipQpUwZfX1927Nih375o0aIXTtpTlNwkJiaGfv36UbNmTebNm6df4+JJwggO1g1catpUd4epSBEICEgnYaSk6Ep4dO4MhQrp1mWNjIRZs+DaNV0fRu/eb03CAAw7TwNoClwAgoHR6WwfBpwFTgF7geKvOuabPk/j2eJ6T6SmpkpKSsp/Ovbu3bvFz89P//rYsWPi5OSkL0KYGZKTkzPtWMp/8yb9XuckZ8+eFQ8PD9E0TYYPHy7R0dH6bQ8eiAwfLmJqKpInj8i0aSKPa1emFRwsMm6ciKOjbi5FvnwiAweKHDkikpqafReTicjgPA2DtTQ0TTMGFgHNAHegs6Zp7s/sdgLwERFPYCOQA6rNZ1xwcDDlypWjf//+eHt7c/36dWxtbfXb165dy/vvvw/A3bt3adeuHT4+PlSpUoW//vrrlcf39vZm3Lhx+pIa48eP1y8ANW/ePNzd3alQoQLdunUDIDo6mp49e+rLnm/dupXk5GRsbW0ZP348VapU4fDhwxw5ckRfWr1Zs2bcvXsXgFq1ajF06FCqV69O+fLlOXr0KKArp96rVy+qVKlCxYoV9eUXli1bRocOHWjSpAkuLi6MGTNGH/svv/yCt7e3fkGplJQUSpcuTUREBKArtFiyZEn9a0XJiIcPH1KrVi3u3bvHzp07+fzzz/Vl/A8fhtKlYe5c6N4dLl3SFRnU91PHxek6tOvX1+04cyaUL69bRenWLfjyS/DxeXPWZc0ihuzTqAIEi8gVAE3T1gJ+6FoWAIhIwFP7/wV0y4wTp1d/rlMn+Ogj3XDp5s2f396rl+5x/76uI+xpr1G/UO/s2bOsWLGCxYsXv7Rg3+DBgxk5ciTVqlUjJCSEli1bcvr06Vce39vbmy+//PK592fPnk1oaChmZmZERkYCuho6BQoU4J9//kFE9O9HRUXh7e3N9OnTSUhIoF69emzfvh17e3tWr17NhAkTWLJkCaArtXDo0CF+//133n//fYKCgpg6dSpNmzbl+++/58GDB1StWlVfZffkyZMcP34cExMTypQpw6BBgzAyMmLAgAHs37+f4sWLExERgbGxMZ07d2bNmjUMHDiQnTt3UrlyZfLly/evP3Ml9wkLC8Pe3p68efOydOlSqlatStGiRRHRDWhycNBNyGvcWFfSycvrqR8+fRqWLtV1bD94oCvjMX069OwJjwuP5iaGTBpFgetPvb4BvKycV1/g+VrdOVypUqWoXLnyK/fbs2dPmsWAHjx4QFxc3AtrRD0hL6gy6+HhQbdu3fDz86NNmzb6czxZBErTNOzs7EhOTsbMzIy2bdsCugWlzpw5Q8PHK8akpKToK/YC+kKM9evX5969ezx69Ihdu3bx66+/6lcljI+P18+wbdiwIdbW1gC4urpy7do1bt++Tb169fQF4J4khr59+9KxY0cGDhzI8uXL9a0wRXmR5ORkvvrqK8aPH8+qVato166dvrz+qVMwfDhcvQpnzoCVlW4KBaBrVWzcCIsX6zq1zcx0ndkffKD7q/OVkzLeXoZMGum14dL9htM0rRvgA/i+YHs/oB+Ak5PTK0/8spaBldXLt9vb/7eWxbOeLtVtZGSU5ks+Pj5e/1xEOHz4MGb/sgD/iRMncHNze+79nTt38scff7Bt2zamT5/O6dOnX1j23NLSUv++iODp6cn+/fvTPd+zP69pGiLC1q1bKVWqVJpt+/btS7c8+ovicHZ2xs7OjoCAAE6cOEHjxo1f/QEouVZAQACDBw/m9OnTNG/eHG9vb0BXDHbiRPjuO13/9OTJT+WAixd1ieL773WtijJldJMzevZ8cxftzmaGTJc3gGJPvXYEbj27k6ZpDYFxQGsRSUjvQCKyRER8RMSnQIECWRJsdjAyMsLOzo5Lly6RmpqqXxIWdH+RP70E68vKfT+9z4wZM/D390/zfkpKCjdu3KB+/frMmTOHsLAwYmNj05QUFxF92fOnubu7c/PmTQ4fPgzoyi08vWTq08u5FixYkDx58tCkSZM0a4yfOHHipXHXrFmT33//ndDQUIA0/RZ9+/ala9euvPfee2mqiyrK0wYNGkT9+vV59OgRW7Zs4eeff8bZ2ZkzZ3RDZ1es0FWjDQ6GwR8lY/rLVt29qbJldX0TDRvC77/D+fO65ohKGHqGbGkcAVw0TSsB3ATeA9LU+9Y0rSLwLdBURO5lf4jZ77PPPqNp06Y4OTnh7u5OQoIuTy5atIgBAwawYsUKkpOTqVevXpok8kRAQAAVK1YkNjaWggUL8vXXX+tX43siOTmZLl26EB0dTWpqKqNGjcLa2ppJkybx0UcfUa5cOYyNjZk2bRrNn+ngMTc3Z+PGjQwePJjo6GiSk5MZPnw4Hh4eAOTNm5caNWoQHR3NihUrAJg0aRJDhw6lfPnypKamUrp0abZt2/bCz6BgwYJ88803+Pn5ISIUKVJEv4pg27Zt6dOnD7169Xrtz1h5OyUmJmJkZISJiQm1atXCwcHh8Sp6lly8qMsHbm66UbH9+oGLbRgs+Q6++UY3PLZYMZg2Dd5/Xzd8VklfRoZYZdUDaA5cBC4D4x6/NxVdqwJgD3AXCHr82P6qY77pQ27fZjVr1pQTJ05k6TkOHTokdevWzdJz5BTq9/r/7d69W1xdXWXu3Llp3j94UKRqVREbG5GwsMdvHj8u0ru3iLm5brhsgwYiW7a8YGxt7kFOKI0uIjuAHc+8N/Gp5w2zPSjljfXpp5+yZMmSNGuUK7lbaGgow4cPZ9OmTZQsWVLffxcSAqNH6yZoFy4M875IxS5gK3w5X1fLPE8e6NtXtxar+7Mj/ZWXykhmyUkP1dJQcovc/nu9bNkysbS0FEtLS5k+fbrExcWJiMi1a7pGhKWlyMSRcRI9Y6GIs7OuVeHsLPLFF7pZfEoa5ISWRnaSF4zIUZScSF4wlPptFxsbS1JSEjY2NpQuXZo2bdowa9YsihRx4q+/dGU+ihWDz8fcp831r3D8Zq6uBLmvL8ybpysamAPKj7/JcsXwEwsLC8LDw3PtPzTl7SIihIeHY2FhYehQso2IsHnzZtzc3Jg4UXcH29fXlzVr1nD+vBNeXrrpE5e3nIJ332Xg1II4rvzJ2WSoAAAgAElEQVRUt0j3sWO6cfJt2qiEkQlyRUvD0dGRGzduEBYWZuhQFCVTWFhYpJlU+TY7f/48gwcPZvfu3ZQrV04/0fTsWfjkE90CeCULxbCuzCxKtpuum3zxyScwaFCunLGd1XJF0jA1NaVEiRKGDkNRlH9p1apV9O3blzx58rBgwQI++ugjTExMePAAKlcWTCWJOQUXMujOOMxNC+oKR73/PjyuMqBkvlyRNBRFyTlEhEePHmFtbU2tWrXo06cP06ZNw8bGgS1boGPzGOxWLWO15T/UCt+Kfeki8Pl38O67YGpq6PDfetrbdp/fx8dHnlRXVRQlZ7lw4QIfffQR5ubm/PLLL4/L0MCmTTDykxSuhhpz1KYBlaJ+h9q1deNqmzV76yvLZgdN046JiM+r9ssVHeGKorzZoqOjGTduHJ6enhw7doxWrVoBunLltasl0rEjvHP9HLtoRKValrr1V/ft05WkVgkjW6nbU4qiGNTff/+Nn58fd+/epVu3bsyZM4dChQoRf/kmLevmRYuLZYk2kT4dojEe+zlUqGDokHM1lTQURTGIyMhIbG1tcXV1pUqVKowbNw4Pj6osm/OAQXf9sVixjO0plfHo5on1hOG6irOKwamkoShKtjpz5gwjRozg+vXrBAUFYWNjw5Yt21n1RRht60dyO9aOcsaXadi3F9XGjAFn5+eOkZqaSkhICJcuXSI+Pp6kpCSSkpLw8/PDysqK8+fPc+rUKeLj44mLiyMiIoLw8HDmzJmDpmnMnz+fn376ibi4OBISEoiPj0fTNEJCQgD4+OOPWbduHcbGxpiammJubo69vb1+SYB58+YRFBSEra0tNjY2FClShOrVq1MhF7SCVNJQFCVb3L17l4kTJ7Js2TKsra2ZMGECqamp7FsfxrBBiQSFO1FN+4tN7Q5Qff5S3dTup0RGRmJtbY2xsTGzZ89OszzwE7dv38bKyoo1a9Ywbdq0NNusrKyYOHEiefPmxdTUFFtbW4oUKYKFhQXm5uZp1qqpUKECjx49IiUlhaSkJBISEtKs/XLlyhUCAwOJiooiKioKgJIlS3L58mVAt15NyZIlcXFxybTP702hRk8pipLljh8/jq+vL/Hx8Xz00UdMmDAB+7g4UqZ+iueyQcSQh88a/06nZY3Riv3/hDwRISgoiG+//ZYffviBtWvX0qpVK/755x/+/vtvXF1dyZMnD6amppiYmFC6dGlMTEy4desWDx48wNLSEgsLC+zs7F65yuXrSklJ0a84WaNGDVJTUylUqBBhYWGUKVOGtm3b0q5dO3x8fN7oNWAyOnrK4AUGM/uRXsFCRVGy37Vr12TPnj0iIpKUlCSDBw+WCxcuSPjpWzLae6dEmeYXMTWVS10mStzFa2l+NjExUebMmSPlypUTQCwsLKRPnz5y7tw5Q1zKv3blyhX58ssvpVGjRmJiYiKAjBgxQkREUlNTJTU11cARPo8MFiw0+Jd8Zj9U0lAUwwoKCpJu3bqJiYmJFC1aVJKTk0VEJOHGPZlXd4vYES5GJMvmRl+LhIbqf+7atWuyY8cOEdF9sRYvXlyqVq0qX3/9tYSHhxvkWjJDRESErFq1SoKCgkRE5K+//pJSpUrJpEmTJDg42MDR/T+VNBRFyVZnzpyRpk2bCiB58uSRoUOHSkhIiKRGPJCtHX4QF+2igEjjIqfknx3X0vxcz549xcTERAoUKCApKSkiovuyfRv99ddf0rBhQ9E0TQCpUaOGLFu2TF/a3VBU0lAUJVvt3btX8uXLJzNnztR94cfEiMyaJWJnJ034VdzyXpcd3/5/svjnn3+kdevWAoiVlZUMGTJErly5YsAryF7Xr1+Xzz77TNzc3MTW1lZiY2NFROT+/fsGiSejSUN1hCuK8loiIyP58ssvERF9ufJHjx7xjrk5tz5fw6RpJoyLG4dzcw/Chs/Crk55jI2FuLg4rKys+Ouvv2jRogUDBw5k0KBB2NvbG/iKDENECA0NxdnZGRHB1dUVa2trBgwYQOfOnbGyssqWOFRHuKIoWSIiIkImTJggefPmFUA6dOigu6WUkiIx36+XKXbzxIpHYqYlyOqJ50VEJDk5WdatWycVK1aUDz74QH+sJ39dKzqJiYny1VdfiYeHhwBiZ2cnI0aMkNCn+n6yCur2lKIomW3z5s36ZNG+fXs5ceKEbsPu3fKj8zhx5JqASIeatyT4km6U0NatW8XV1VUAKVu2rPzwww+GvYgcIDU1Vf744w/p2LGjGBsby/r160VENwotq0ZeZTRpGHTQsKZpTTVNu6BpWrCmaaPT2V5H07TjmqYla5rWwRAxKkpuFxMTw+3btwHw8PCgUaNGnDx5ko0bN+IlAo0bQ6NGHLjvSqESluwPTGHDgcKUKq0xY8YM2rRpA8CGDRs4c+YM3bp1M+Tl5AiaplGnTh3Wr1/P1atX9Z/hrFmzqFatGhs2bCAlJcUgsRksaWiaZgwsApoB7kBnTdPcn9ntGtALWJO90SmKkpSUxNdff02pUqXo378/AGXKlGHjxo142thwuc1wOnhf5tDfRjB3Ll9c68jfwfbY2Z/n3LlzAHTv3p1vvvmGf/75hw4dOmCsllv914oVK4bp43VCnJ2diYiIoFOnTpQtW5avv/6a2NjY7A0oI82RrHgA1YGdT70eA4x5wb7fAx0yclx1e0pR/rtff/1Vf0upVq1acuDAAd2GiAh5MHC8DDeaK6YkiJVpgqz8JkZERM6dOyfdu3cXTdOkTZs2Boz+7ZacnCybNm2SKlWqCCBdunRJs+11kcHbU4asPVUUuP7U6xtA1dc5kKZp/YB+AE5OTv89MkXJxZYuXUq/fv0oXbo027Zto1WrVmhJSTB/PivGX2ZEzCQiyEevTnFMn5eHO3dO0779p2zZsgULCwuGDRvG6NHP3W1WMomxsTHt2rWjbdu2HDhwQD+66vLly5iZmVHsmZpdmc2QSSO9lVNea/yviCwBloBuyO1/CUpRcqPo6Ghu375NmTJl6NixIzExMQwYMABzMzNk02Zk1Ci0K5cJK70ETztzvvhWw8vLCk2D5ct3sHfvXsaOHcuQIUMoUKCAoS8nV9A0jdq1a+tfW1lZUbhw4Sw/ryE7wm8AT6dER+CWgWJRlFxJRFi9ejVlypShU6dOiAi2trYMHToU81On+KdSL5p0tOanhHawYwfDzvZl5NSDDB5ch40bNwIwdOhQrl27xvTp01XCMKDsSBhg2KRxBHDRNK2EpmlmwHvAdgPGoyi5ytmzZ6lfvz7dunWjWLFiLFmyBE3T4Pp17nQYSL8qJ/A6sZyjVnVImjqD7UlJ1KhZjWbNmhIaGqo/zjvvvEPevHkNeCVKtspIx0dWPYDmwEXgMjDu8XtTgdaPn1dG1yKJAcKBM686puoIV5RX27dvn5iYmIitra0sXrxY14H66JHIxImy1HSAvMNDMTFKliED4iU8XKRdu3YCSMmSJWXp0qWSkJBg6EtQMhmqjIiiKM8KDw8nf/78JCcnM2XKFAYNGoSDvT3y42qSR4/H9PY1NtSYy49W/ajbPJAPP6yHlZUVW7du5eHDh3Tp0gUTE7V229soo2VE3twVQRRFyTQRERH06tULDw8PHjx4gImJCdOmTcPh8mUOlfuAGj1LM8doFMl//EHch/k5f82bYcNa8tNPPwHQpk0bevTooRKGopZ7VZS33aZNm/D39+f+/fuMGjUKCwsLuHGDkIGfM3pbNdbxHYVtYwltnoBrnz5cvnwZT09PNm7cSNu2bQ0dvvKGUUlDUd5ScXFx9OjRg40bN1KxYkV+++03vMqWhS++4LtpN/FPnIeRiRETP0nkk7GWNGs2nrx587JlyxZat279Ri9NqhiOShqK8paysLAAYMaMGYz45BPY8j+i/bphfe0Mbr4j8H54mfCYIQwY8iPW1oXYunUr+fPn142gUpQXUH9KKMpb5P79+/To0YMrV66gaRrr169nTKtW/F55HBXfdWFo9GRWjhpFjxubOXSiHO+884B79+4BYG9vrxKG8koqaSjKW+J///sf5cqVY+3atRw+fBgePOB8j5m0KH+NJidnE5O/GL9Z7qPXZ5+RN29etm3bxtGjR/H09DR06EoOopKGouRwDx8+pE+fPrRu3ZpChQpx7PBh3nv0iB+cxlH+x5HsM/Hl8ykxnLtpS9++tmzZsoVjx47RunVr1bJQ/jXVp6EoOdysWbNYuXIlY8eOZXSD5jzqORo5tZOE0vWwvb+a8MhPaNbhD8zN3Zk6daqhw1VyOJU0FCUHSkxM5M6dOzg5OTF27Fha16rNzc+v4DWjEHlNxmLsfJFjwQG4uNxg4aIFlC1b1tAhK28JlTQUJYc5f/48Xbt2JTY2llPHj3Nu0s+MWODEgRR/3PLf4tyjORSSVJYvX0737t3VhDwlU6nfJkXJIUSEJUuW8PHHH2NlZcWyYcPY5jqejte+wMoojG8m3+H9cUU4enQc3t7emJmZGTpk5S2kkoai5AAPHz6kR48ebNu2jXo1mzDRogwFxo1jjIU9kAdzm1U06/UHJiZQrVo1Q4ervMVU0lCUHMDS0pLw+w9412shAQc74ieRPGQRec0SmTLGhKFDT6ny5Eq2UENuFeUNlZSUxPTp0wkPD+fAorNEH1vMuqBBFM/7AOuCYxg+/GOuXLnCxIkTVcJQso1qaSjKG+jy5ct07tyZI0eOcGvVbb65tAhTQvlh6N90/aIKScnrVJ+FYhAqaSjKG2bNmjV8+OEYJLEMH5qYsPnSYiCJps0jaDzmazQjTSUMxWBU0lCUN8jcuV8xfPgljDkBJPMtTtSqVIEtX/amevXqhg5PUVTSUJQ3QWqq8POPUSyc2BYoSl3zPzDzWEG/8T/h16aNKvehvDFU0lAUAxIRvlywgBWfBxJ0cytG3GZN6595b3U3tHd8DR2eojzHoElD07SmwALAGFgmIrOe2W4OrAIqAeHAuyISkt1xKkpWOH06nB7tF3Di4jSMARNaM7hXIVos+BztnTyGDk9R0mWwIbeaphkDi4BmgDvQWdM092d26ws8EJHSwDzgs+yNUlEyX2wsdO1wkvLlzTlxcSRgS5sqVbgQPI8vVixRw2eVN5oh52lUAYJF5IqIJAJrAb9n9vEDVj5+vhFooKmbu0oOlZoKP6xMpXSRh6zZVAEbfuW9Mp0I+GU1G//+m5KlShk6REV5JUMmjaLA9ade33j8Xrr7iEgyEAXkz5boFCUTJSQkMLHfDHr1SuFO1EXmOPfg3rFS/HRhB3WbNzd0eIqSYYbs00ivxSCvsQ+apvUD+gE4OTn998gUJZMEBwtTxh0l4Jd63IyJATbTrboFvbZtwaxAAUOHpyj/miFbGjeAYk+9dgRuvWgfTdNMABsg4tkDicgSEfEREZ8C6h+i8gaIjITOnW9QxiWJH9e7czPGDjtzc7atHsYPBw9gr35PlRzKkEnjCOCiaVoJTdPMgPeA7c/ssx3o+fh5B+B3EXmupaEob4rkZFi0CEqXSGbt2iJY8CMN8/rQsaErl27epHWXLoYOUVH+E4Mljcd9FAOBncA5YL2InNE0baqmaa0f7/YdkF/TtGBgGDDaMNEqyquFh4czuP9Ixg2PoWDkfmZY1CLsqzh2hv/Dul27yJ9fdccpOZ9B52mIyA5gxzPvTXzqeTzQMbvjUpR/48SJJAYNOs3pE748jI2mIus5TignmviRx9/f0OEpSqZ6ZUtD07SBmqbZZUcwipKT3L0LTZpcxdvbiD//dKZ4rCNFTU0JMrrO5MmTWbNxo6FDVJRMl5HbU4WAI5qmrdc0ramaJ6HkdgkJMGsWuLgIu3c5ko8vmWFejjNGFzAuUoR9+/YxadIktTa38lZ6ZdIQkfGAC7r+hV7AJU3TZmiapmYiKbnO7du3+bDf+3zzRTj1knbzNx7c7XGC0aHHmfXZZwQFBVGzZk1Dh6koWSZDfwqJiGiadge4AyQDdsBGTdN2i8jIrAxQUd4Ef/wRz4ABoYSG1CYp/j6zZSNFne14NzGRgKlTKV6wIJ988omhw1SULJeRPo3BmqYdA2YDfwLlRWQAuiKC7bM4PkUxqNBQqF37OnXrWnDuXF6qxjlxxMqKoCpl6RQSgkOxYqSmpho6TEXJNhnp07AH2olIExHZICJJACKSCrTM0ugUxUCSkmDsWChbVvjrUEEKGn3KDlyY3rwg7ezt+eHoUSZMmMD+/fspUaKEocNVlGyTkT6NiSIS+oJt5zI/JEUxrBs3btC3b09+3niNjnZ7OJ9SipvlN9Dsz118V6gQYmTEvn37mDp1KqampoYOV1GylRreoSiPbd8ex0cf3ef+/fqQfJVpqesYYWPJ2fEDOd+xIx6enswvXx4Aa2trA0erKIahkoaS6507B9263eH48UJAIg3NCrM0JZhivXvwRfHijJs5k1qHDrFnzx6VLJRcz5C1pxTFoERg8GChfHk4d8aWYubjCMSd3Z5xpG7eTP3Ll/lk8mSaNm3KmjVrDB2uorwRVEtDyXVSUuDOnZuMHj2a4PND+NAtlkmnO2CfPxWjrxZxuFw56jdsiLGxMStWrKBnz56oOa2KoqOShpJriMDatQkMHBhDTMx7kPIXE003MzYhHvwHkDxpEkYFCuCVmEifPn0YOXIkjo6Ohg5bUd4o6vaUkiscPQqeng/o0sWciIhbVDe15FxyMmMr+5By5AgLXFzwqFWLyMhIzMzMWLhwoUoYipIO1dJQ3noDBqSweLExdjaWOFp9zPexX9LAphAs/Ymz5cvzQb9+HDx4kGbNmhEfH2/ocBXljaZaGspbKSYGgoJO0qxZM4JObGa07yFCkkpwLWkRDcaNJuXsWaZcuIBXxYqcO3eOlStX8ssvv1CoUCFDh64obzTV0lDeKqmp8MUX95k0yZi4uOnYvXOAieZHGBoeDq1bw9y5UKoURiIcOnSIDh06MH/+fBwcHAwduqLkCCppKG+NwEDo3TuCkBB7NO1vehRJYsGtR9gWKwZr1hBeqRJjx45lzJgxODs7s3XrViwsLAwdtqLkKOr2lJLjpaSk0LdvHPXqQWLCO9R1HEEoNVgZE4jtvHmknjjBd9ev4+rqyvLly9m/fz+AShiK8hpU0lByrIgI2LNnP5UqVeL4sS+Y0fovghNKEnDzC4r1+wAuXeJY7drU8PXl/fffx9XVlePHj9O9e3dDh64oOZZKGkqOk5QEkyc/oHDhRzRqtJ0Ht28zNmIJo7dXx7J8aTh+HBYvhgIFWLZsGSEhIaxatYp9+/ZR/nHtKEVRXo9Bkoamafk0Tdutadqlx/9Ndw1yTdN+0zQtUtO0n7M7RuXNIwLbt0PJkjFMmWJHctJh+he/wLl79+hobIy2cSMxP//M1O3bOXjwIACzZs3iwoULdO/eXc3qVpRMYKiWxmhgr4i4AHsfv07PHEDdS1AA8PePx88PrMzNaFT8Iy4bNeGb8ACsZswg8eRJvr57l1KlSzNp0iR+++03AGxsbLCxsTFw5Iry9jBU0vADVj5+vhJok95OIrIXiM6uoJQ3z+3bEBR0nbZt2/Lrr72Z1+EPTkc6sevaYpx7dIeLF9lctixuFSvi7+9PmTJl+PPPP5k6daqhQ1eUt5KhhtwWFJHbACJyW9O0/zRIXtO0fkA/ACcnp0wITzG02FiYPTuFmTNTSEnZgbnJr0y0scF/41pMfX1JmbMdvL0xNjbmypUrWFtbs2PHDpo2bapuQylKFsqyloamaXs0TTudzsMvs88lIktExEdEfAoUKJDZh1eyUWoq/PgjlC6dzJQpxiQmbqe+7XLOJSQwytoabf16fujTh3I9eujLlQ8ZMoTjx4/TrFkzlTAUJYtlWUtDRBq+aJumaXc1TSv8uJVRGLiXVXEoOcv48cLMmRrenqmUlHcZdW8jrZKtiZs1i8V58jB71CiuXr2Kp6cnT/5AUEuuKkr2MVSfxnag5+PnPYFtBopDeQNcuQLBwcKqVavYuKExX/tt4siVAhy4v5lW/v4QHEzLXbsYMGgQBQoUYPv27QQFBdG0aVNDh64ouY4mItl/Uk3LD6wHnIBrQEcRidA0zQfoLyLvP95vP+AKvAOEA31FZOfLju3j4yNHjx7N0viVzBEVBZ9+CvPnp2Jj8yf379ehmpkZqxMTifX1ZVHhwsxavBgbGxt+//13TExMqF27troFpShZQNO0YyLi88r9DJE0spJKGm++5GRYuhQmThTCw0FjFXm08XyWeoN8zs58a2dHwIkTWFhYsH37dho1amTokBXlrZfRpKEKFirZbt48GDkS6laJJSW1DQUj9jC1YCEaxNtyOySE4iLMnDmTDz74gPz58xs6XEVRnqKShpItTp/WrXHh4HCVQwFj+LpWJcr8OZqjpiaMmjkThgyh59Sp1KxZk2bNmmFsbGzokBVFSYe6PaVkqbt3YdIkWLpUKFb0Ondvl0KSkykJnAOKFi7M5atXMTc3N3SoipKrZfT2lCpYqGSJ+HiYNQtcXGDZslTsLL8j9HpF3klOJgGIdHDgq6++UglDUXIYlTSULLF2LYwZA75lb9HBsgqWMR+wrHQ+8hQqxNy5c7kcEoK/v79KGIqSw6g+DSXT/P03XLz4kJSUzfy46Fv6ORTlwNFN5Le05Ozq1Vh37kxvEYyM1N8qipJTqaSh/GfBwUl07nyVo0fLAFeB3ligK19c0t6eYYsX8067dqBpGKk5FoqSo6mkofxrIsK5c+c4e/Y6J040Ye5cExISnMhnNpt6iVPZDpiYmTFz3Dg+HjVK3YJSlLeIShpKhkRFRREQEMCuXbv47bffuHr1Kra2HYiMbEJXt+MMutSRKnKD2EH9GZuQwOjJkylcuLChw1YUJZOppKGk6+HDhxw8eJAGDRpgamrKxIkTWbhwIRYWLShVaiSLFyTS4sYNHiyqxI/njtPLxoYjh07yjpsbCwwdvKIoWUYlDQWAe/fusWPHDv7++28OHjzIP//8g4hw6NAhqlWrRqNGgzlyZCKHDuUn5X4EfT715Ma9m7xva8vhWOj37rsYFS9u6MtQFCWLqaSRi4gId+/e5fz585w9e5ZTp07RpUsX6tSpw9mzZ+nduzfW1tZUq1aNdu3aUbNmTRwdKzBwICxeXJI8ZknMtpvJoLtT2OFeil5xDxERNmzYQIcOHQx9eYqiZAOVNJ5y6NAhZs2ahbu7O25ubri6uuLi4oKdnZ2hQ/tXRIQrV65w+PBhnJycqFmzJrdu3cLNzY2HDx/q97Ozs6Nq1arUqVOHqlWrcvbsWcqUKZOmhMe5s8KyJSl8mHc9kx8MpoBrMVJ/3Mxn06dTytKS9evXU7JkSUNcpqIoBqCSxlMePHjA5cuX+fXXX0lKStK/f+LECby8vAgICOD333+nRIkSODk54eTkhKOjI1ZWVgaMWic1NZUpU6Zw+PBhDh8+TEREBAD9+/enZs2aODg40L17d8qWLUvZsmVxc3PD0dFRX2bc0tISNzc3RGDzZjh4ED5vuge3ceO4lnQVhwJ2XJ02GaNOnchfoABbfXywsbFRI6MUJZdRtafSkZSUxOXLl7l48SIXL15kwIAB5MmTh88++4yxY8eSmpqaZv+IiAjs7OxYtmwZu3fvxsHBAXt7e2xtbbGzs6N79+5omkZISAgxMTGYm5tjYWGBmZkZJiYm5MuXD4Do6Gji4+NJTk4mISGB+Ph4NE2jbNmyAOzcuZPg4GDCw8MJCwvj/PnzFClShJUrVwLg6uqKmZkZlStXpmrVqlSpUgV3d3fMzMwydN3HjsGwYbBvH5TLc4VDMZ6845QfJk9mg6Ul73/4IS1btmT16tX/6fNVFOXNk9HaU4jIW/WoVKmSZKWEhAS5cuWKBAYGysqVK2XmzJmSmpoqIiIzZsyQMmXKiK2trQACiJWVlf5nu3btqn//yaNgwYL67a1atXpuu4uLi3573bp19e/nzZtXfHx8ZNSoUfrtiYmJr3VNd++K9OghAiIFzB7IYvpJUoHCIgsWSFxkpAwYMEAAqVatmly9evW1zqEoypsNOCoZ+I5VLY0skpycTFRUFA8fPqREiRIAHD16lCtXruhbEYmJiVhYWNC3b18Afv75Z0JCQjA2NsbS0hILCwtsbW31y5reuHEDU1NT8uXLl6nrYt8/cJ5yDQvSK+Fbxtp+Q95RA2DQIK7eu0e7du0ICgpixIgRfPrpp2o9bkV5S6lFmAzMxMSE/Pnzp1lEyMfHBx+fF/8/admy5UuP6ejomCmxpabCqlWw9cdHbC44APufVnM1jz2Woz+Cj0+BjQ0AefLkITk5mZ9//pkWLVpkyrkVRcnZVNLIZQIDYdjABE6cMacKZwm3+IMCn3yC5ciRYG9PQkICixcswN/fHwcHB06ePKkKDCqKomeQbwNN0/JpmrZb07RLj//73JhWTdO8NE07pGnaGU3TTmma9q4hYn1bhIVB26ax1KsH4WfusNqkJ4eGrKXA1cMwezbY2xMaGkrt2rUZOnQoO3fuBFAJQ1GUNAz1jTAa2CsiLuiKoY5OZ59YoIeIeABNgfmaptlmY4xvBRHg5k3yThxKyK6LzDAaz/l+8+gSMgOj+XOhUCEAfv31V7y9vblw4QKbNm1St6MURUmXoW5P+QF1Hz9fCQQCo57eQUQuPvX8lqZp94ACQGT2hJizJSXBN7OiWL4wmoMPy2OV+ohjfeMwmjAOnJzS7Pvll18yZMj/tXfnwVGV6R7Hvw9LWGR1VMSFRUBqRkUFIgIjLohaCAo4BhAvgWsuw2hckCsu1NVSIquKiKCiOAYUFYUJjEuh6I0IV1SIIi4B4iCDgUKNqIhRDHnuH6eZYiCGJunuk05+n6pU+qTfnPO8LP3Uu9/IaaedxosvvkiHDh1CilpEqrqwWhot3H07QOT7MeUVNrOzgBTg8wTEltTc4e/Z33LqMV9x451NOeqbDewcdA1s3Eitxx87KGEA9OjRg4yMDN5557Jo0KQAAA9ySURBVB0lDBEpV9ym3JrZcuDYMt4aD2S7e7P9yu509zL36jCzlgQtkXR3X/0bZUYBowBatWrVZcuWLZWMPjl9n7+dQX128eaXJ9ORfO7vs4y+j/TH2h28zUdeXh6vvvoq48ePDyFSEalqop1yG8o6DTPbAJzn7tv3JQV371hGuSYECWOSu78Qzb2ryjqNRPrlH4XUe3AK/tgcrtjzLOd3+4nR2d2p27HsPaGeeuopRo8e/a/ZUcm2t5aIxF60SSOs7qmlQHrkdTqw5MACZpYC/A2YF23CqGmKN24lq9vfad2uNttm52BXD2NxQSeuXz2szISxZ88errvuOkaOHEnPnj1Zu3atEoaIHJawksZkoI+ZbQL6RK4xs65m9kSkTBrQCxhhZh9Gvs4IJ9yqpfTzzTxzwVw6dnT+573+9Gyzjb25b8PcudCuXZm/4+7079+f2bNnc8stt7Bs2TKOPvroBEcuIslO24gkk02b+GXCVM6dn8G7dKPzUf/kgYdTOHdwWUNHB1u4cCEAaWlp8YxSRJKQthGpTj7+mKK7HuJ3OXOpl5LCuV2GcO1/fMvV17fiUGvv5s6dS+3atRkxYoSShYhUmpb7VmVr1vB9v2GMO+0VTlg8gw+uvh82b2bKmt4Mv/HIchNGSUkJmZmZZGRksGjRIqpbi1JEwqGWRlXjDitWUJI1mceXt+FOm8E3HEX6kJ9pMemmsicxH+CHH34gLS2NZcuWMXbsWCZPnvyvw5ZERCpDSaOqcIeXXoJJkyh9ZzU96qzlfc6kV48SHpgBXbrUj+o2xcXF9OzZk/z8fB5//HEyMjLiHLiI1CRKGmErKYHnn4cpU/h8/W5OarWXWg/PZGTJKdzRGi6/vA6H00ho0KABw4YNIzU1ld69e8cvbhGpkTR7Kiw//QR//Svcdx9ffbGbu5o9xJzv01i0sJQBfzr8XJ6Tk0OLFi3o3r17HIIVkequqi/uq7mKiuCee6B1a37OHMuU0lto36CQJ34czHWZtTjn/MNLGO7O9OnTGTRoEBMnToxT0CIiAXVPJcrmzTB9erAA76efoF8/LtzyNKvWN6V/f5g2DToetJFK+fbu3cuYMWOYOXMmV1xxBfPnz49P7CIiEUoa8bZmTZARXnwRatdmzUV30CkrjZQz/sBtL0GDBlCRoYfi4mKGDh3KkiVLGDt2LFOnTtWBSSISd0oa8VBaGsyEuv9+WLECmjThn/81gdt33MSCnIbMvAQyz4BDHAlerpSUFOrUqcPMmTPJzMyMXewiIuVQ0oil3bth3jx48EHYuBFatWLXvQ8x+dtRPDCrHgDjx0N6+iHuU44NGzbQqFEjjj/+eF544QWtvxCRhFJ/RiwUFsIddwQHHF17LTRpAgsWQEEBQ1Zdz8T763HFFbBhA2RlQePGFXvMypUr6d69OyNHjgRQwhCRhFNLozLeey9oVbzwQtAlNWAAjBnDGz/35Iwzjd/VhbvvhjvvhG7dKveohQsXMnz4cNq0acOjjz4am/hFRA6TWhqHa88eeOaZIAt06wYvvww33AAFBeTfu4j+U/7IhX2MGTOC4l27Vi5huDvTpk1j8ODBpKamsmrVKk46qezDlURE4k0tjWht2waPPRZ87dgBJ58MM2dCejpFexpz993wyCPQsCFMmRLkkVgoLi5m3rx5pKWlkZ2dTf360W0nIiISD0oa5XGHt9+G2bNh0SLYuxf69oXrroOLL2bfNrNjhgeNj1Gjgu6oY46p/KN3795NrVq1aNiwIbm5uTRv3lxTakUkdNpGpCw//ABPPx00HT7+GJo1g5Ejg0Hu9u1xh5wcOOWUoMHxxRfBxKlTTolJFdixYwf9+vXjpJNO4vnnn4/NTUVEyqFtRCrigw/gz3+G444LWhMpKcEK7sJCeOABaN+evDw4/3wYNCjonQJo0yZ2CSM/P5+zzz6bTz/9lKuvvjo2NxURiRF1T+1TUACdOwdLtIcMgb/8JRjFjkxrLSwM1ljMmwdHHQWPPgrXXBPbEHJzcxk4cCApKSnk5uaSmpoa2weIiFSSksY+7dvDc8/BRRdB8+YHvT1jBjz7LIwbB7ffDk2bxvbxxcXFXHXVVbRs2ZJXXnmFNm3axPYBIiIxEMqYhpkdCTwPtAG+ANLcfecBZVoDi4HaQF1gprsfcoFCrLZGLy2F+fOhbVvo1Qu++w527gyuY2nfn7+ZkZeXR9u2bWleRtISEYmnqj6mcRvwhrt3AN6IXB9oO9DD3c8AugG3mdlxiQjurbcgNRVGjAiOvIBgLDzWCeOXX34hPT2dCRMmANC5c2clDBGp0sJKGpcD2ZHX2cCAAwu4+x53/yVyWY8ExFpQEAxwn3cefP11MIFq7tz4PKuoqIg+ffowf/586tRRL6GIJIewPq1auPt2AHffbmZlrmwwsxOBl4H2wC3uvi2eQS1bBq+/DvfeC2PGBGPi8ZCfn0+/fv3YunUrCxYsYOjQofF5kIhIjMVtTMPMlgPHlvHWeCDb3ZvtV3anu/9mv0ykWyoH6O/uO8p4fxQwCqBVq1ZdtmzZUqGYf/01OFjv2LKijpFdu3bRrl07zIycnBwdzyoiVUK0Yxpxa2m4+4W/9Z6Z7TCzlpFWRkvgq0Pca5uZfQKcA7xYxvtzgDkQDIRXNOa6deObMAAaN27MrFmzSE1N1QwpEUk6YY1pLAX2nSqRDiw5sICZnWBmDSKvmwM9gQ0JizCGfv31VzIzM1m8eDEAV155pRKGiCSlsJLGZKCPmW0C+kSuMbOuZvZEpMzvgXfNbB3wFnCfu68PJdpKKCoq4uKLL2bWrFmsW7cu7HBERCollIFwdy8CDjoZ293XABmR168DnRIcWkytW7eOgQMHUlhYSHZ2NsOHDw87JBGRStFczzjZvHkzPXr0oFmzZqxYsYJulT2FSUSkCtCGhXHStm1bsrKyWLt2rRKGiFQbShoxtGPHDi699FI++ugjAMaMGcOx8Z6OJSKSQEoaMbJq1So6d+7Mm2++SUFBQdjhiIjEhZJGJZWWljJ16lTOPfdc6tevz+rVqxk0aFDYYYmIxIWSRiU9+eST3HrrrQwcOJC8vDxOP/30sEMSEYkbzZ6qoF27dtG4cWPS09Np1KgRgwcPxiIHNomIVFdqaRymPXv2MG7cOE499VR27txJ3bp1GTJkiBKGiNQIShqHYf369Zx99tlMmzaNvn37Uq9evbBDEhFJKCWNKOzdu5dJkybRpUsXCgsLWbJkCY888ggNGzYMOzQRkYRS0ohCrVq1yM3NZcCAAXzyySdcdtllYYckIhIKDYT/huLiYiZOnEhGRgatW7cmJyeHBvE6lUlEJEmopVGGlStX0qlTJ7Kysli6dCmAEoaICEoa/6a4uJibb76ZXr16UVJSwvLly7n++uvDDktEpMpQ0thPVlYW06dPZ/To0axfv57evQ/avV1EpEbTmMZ+xo0bR+/evbngggvCDkVEpEpSS2M/TZs2VcIQESmHkoaIiERNSUNERKKmpCEiIlELJWmY2ZFm9rqZbYp8b15O2SZmVmhmDycyRhEROVhYLY3bgDfcvQPwRuT6t0wA3kpIVCIiUq6wksblQHbkdTYwoKxCZtYFaAG8lqC4RESkHGEljRbuvh0g8v2YAwuYWS3gfuCWQ93MzEaZ2RozW/P111/HPFgREQnEbXGfmS0Hji3jrfFR3uJa4BV333qoA47cfQ4wB6Br165+OHGKiEj0zD3xn7FmtgE4z923m1lLINfdOx5Q5hngHKAUaASkALPdvbzxD8zsa2BLJcI7CvimEr9fVVSXeoDqUlVVl7pUl3pA5erS2t2PPlShsJLGNKDI3Seb2W3Ake4+rpzyI4Cu7p6ZgNjWuHvXeD8n3qpLPUB1qaqqS12qSz0gMXUJa0xjMtDHzDYBfSLXmFlXM3sipJhEROQQQtmw0N2LgIO2kHX3NUBGGT9/Cngq7oGJiEi5tCL8YHPCDiBGqks9QHWpqqpLXapLPSABdQllTENERJKTWhoiIhI1JY0DmNkEM/vIzD40s9fM7LiwY6ooM5tmZvmR+vzNzJqFHVNFmdmVZvaJmZWaWdLNdDGzS8xsg5kVRGYMJi0ze9LMvjKzj8OOpTLM7EQz+18z+yzyb+vGsGOqKDOrb2bvmdm6SF3ujtuz1D3178ysibv/EHl9A/AHdx8dclgVYmYXAW+6e4mZTQFw91tDDqtCzOz3BGt2HgP+OzJpIimYWW1gI8FMwS+B94Gh7v5pqIFVkJn1An4E5rn7qWHHU1GRNWIt3T3PzBoDa4EByfj3YsEK6CPc/UczqwusBG5099WxfpZaGgfYlzAijgCSNqu6+2vuXhK5XA2cEGY8leHun7n7hrDjqKCzgAJ3/4e77wGeI9h/LSm5+wrg27DjqCx33+7ueZHXu4DPgOPDjapiPPBj5LJu5Csun11KGmUws3vNbCswDLgz7Hhi5D+BV8MOooY6Hti63/WXJOmHU3VlZm2AM4F3w42k4systpl9CHwFvO7ucalLjUwaZrbczD4u4+tyAHcf7+4nAs8AcV+FXhmHqkukzHighKA+VVY0dUlSZW2elrQt2OrGzBoBi4CbDuhpSCruvtfdzyDoUTjLzOLSdRjK4r6wufuFURZdALwM3BXHcCrlUHUxs3SgH9Dbq/gA1mH8vSSbL4ET97s+AdgWUiyyn0j//yLgGXdfHHY8seDu35lZLnAJEPPJCjWypVEeM+uw3+VlQH5YsVSWmV0C3Apc5u4/hR1PDfY+0MHM2ppZCjAEWBpyTDVeZPB4LvCZuz8QdjyVYWZH75sdaWYNgAuJ02eXZk8dwMwWAR0JZupsAUa7e2G4UVWMmRUA9YCiyI9WJ/FMsIHATOBo4DvgQ3e/ONyoomdmfYEHgdrAk+5+b8ghVZiZPQucR7Cj6g7gLnefG2pQFWBmfwTeBtYT/H8HuMPdXwkvqooxs04EB9rVJmgMLHT3e+LyLCUNERGJlrqnREQkakoaIiISNSUNERGJmpKGiIhETUlDRESipqQhIiJRU9IQEZGoKWmIxJmZpUbONKlvZkdEzjtI2i3FpWbT4j6RBDCzLKA+0AD40t0nhRySSIUoaYgkQGTPqfeBn4Ee7r435JBEKkTdUyKJcSTQCGhM0OIQSUpqaYgkgJktJTixry3BEaNV+pwWkd9SI8/TEEkkMxsOlLj7gsh54f9nZhe4+5thxyZyuNTSEBGRqGlMQ0REoqakISIiUVPSEBGRqClpiIhI1JQ0REQkakoaIiISNSUNERGJmpKGiIhE7f8BChtsi2T9qt4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(Xstar[:,0], np.mean(ypred-ypred_sim,axis=1),'-',c='red',label='Discrepency Prediction Mean')\n", "plt.plot(Xstar[:,0], np.percentile(ypred-ypred_sim,q=95,axis=1),'--', c='black',label=\"90% Prediction Interval\")\n", "plt.plot(Xstar[:,0], np.percentile(ypred-ypred_sim,q=5,axis=1),'--',c='black')\n", "plt.plot(Xstar[:,0], truefunc(Xstar[:,0])-simfunc(Xstar[:,0]),'k--',c='blue',label='True Discrepency')\n", "plt.legend()\n", "plt.xlabel('x')\n", "plt.ylabel('y')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [11.2 Markov Chain Monte Carlo Examples](https://ndcbe.github.io/cbe67701-uncertainty-quantification/11.02-Contributed-Example.html) | [Contents](toc.html) | [12.0 Epistemic Uncertainties: Dealing with a Lack of Knowledge](https://ndcbe.github.io/cbe67701-uncertainty-quantification/12.00-Epistemic-Uncertainties.html)

\"Open

\"Download\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }