{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "*This notebook contains material from [cbe67701-uncertainty-quantification](https://ndcbe.github.io/cbe67701-uncertainty-quantification);\n", "content is available [on Github](https://github.com/ndcbe/cbe67701-uncertainty-quantification.git).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [6.1 Nonlinear Diffusion-Reaction Equation](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.01-Contributed-Example.html) | [Contents](toc.html) | [6.3 Sensitivity Analysis with Adjoint Operators](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.03-Sensitivity-Analysis-with-Adjoint-Operators.html)

\"Open

\"Download\"" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "source": [ "# 6.2 A Simple Example of Adjoint Sensitivity Analysis" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "source": [ "Han Gao (hgao1@nd.edu)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "outputs": [], "source": [ "## import all needed Python libraries here\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib.ticker import LinearLocator, FormatStrFormatter\n", "from matplotlib import cm\n", "from mpl_toolkits.mplot3d import Axes3D" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "source": [ "Here we give a very simple example of adjoint sensitivity analysis (SA) with analytic solution.\n", "\n", "Consider a system $$Q=\\int_0^{t=1}u(t)dt$$\n", "$$s.t.\\;\\dot{u}=bu$$\n", "$$\\quad\\quad u(0)=a$$\n", "We want to find the $\\frac{\\partial Q}{\\partial a}$ and $\\frac{\\partial Q}{\\partial b}$ by SA.\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "outputs": [], "source": [ "\"\"\"define hyperparameters of the problem\"\"\"\n", "ts=0 # Start Time\n", "te=1 # End Time\n", "\"\"\"define the time domain of the problem\"\"\"\n", "T=np.linspace(ts,te,1000)\n", "\"\"\"define the QOI function \"\"\"\n", "qoi=lambda a,b:a/b*(np.exp(b*te)-1)" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "source": [ "Itergrate the system we can get\n", "$$u(t)=a\\cdot e^{bt}$$\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEMCAYAAADeYiHoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8FfW9+P/X52zZFxLCGiBBsIRNEFDcQUUFuaJ1uXVFq9V7r21dumhbfXi9/em1vbZKN607WPt1q1wpRVBQb5UWBDHsIsiWsCYEEkK2s7x/f8wknISTBcjJnJPzfj4e85iZz3zmzHuyzPvMzDnzNiKCUkop1ZLL6QCUUkrFJk0QSimlItIEoZRSKiJNEEoppSLSBKGUUioiTRBKKaUi0gShlFIqIk0QSimlItIEoZRSKiKP0wGcjJ49e0pBQYHTYSilVFz5/PPPy0Ukr71+cZ0gCgoKWLlypdNhKKVUXDHG7OhIP73EpJRSKiJNEEoppSLSBKGUUiqiqN6DMMZkAy8AIwEBvg1sAt4ACoDtwHUictAYY4BZwDSgBrhVRFYd7zb9fj+lpaXU1dV1yj6o2JScnEx+fj5er9fpUJTqtqJ9k3oWsFBErjHG+IBU4KfAEhF5whjzIPAg8AAwFRhqD2cCz9jj41JaWkpGRgYFBQVYOUd1NyLCgQMHKC0tpbCw0OlwlOq2onaJyRiTCZwPvAggIg0icgiYAcy2u80GrrSnZwBzxLIMyDbG9D3e7dbV1ZGbm6vJoRszxpCbm6tniUpFWTTvQQwGyoCXjTFfGGNeMMakAb1FZA+APe5l9+8PlIStX2q3NWOMudMYs9IYs7KsrCzihjU5dH/6O1Yq+qKZIDzA6cAzIjIWOIJ1Oak1kf7jj6mHKiLPich4ERmfl9fu9zyUUqpbCUmIJ1c8yYYDG6K+rWgmiFKgVESW2/NvYyWMfY2Xjuzx/rD+A8LWzwd2RzE+pZSKO2vL1zJ7w2y+PvR11LcVtQQhInuBEmPMN+ymi4ANwDxgpt02E3jXnp4H3GIsE4HKxktRSimlLIt3LMbj8nDBgAuivq1ofw/ie8Brxpg1wBjgceAJYIoxZjMwxZ4HWABsBbYAzwP/EeXYHFFbW8sFF1xAMBgErE9dvfHGG1HfbklJCZMnT6aoqIgRI0Ywa9asdtf5+OOPufnmm09qu3V1dZxxxhmcdtppjBgxgkceeaRpWUNDA+effz6BQOCktqFUohARPtjxAWf1PYtMX2bUtxfVBCEixfb9gtEicqWIHBSRAyJykYgMtccVdl8RkbtF5BQRGSUi3fIhSy+99BLf/OY3cbvdACxZsoRVq4776x7HzePx8Ktf/YqNGzeybNkyfv/737NhQ9vXMIuLixk7duxJbTcpKYkPP/yQ1atXU1xczMKFC1m2bBkAPp+Piy66qEsSpFLdwYYDG9hVvYspg6Z0yfbi+mF97Xn0r+vZsLuqU19zeL9MHvmXEe32mzhxIq+//joFBQXs2rWLGTNmsHLlSl577TX+/Oc/A/Dpp59y//33k52dzaJFi5g7dy533303L7zwAv369Wt6rbfffpsnn3yS2tpaMjIymDt3Lsd7g75v37707Wt9ajgjI4OioiJ27drF8OHDW11n9erV5OTkcOaZZ1JWVsZLL73EpEmTjmu7xhjS09MB60uMfr+/2SeQrrzySn7yk59w4403HtfrKpWIFm5fiMfl4cKBF3bJ9vRRG1EgIuzcuZNBgwYBsGbNGkaNGkVDQwNbt26l8RHl5557LhMmTODdd9+luLiYwsJCFixY0Cw5AEyePJlly5axevVqpkyZwptvvtls+XnnnceYMWOOGRYvXhwxvu3bt/PFF19w5pltfw+xuLiYjIwMli9fzrPPPsvDDz98QtsNBoOMGTOGXr16MWXKlGbbHTlyJCtWrGgzDqWUdVxZtH0RZ/c7m6ykrC7ZZrc+g+jIO/1o2LJlC4WFhU3vlBsTRHl5OdnZ2c36btq0iW984xuRXqbJK6+8whtvvEF9fT179+7l8ccfb7b8k08+6XBs1dXVXH311Tz99NNkZrZ+DTMQCHDgwAF++tOfAjBmzBjKy8tPaLtut5vi4mIOHTrEVVddxbp16xg5cmTTMp/Px+HDh8nIyOjwfiiVaNaUr2HPkT18d+x3u2yb3TpBOGXt2rWMGjWqaX7lypXcddddpKSkNPv274EDB8jKymrzeUJz5szhs88+48MPPyQ9PZ3zzz+fESOaJ77zzjuPw4cPH7Puk08+ycUXX9w07/f7ufrqq7nxxhv55je/2eY+bNiwgSFDhuDz+QBYtWoVp5122gltt1F2djaTJk1i4cKFTQkCoL6+nuTk5DbjUSrRLdq+CK/Ly+QBk7tsm5ogoqCiooKUlBQANm7cyN/+9jd+97vf0aNHD4LBIHV1dSQnJ7Nt27ZjLidddNFFzJkzh/79rS+Rr127lrPPPpv09HT+8pe/8I9//KNZ8oGOvZMXEW6//XaKioq4//77j1necrurV69m27Zt1NfX4/f7efTRR3nqqaeOe7tlZWV4vV6ys7Opra1l8eLFPPDAA03LDxw4QF5enj50T6k2hCTEou2LOKf/OWT4uu5MW+9BRMGll17KkiVLuO6663jrrbfIzc2ld+/eAFxyySV8+umnAAwbNozy8nJGjhzJP/7xD0KhEFu2bCEnJ6fptWbOnMlvfvMbzjvvPL766isGDx5MWlracce0dOlSXn31VT788MOmewULFiwAiLjd1atXc+ONN3L22Wdzxhln8P3vf5+JEyce93b37NnD5MmTGT16NBMmTGDKlClMnz69aflHH33EtGnTjvt1lUokq8tWs79mP5cVXNa1GxaRuB3GjRsnLW3YsOGYtliyatUquemmmyIuW7t2rdx3331dHJFz2xURueqqq+TLL788oXVj/XetVGd5fNnjMu7VcVLdUN0prweslA4cY/UMoouNHTuWyZMnN31RLtzIkSP59a9/3eUxObXdhoYGrrzyynZv0iuVyIKhIO/veJ/z+p9Hmvf4rx6cDL0H4YBvf/vbTocQE3w+H7fccovTYSgV01btX0V5bTmXFlza5dvWMwillIphi7YvItmdzPn553f5tjVBKKVUjPIH/SzavohJAyaR6k3t8u1rglBKqRi1dPdSDtUfYvrg6e13jgJNEEopFaPmb51PdlI2Z/c/25Hta4JQSqkYVN1QzcclH3NZwWV4Xc58kVQThFJKxaDFOxdTH6xn+inOXF4CTRCO2LBhA6+88golJSURn2WklFLzt85nQMYARvcc7VgMmiAc4Pf7+e1vf8vcuXObaiVA4lWbg9Yrzmm1OZXI9h3Zx2d7PmP64OnN6qd0NU0QDigpKeG2225jyJAhzc4gEq3aHLRecU6rzalE9t629xCEywdf7mgcmiCiZOLEiWzfvh2AXbt2MX78+KZl06dP55prrmHatGnNajK89tprzJgxAzhabe7tt99mzJgxbNu2jWnTprF79+5m23n77beZOHEip512Gueeey5lZWXHHWvfvn05/fTTgebV5tqyevVqdu3axZlnnsngwYP5+OOPj3u70HbFuSuvvJLXXnvthF5XqXg2f+t8RvcczaDMQY7GoQkiCqSVinLh+vTp02w+UavNQesV57TanEpEmw9uZtPBTY6fPUB3fxbTew/C3rWd+5p9RsHUJ9rs0lpFubYkarU5aL3inFabU4no3S3v4jEeLivs4kd7R9C9E4RDWqso15ZErzYHkSvOabU5lUj8IT9/3fpXJg2YRE5yTvsrRFlUE4QxZjtwGAgCAREZb4zJAd4ACoDtwHUictBYb7dnAdOAGuBWETm5O7TtvNOPltYqyrUlEavNQdsV57TanEo0n5R+QkVdBVcOudLpUICuuQcxWUTGiEjjXdoHgSUiMhRYYs8DTAWG2sOdwDNdEFtUtFVRri2JVm0O2q44p9XmVKKZu2UuPVN6ck7/c5wOxdKRqkInOmCdIfRs0bYJ6GtP9wU22dN/BK6P1K+1IR4ryrVFq8011161uXj+XSvVUllNmZw2+zT51cpfRX1bxEhFOQHeN8Z8boy5027rLSJ77OS0B+hlt/cHSsLWLbXbEoZWmztKq82pRDP/6/kEJRgzl5cg+jepzxGR3caYXsAHxpgv2+gb6euCckwnK9HcCTBw4MDOiTKGaLU5i1abU4lERPjfLf/LmLwxDM4a7HQ4TaJ6BiEiu+3xfmAucAawzxjTF8Ae77e7lwIDwlbPB5p/K8x6redEZLyIjM/Ly4tm+Eop1SXWlq/l68qvY+rsAaKYIIwxacaYjMZp4BJgHTAPmGl3mwm8a0/PA24xlolAZeOlKKWU6s7mbplLiifFkbrTbYnmJabewFz7y2Ie4M8istAYswJ40xhzO7ATuNbuvwDrI65bsD7melsUY1NKqZhQ469h4baFTBk0hXRfevsrdKGoJQgR2QqcFqH9AHBRhHYB7o5WPEopFYsWbl9Itb+aq4de7XQox9BnMSmllIPe2vQWQ7KHMLbXyT8dubNpglBKKYesP7CedQfWce2p1zpa96E1miCUUsohb216i2R3sqNlRduiCUIppRxQ3VDNgm0LmFo4lUxf609PdpImiC7mVFnRRsFgkLFjxzY976gtnVVWtKCggFGjRjFmzJhmhZO0rKhKZH/b+jdqA7Vce+q17Xd2iCaILuZUWdFGs2bNoqioqEN9O6usKFgP3isuLmblypVNbVpWVCUqEeHNr96kKKeIkT1HOh1OqzRBRElrJUedKisK1tnK3/72N+64444O9e+ssqJt0bKiKhGtKV/DVwe/4ppTr4nJm9ONunXBoF989gu+rGjr8U/Hb1jOMB4444E2+0grJUdbKyv65JNPNhXIaXzMdrjJkydzzTXXAPDoo4/y5ptvcvfdR78y0tHiPPfeey+//OUvI/aNpLi4mBkzZrB8+XLef/99Hn744WZ1Hjq6XWMMl1xyCcYY7rrrLu68886mZVpWVCWiN758g1RPakyUFW1Lt04QTmmt5KiTZUXnz59Pr169GDduXIfOBDqzrOjSpUvp168f+/fvZ8qUKQwbNozzzz8fQMuKqoRTXlvOwu0LuXro1aR5j79+S1fq1gmivXf60dJayVEny4ouXbqUefPmsWDBAurq6qiqquKmm27iT3/6U8TtdmZZ0cbKeL169eKqq67is88+a0oQoGVFVWJ566u38If83FB0g9OhtK8jRSNidYjVgkHPP/+83HvvvSJixZOSkiJ79+4VEZH8/Hypra0VEZEVK1bI1KlTm6174YUXSmlpadP8D3/4Q3n66adFROTtt98Wt9st1dXVJxXfRx99JJdffnmb250zZ44UFBRIXV2dHD58WCZOnCj//Oc/j3tb1dXVUlVV1TR91llnyXvvvde0vLy8XIYNG3ZC+xELv2uljkdDoEEmvTFJ7vrgLkfjIEYKBiWktkqOOlVWtC3RLCu6b98+zj33XE477TTOOOMMLr/8ci677LKm5VpWVCWS93e8T3ltOTcOu9HpUDqmI1kkVodYPYNoi5YVba69sqJtifXftVIt3TD/Bpn+znQJhoKOxoGeQcQmLSt6lJYVVYlkTdka1pSv4fph1+My8XHo7dY3qWOVlhW1aFlRlUhe2/ga6d50ZgyZ4XQoHRYfaUwppeLY/pr9vL/9fa4ccmXMf7Q1nCYIpZSKsjc3vUlQglw/7HqnQzkumiCUUiqKavw1vL7pdS4YcAEDMwc6Hc5x0QShlFJRNHfLXCrrK7l95O1Oh3LcNEEopVSUBEIBXt3wKmPyxjCm1xinwzlumiCUUipKPtjxAbuqd3HbyNucDuWEaIJQSqkoEBFeXvcyBZkFTBowyelwTogmCAds2LCBV155hZKSkg4/elspFV+W7VnGxoqN3Dbytrj5YlxLUY/aGOM2xnxhjJlvzxcaY5YbYzYbY94wxvjs9iR7fou9vCDasTnF7/fz29/+lrlz55Kent7UnojlSCFySVItR6ri3SvrX6FnSk+mD27//ylWdUVauwfYGDb/C+ApERkKHAQab+3fDhwUkSHAU3a/bqmkpITbbruNIUOGNDuDSNRypHBsSVItR6ri2ZcVX/KP3f/gxqIb8bl9TodzwqKaIIwx+cDlwAv2vAEuBN62u8wGrrSnZ9jz2MsvMrFci68drZUcBZg+fTrXXHMN06ZNIzMzs6ldy5E2p+VIVbx6ce2LpHpSue4b1zkdykmJ9hnE08CPgZA9nwscEpHG6walQH97uj9QAmAvr7T7xx1ppeRouD59+jSbb60c6bvvvktxcTGFhYUsWLCgqfhOo8mTJ7Ns2TJWr17NlClTePPNN5stP++88xgzZswxw+LFi5v1ayxH6nJ17E+iuLiYjIwMli9fzrPPPsvDDz98QtuFoyVJx40bx3PPPdfUruVIVTzaemgri7Yv4vph15Ppy2x/hRgWtYf1GWOmA/tF5HNjzKTG5ghdpQPLwl/3TuBOgIED2/5W4t7HH6d+Y+fWpE4qGkYfuwxna1orOdqWRC1HCq2XJNVypCoePb/2eZI9ydwyIv4fRBnNp7meA1xhjJkGJAOZWGcU2cYYj32WkA80XjMpBQYApcYYD5AFVLR8URF5DngOYPz48cckkFjQWsnRtiRqOVJouySpliNV8WRH1Q4WbFvAzUU3k5Oc0/4Ksa4jRSNOdgAmAfPt6beAb9nTzwL/YU/fDTxrT38LeLO9143VgkFtlRxtS6KVIxVpuyRpe+VIY+F3rVS4n33yMxn36jgpqylzOpQ2EcMFgx4A7jfGbMG6x/Ci3f4ikGu33w886EBsnaKtkqNtSbRypNB2SVItR6riSenhUuZvnc+1p15Lz5SeTofTOTqSRWJ1iNUziBOl5Uiba68caTz/rlX388jSR2TsnLGyt7r9qwVOI4bPIFQrtBzpUVqOVMWTPdV7ePfrd/nm0G/SO639qwXxQkuOxhgtR2rRcqQqnjy/9nmAuHykd1v0DEIppU7CzqqdzN08l2uGXkPf9L5Oh9OpNEEopdRJ+MPqP+Bxebhz9J1Oh9LpNEEopdQJ+urgVyzYuoAbim4gLzXP6XA6XbdMENZNetWd6e9YxYLfffE70rxpfHtk97x32O0SRHJyMgcOHNADSDcmIhw4cEC/Ya0ctaZsDR+VfMStI24lKynL6XCiott9iik/P5/S0tITfqqpig/Jycnk5+c7HYZKYL/54jfkJOdw0/CbnA4larpdgvB6vRQWFjodhlKqG1u2ZxnL9yznxxN+TJq3c59eEEu63SUmpZSKppCE+PXKX9MnrU/c13tojyYIpZQ6Dn/9+q9srNjIPaffQ5I7yelwokoThFJKdVBtoJbffPEbRuaOZFph93+QpCYIpZTqoNnrZ7O/Zj8/mvAjXKb7Hz67/x4qpVQnKKsp46V1L3HxwIs5vffpTofTJTRBKKVUB/y++Pf4Q37uG3ef06F0GU0QSinVjk0Vm3hn8ztcP+x6BmYOdDqcLqMJQiml2iAiPPHZE2QmZXLX6LZry3c3miCUUqoN7217j5X7VvL9sd/vto/UaI0mCKWUasUR/xF+tfJXDM8dztVDr3Y6nC7X7R61oZRSneXZ1c+yv3Y/T01+CrfL7XQ4XU7PIJRSKoKth7bypw1/4qohVzE6b7TT4ThCE4RSSrUgIjz+2eOkeFO4d9y9TofjGE0QSinVwqIdi1i+ZznfG/s9cpJznA7HMVFLEMaYZGPMZ8aY1caY9caYR+32QmPMcmPMZmPMG8YYn92eZM9vsZcXRCs2pZRqTWV9JU8sf4KinCKuO7V7P621PdE8g6gHLhSR04AxwGXGmInAL4CnRGQocBC43e5/O3BQRIYAT9n9lFKqS/36819zqP4Qj579aELemA4XtQQhlmp71msPAlwIvG23zwautKdn2PPYyy8yxphoxaeUUi2t2LuCdza/wy3Db6Eot8jpcBwX1XsQxhi3MaYY2A98AHwNHBKRgN2lFOhvT/cHSgDs5ZVAboTXvNMYs9IYs1LLiiqlOktdoI5H//ko+en5/PuYf3c6nJgQ1QQhIkERGQPkA2cAkVKy2ONIZwtyTIPIcyIyXkTG5+XldV6wSqmE9tya59hRtYOHz3qYFE+K0+HEhC75FJOIHAI+BiYC2caYxi/o5QO77elSYACAvTwLqOiK+JRSiW1TxSZeXvcyV5xyBWf3O9vpcGJGND/FlGeMybanU4CLgY3AR8A1dreZwLv29Dx7Hnv5hyJyzBmEUkp1Jn/Qz0NLHyIzKZMfjv+h0+HElHYftWGMWQGsAdY2jkWkIxf/+wKzjTFurET0pojMN8ZsAF43xvx/wBfAi3b/F4FXjTFbsM4cvnXce6OUUsfpj2v+yJcVX/L05KfpkdzD6XBiSkeexTQDGG0P/wZcbowpF5FBba0kImuAsRHat2Ldj2jZXgdc25GglVKqM6wrX8cLa1/gilOu4KKBFzkdTsxpN0GIyG6s+wQLAYwxRRy9RKSUUnGpPljPzz79GbkpuTxwxgNOhxOT2r0HYYxpVj5JRDYCI6IWkVJKdYHfffE7tlZu5edn/5xMX6bT4cSkjlxiesMYMwDYhnUfog4YFtWolFIqij7f9zmz18/mulOv4+z++qml1nTkEtNZAMaYIcAoIAf4dZTjUkqpqKisr+TBTx5kQMYAfjD+B06HE9M6XDBIRLYAW6IYi1JKRZWI8J//+E/Ka8v507Q/kepNdTqkmKaP+1ZKJYy3vnqLxTsXc8/YexiRq7dS26MJQimVELYc3MIvV/ySs/udzS0jbnE6nLigCUIp1e3VBer48Sc/Js2bxmPnPobL6KGvIzp8D0IppeLVf3/232w+uJlnLn6Gnik9nQ4nbmgaVUp1a+9sfod3Nr/Dd0Z9h3P7n+t0OHFFE4RSqttaf2A9jy17jIl9J3L3mLudDifuaIJQSnVLlfWV/ODjH5CTksMvzv9FwpcPPRF6D0Ip1e2EJMRPPvkJ+2r2Mfuy2eQk5zgdUlzSMwilVLfzzOpn+GTXJzww4QFG5412Opy4pQlCKdWtLNy+kGdXP8sVp1zBv37jX50OJ65pglBKdRvry9fz0KcPMbbXWB456xGMiVTqXnWUJgilVLew78g+vv/h98lNzuWpSU/hc/ucDinu6U1qpVTcqw3Ucs9H93DYf5hXp75Kbkqu0yF1C5oglFJxLSQhHl76MBsObGDW5Fl8I+cbTofUbeglJqVUXHty5ZMs2r6I+8bdx+SBk50Op1vRBKGUiluz18/m1Q2vcsOwG7h1xK1Oh9PtaIJQSsWlBVsX8OTKJ5kyaAo/nvBj/cRSFEQtQRhjBhhjPjLGbDTGrDfG3GO35xhjPjDGbLbHPex2Y4z5jTFmizFmjTHm9GjFppSKb8v2LONnS3/GuN7j+O/z/lsfoxEl0TyDCAA/EJEiYCJwtzFmOPAgsEREhgJL7HmAqcBQe7gTeCaKsSml4tT68vXc+9G9FGQWMGvyLJLcSU6H1G1FLUGIyB4RWWVPHwY2Av2BGcBsu9ts4Ep7egYwRyzLgGxjTN9oxaeUij9fHfyKuxbfRXZSNs9c/AxZSVlOh9Stdck9CGNMATAWWA70FpE9YCURoJfdrT9QErZaqd2mlFJsq9zGd97/DknuJJ6/5Hn6pPVxOqRuL+oJwhiTDvwFuFdEqtrqGqFNIrzencaYlcaYlWVlZZ0VplIqhpUeLuWO9+8A4PlLnmdAxgCHI0oMUU0QxhgvVnJ4TUTesZv3NV46ssf77fZSIPy3ng/sbvmaIvKciIwXkfF5eXnRC14pFRP2HtnLHe/fQV2gjuemPMfgrMFOh5QwovkpJgO8CGwUkV+HLZoHzLSnZwLvhrXfYn+aaSJQ2XgpSimVmHZV7+LWhbdSWV/JH6f8Ub8l3cWi+aiNc4CbgbXGmGK77afAE8CbxpjbgZ3AtfayBcA0YAtQA9wWxdiUUjGupKqE29+/nWp/Nc9f8jwje450OqSEE7UEISKfEvm+AsBFEfoLoEVjlVJsq9zGHYvuoCHUwIuXvEhRbpHTISUkfVifUiqmbDm4hTvevwNBePHSFzm1x6lOh5Sw9FEbSqmYUby/mJkLZ+IyLl6+9GVNDg7TBKGUign/V/J/fOf975CdlM2cqXMYnK2fVnKaJgillOPmbp7LPR/dw+DswcyZOof8jHynQ1LoPQillINEhBfXvcisVbM4q+9ZPDX5KdK8aU6HpWyaIJRSjvCH/Dy27DH+svkvTC2cymPnPIbX7XU6LBVGE4RSqstV1ldy/8f389nez7hj1B18b+z3cBm94h1rNEEopbrU9srtfPfD77K7ejePnfsYV5xyhdMhqVZoglBKdZlle5Zx/8f34zEeXrjkBU7vrXXBYpkmCKVU1IkIL69/mVmrZjE4azC/vfC3+kmlOKAJQikVVYcbDvPw0odZsnMJlxZcyn+d/V+kelOdDkt1gCYIpVTUbD64mfs+vo/Sw6X8aPyPuHn4zVgPelbxQBOEUqrTiQjzvp7HY8sfI82bxguXvMD4PuOdDksdJ00QSqlOdbjhMD//5895b/t7jO89nl+e/0vyUrW4VzzSBKGU6jTF+4t58JMH2XtkL98f+32+PfLbuF1up8NSJ0gThFLqpAVCAV5Y+wLPrn6WPml9mD11NqflneZ0WOokaYJQSp2ULQe38PDSh1l3YB3TCqfx0MSHyPBlOB2W6gSaIJRSJyQQCvDK+lf4Q/EfSPem8z8X/A+XFVzmdFiqE2mCUEodty0Ht/DQ0odYf2A9UwZN4Wdn/ozclFynw1KdTBOEUqrDagO1PL/meV5e/zIZ3gyevOBJLi241OmwVJRoglBKdcjfS//O48sfZ1f1Lv5l8L/wg/E/0LOGbk4ThFKqTXuP7OWJz55gyc4lFGYV8tKlLzGhzwSnw1JdQBOEUiqi2kAtc9bP4cV1LxKSEPecfg8zh8/Uoj4JJGoJwhjzEjAd2C8iI+22HOANoADYDlwnIgeN9XCWWcA0oAa4VURWRSs2pVTrQhJiwbYFPP350+yr2ceFAy7kRxN+pE9fTUDRLOH0CtDyM28PAktEZCiwxJ4HmAoMtYc7gWeiGJdSqhW943tHAAAWUUlEQVSr9q3ixr/dyE8++Qk5yTm8dOlLzLpwliaHBBW1MwgR+bsxpqBF8wxgkj09G/gYeMBunyMiAiwzxmQbY/qKyJ5oxaeUOmpTxSZ+X/x7Pir5iF6pvXjs3MeYPni6lgFNcF19D6J340FfRPYYY3rZ7f2BkrB+pXabJgilomhr5VaeKX6GhdsXkuHN4LtjvsvNw2/Weg0KiJ2b1JEeEC8ROxpzJ9ZlKAYOHBjNmJTqtkoOl/Ds6meZv3U+Se4kvjPqO8wcMZOspCynQ1MxpKsTxL7GS0fGmL7Afru9FBgQ1i8f2B3pBUTkOeA5gPHjx0dMIkqpyL46+BUvrXuJhdsW4nF5uLnoZr496tvkJOc4HZqKQV2dIOYBM4En7PG7Ye3fNca8DpwJVOr9B6U6zxf7v+CFtS/w99K/k+JJ4caiG5k5Yia9Unu1v7JKWNH8mOv/w7oh3dMYUwo8gpUY3jTG3A7sBK61uy/A+ojrFqyPud4WrbiUShTBUJBPdn3Cy+teZtX+VWQnZXP3mLu5ftj1eilJdUg0P8V0fSuLLorQV4C7oxWLUomkqqGKuZvn8vqXr1NaXUqftD48eMaDXDXkKr35rI5LrNykVkqdpK8Pfc2fN/6Zv279K7WBWk7vdTr3jruXCwdeiNel335Wx08ThFJxrDZQywc7PuCdze/w+b7P8bl8TBs8jRuG3UBRbpHT4ak4pwlCqTgjImw4sIF3Nr/Dgm0LqPZXMzBjIPecfg9XD72aHsk9nA5RdROaIJSKE/tr9rNw20LmfT2PTQc3keRO4pJBl3DV0KsY33s81iPNlOo8miCUimGV9ZUs3rGYBdsWsGLvCgRheO5wHjrzIaYOnkqmL9PpEFU3pglCqRhT3VDN30v/znvb3+PTXZ8SCAUoyCzg3077N6YWTqUwq9DpEFWC0AShVAwory3no5KPWLJzCcv3LCcQCtArtRc3DruRqYOnMjxnuF5CUl1OE4RSDhARtlVt4/9K/o8lO5ewpmwNgjAgYwA3Fd3EhQMvZHTP0bhdbqdDVQlME4RSXaS6oZrle5ezdNdSlu5ayu4j1uPGinKKuHvM3Vw48EKGZA/RMwUVMzRBKBUlgVCATRWb+Oeef/Lprk9ZvX81AQmQ6kllYt+J3D7qds7rfx590/s6HapSEWmCUKqTNCaEFXtXsGLfClbtW0W1vxqAYTnDmDliJuf0P4cxeWO0rrOKC5oglDpBdYE6NlZspHh/MSv2rmDV/lUc8R8BoCCzgMsKL2NC7wlM6DOBvNQ8h6NV6vhpglCqA0SE0sOlrC5fzZqyNawpW8Omik0EJABAYVYh0wqnMaHPBMb3Hq8JQUWdiET9fpUmCKVaEBH2HNnDxoqNfFnxJRsPbGRN2RoO1h8EIMWTwqieo7h15K2M7jmaUXmj6JnS0+GoVXciIlTW+ik9WMuuQ7XsChuXHqph18FafjqtiGvHD2j/xU6CJgiV0IKhIDuqdjRLBl8e/JLK+koAXMZFQWYBFwy4gNF5oxndczRDsofox0/VCQuFhANHGthXVceeyjr2VtbaY3u+qo49lbXU+UPN1kv2uuifnUL/HqmM6p/NoNy0qMeqCUIlhEAoQOnhUr4+9DVfV37NlkNb2HpoK9sqt9EQagDA5/IxtMdQLh54MUU5RQzLHcapPU4lxZPicPQqHogIVbUByqrr2H+4njJ72H+4vlki2FdVhz/YvFqyx2XonZlMn6xkhvfL5KJhveiTlWwnhBT6Z6eQk+br8o9Aa4JQ3UplfSU7q3ay87A1bDu0ja8rv2Z75famRADQL60fg7MHc1a/sxiSPYSi3CIKswq1boI6Rp0/aB3sq48e9FubbwiEjlnf53HRNyuZPpnJjB/Ug95ZyfTNTKZPVgp9s5Lpm5VMbnoSblfsff9FE4SKKyJCRV0FpdWlRxNB1U5KDpew8/DOpktDAAZDv/R+nJJ9Cuf0P4dTsk7hlOxTGJw1WCurJajGd/kVNQ1UHKmn4og/8rjGGh884qe6PhDxtXLTfORlJJGXkcTgnmlN03kZSeSlH53OSvHG7ZcfNUGomOIP+tlbs5e9R/ayu3o3e47ssYbqPU3T9cH6pv6NSWBAxgAuHXQpAzMHMjBjIAMzB5KfkU+SO8nBvVHRIiIcrg9QWeOnstZPVa01PmSPG4dDNQ1UHGkc/BysaSAYkoivmeRxkZvmIyfdR49UH4W5qfRI85Gb5qNXRnKzBJCT5sPrdnXxXnc9TRCqS4QkREVdBeW15ZTVlFFeW87+mv2U1VrTZbVl7K3eS1ltGULzf+Dc5Fz6pfdjaI+hXJB/AX3T+5Kfns+AzAHkp+fjc/sc2it1okIh4UhDgOr6ANV1AQ43jusCVNeHH+CPTle1OPi3cpwHrGv6WSleslK95Kb5KOyZxrhBPnLSrIN/rp0EctOS6JHmJSfNR6pPD4ct6U9EnbDaQC2H6g5RUV9hjesqOFh3kEP11vSBugOU1ZRRVltGRW1F03cGwmX6MslLyaNnak/O6ncW/dL70TetL33T+9I3rS990vroWUCMCIaEWn+QmvoANQ1BjjQEqG0IcqQhyOE6P9V11gH/cF34gd/fbL5p3BBA2jjAA7gbD/IpXjJTvGSn+hiUm9bU1jSkeo9pS/W54/ayTizRBJHgRITaQC1VDVVUNVRxuOEwhxsON01XNVRRVV9FZX0lFfV2Aqg7xMH6g9QGaiO+ptu4yU7KJiclh14pvRiSPYS81DzyUvKajXum9NSDfycSEeoDIer9IeoCQer8Qer8Ier8QWr9Qftgbh3ca+oD1PiD1NQHqWkIUusPcMSermns0zS2plt+7LItaT436ckeMpK9pCd5yEj20Ccz2Z72WsuSPKQne5qWZyR7SE+ylmWleEnTg7zjNEHEqUAoQE2ghhp/DUf8R6xx4Eiz+ZqAPW33a3nwbxwivbMPl+pJJTspmx7JPchJzuGUrFPokdzDGpJ6HDOd4cvAZbr/9dlIQiGhIRiiPhDCHwzRELAHezpSe/iB3Dqwh6j3hx3gWxzs6wKRl9cHQu2+K2/JZSDV5yHV57YHa7rxgJ7qc5Oa5G7WJ8XnIe2Y/l7rAJ/sIc3niclP5KjjF1MJwhhzGTALcAMviMgTDod0XEQEf8iPP+SnPlhPfaCe2mAt9YF66oP11AZqqQ/WUxesoy5QR33Amq4P1lMXqLOmA2HLw9prA7XNDvzhN2rbk+pJJdWbSro3nUxfJtnJ2QzMGEhmUiYZvgwyfBlk+jKbxuHT6b50PC5n/kxEhEBICAQFfyhEICgEgiH8IXscFAJ2uz8YIhCyx3a7Pygtpo+uG+k1Gw/ajQfw+vADeWN7WFu9fYAPP+AH2rowfhySPC6SvW6SvfbYY00ned1kpXhJzkhqtjzF6yapcd7jbr6u3ZaadGwiSPK49F26alXMJAhjjBv4PTAFKAVWGGPmiciGzt7W2rK1fLb3MxpCDfiD/qaDekOwodm4cVljv4ZQAw3BBgKhwNG+YcsCobbfibfFhYskdzI+dxI+V5I1bpx2JZHpySQvKYVkdwpJrlSS3CkkuVPwuVJIsgevy5r3upLxYM278RESQ0isg2VQhFDIOvCGRAjUCKEjwoGQsC8UvqyWYKiGYEgIhvVvnG8ajqOt8bXD21oe9JsduDvpYNsRXrfB53bh87jw2mOfx4XP7SIprC092dPUr3F5s3Fb7W4XXo+LpBZ9Wx7Q9aCtYkXMJAjgDGCLiGwFMMa8DswAOj1BvPj5Ypbse8maEQN4MOIB8QBuayweEHfY2I2IByQZCVnTYi+XkIuQeJCQPd+4XsiLiDds7EHEZ897IORrardOmk72oFBvDyfPGOuTIC5jcLuODpHa3C6Du5U2l8vg87iOafO4rLHXZfC4XXjdBo/Lhcdt8LpdeBrbmy1vva/Xbc17XPbyFu1eu3/4dOO6bpfRA3JbGq9bNbt+1bLt+OdFBEL2fQ0JWcua3hSEWiwXe11pmhYR62WbloWazYuEwvqHbcOeF5rPE6G/NG0zbH1oHkOz+Bp3L+x+jUgby8P2o0W71dZyvaPTnsIRePJPIZpiKUH0B0rC5kuBM6OxoSn9r+bI/jPxuny4XC5cxuAy4DLWgaJx2uWyx3abCZt2uQzGYB3w2ljuMtZBsXH66LKj22m23BUhDhMWh6vFdhrXBdwmhEuCuIzgJYSLEB6X4JEQLhPCY0K4xBq77eVNY3uZG/s1CEEoCBK0/knFnpZQhEFaae9IH2m/jz8EDR3dVuTlEgpCIIgEg0gwhARCTdP+YAgJidUWEgiGrD5BQULWmFDjAU2sPuHjlu3h8yLW/3xI7GNYYzvNl7fs19RO2IHQbm86mMjR40fTcSqsL2HLBOvjw83mw6bD1jm6zDR/jaZl5thtNLYd7dZs/mijJuLO0ufWi+nx4G+juo1YShCR/nKOucZgjLkTuBNg4MCBJ7ShywencXmvLAj6rYNgqAFCgbB5f9h84Njp9uaPp2+zwT4QNx2Y7QNy03wgQlvYgTtGNL6ZCwUNoYBBgoZQ0BpL0BAKGTtkuy1EWHtjmzWEQq6wfkenQ/Y61rbs12gcN76ZbByCRPhLcoABjMG4rSRP45mLC4yV+TGu8HaDcVnrWMPR9QCrb4t5Y/c1Jmw9l8Fgv4swR/sQHkPTevbrhW+vaRvhy2n+Ok3bbNxRml6jab4xjsb/9MYVzNH+pkX/o/3CYm/8YYbvo91mTPjrH7u82TYMYFyRYyRs3XaXhx26jv4QwuImbB2axxPp59Qi3uZtNP0MkiZMItpiKUGUAuHPrs0HdrfsJCLPAc8BjB8//sT+7b94FRY/ckKrRmRc4PKAy2uN3Z6j8+HTLZe5POBNAeO229z2a7nttsax/frN2iL0dXlaWT+sb9jriECoIUioLkCoPkCotsEa1zUQrG2w5uvqkfoAoQY/ofoGpL6BUF1D2HR90zhUV4fU1ROqr4fgySUs4/VifD5rSErC+Hy4knwYb9i812v183gwXg94PBiPPR+pzWu1t9lmzzfvZ/28jNv6GVrzLow7rN3ttufD2j1u68Df2K6XsVSciaUEsQIYaowpBHYB3wJuiMqWhl0OOYVhB2o3uL0dmG/lIO9y5iOdobo6gpVVhKoqCVZVEaysIlhZac1XVhGsOkTocBXB6iOEjhwhVF1tjRuna2o6tiFjMCkpuJKTcSUnW9P2vLtnD7stGVdyCq4Ue3njdOM4KRmT5MMVdsA3viSMz9u8LSnJOug79DNVSh0VMwlCRALGmO8Ci7Du2L4kIuujsrGeQ60hhoRqawlWVBCoOEjwYAWBAxUEKyqs6YqD1nSlnQiqKglVViENDW2+pisjA3dmJq70dFzp6bhzeuAdkI87PR1XaprVnpZmDenW2J0W1p6ejis11Tpo67tfpRJOzCQIABFZACxwOo7OIoEAgQMHCOzf3zT47XGw/ACBCisJBA4eRFp5N2+8Xtw5OdaQlUXSKafgzsrElZmJOzMLd1Ym7qys5vOZmbgyMqxLHUopdYJiKkHEk1BDA4E9e/Dv3m0Ne/Y2TwRlVhI45qutLhee3FzcPXviycnBV1CApzEB5PSwlvXoYbXl5uJKS9N370opR2iCaEWovh5/aSkNJSX4d+8m0JgIdlnjQHl584O/Mbhzc/H0ysOTl0fyiOF48nrh6RU+5OHJzdV39kqpuJDQCSLU0IC/pISGHTto2LGThh3badixA/+Onfj37GmWAIzXi6dvX7z9+pF23nl4+/U7OvTvh7d3b4xPHzutlOo+EjJBHHr7bcr/8MwxScCVlYVv0CBSxo0ja+BAfAWD8Obn4+3XH09eT/1kjVIqoSRkgnDn5pJy+ulkDRqEb9BAfIMG4Rs0CHd2ttOhKaVUzEjIBJExeTIZkyc7HYZSSsU0vWailFIqIk0QSimlItIEoZRSKiJNEEoppSLSBKGUUioiTRBKKaUi0gShlFIqIk0QSimlIjLS8mmjccQYUwbsOMHVewLlnRhOPNB9Tgy6z4nhZPZ5kIjktdcprhPEyTDGrBSR8U7H0ZV0nxOD7nNi6Ip91ktMSimlItIEoZRSKqJEThDPOR2AA3SfE4Puc2KI+j4n7D0IpZRSbUvkMwillFJt6PYJwhhzmTFmkzFmizHmwQjLk4wxb9jLlxtjCro+ys7VgX2+3xizwRizxhizxBgzyIk4O1N7+xzW7xpjjBhj4v4TLx3ZZ2PMdfbver0x5s9dHWNn68Df9kBjzEfGmC/sv+9pTsTZWYwxLxlj9htj1rWy3BhjfmP/PNYYY07v1ABEpNsOgBv4GhgM+IDVwPAWff4DeNae/hbwhtNxd8E+TwZS7el/T4R9tvtlAH8HlgHjnY67C37PQ4EvgB72fC+n4+6CfX4O+Hd7ejiw3em4T3KfzwdOB9a1snwa8B5ggInA8s7cfnc/gzgD2CIiW0WkAXgdmNGizwxgtj39NnCRMcZ0YYydrd19FpGPRKTGnl0G5HdxjJ2tI79ngJ8DvwTqujK4KOnIPn8H+L2IHAQQkf1dHGNn68g+C5BpT2cBu7swvk4nIn8HKtroMgOYI5ZlQLYxpm9nbb+7J4j+QEnYfKndFrGPiASASiC3S6KLjo7sc7jbsd6BxLN299kYMxYYICLzuzKwKOrI7/lU4FRjzFJjzDJjzGVdFl10dGSf/xO4yRhTCiwAvtc1oTnmeP/fj0t3r0kd6Uyg5ce2OtInnnR4f4wxNwHjgQuiGlH0tbnPxhgX8BRwa1cF1AU68nv2YF1mmoR1lviJMWakiByKcmzR0pF9vh54RUR+ZYw5C3jV3udQ9MNzRFSPX939DKIUGBA2n8+xp5xNfYwxHqzT0rZO6WJdR/YZY8zFwM+AK0Skvotii5b29jkDGAl8bIzZjnWtdl6c36ju6N/2uyLiF5FtwCashBGvOrLPtwNvAojIP4FkrGcWdVcd+n8/Ud09QawAhhpjCo0xPqyb0PNa9JkHzLSnrwE+FPvuT5xqd5/tyy1/xEoO8X5dGtrZZxGpFJGeIlIgIgVY912uEJGVzoTbKTryt/2/WB9IwBjTE+uS09YujbJzdWSfdwIXARhjirASRFmXRtm15gG32J9mmghUisieznrxbn2JSUQCxpjvAouwPgHxkoisN8b8F7BSROYBL2Kdhm7BOnP4lnMRn7wO7vP/AOnAW/b9+J0icoVjQZ+kDu5zt9LBfV4EXGKM2QAEgR+JyAHnoj45HdznHwDPG2Puw7rUcms8v+Ezxvw/rEuEPe37Ko8AXgAReRbrPss0YAtQA9zWqduP45+dUkqpKOrul5iUUkqdIE0QSimlItIEoZRSKiJNEEoppSLSBKGUUioiTRBKKaUi0gShlFIqIk0QSnUyY0y+MeZfnY5DqZOlCUKpzncR1jP8lYpr+k1qpTqRMeZc4F3gEHAYuMp+UJ5ScUcThFKdzBizEPihiEQsE6lUvNBLTEp1vm9gPVpbqbimCUKpTmSMycV65LLf6ViUOlmaIJTqXIXEeR1kpRppglCqc32J9ez+dcaYs50ORqmToTeplVJKRaRnEEoppSLSBKGUUioiTRBKKaUi0gShlFIqIk0QSimlItIEoZRSKiJNEEoppSLSBKGUUiqi/x/rsTaS9FdvNQAAAABJRU5ErkJggg==\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "\"\"\"define the primary solution\"\"\"\n", "fu=lambda t,a,b: a*np.exp(b*t)\n", "\"\"\"define the adjoint solution\"\"\"\n", "fua=lambda t,a,b:1/b*(1-np.exp(b*(te-t)))\n", "\"\"\"plot the solutions\"\"\"\n", "plt.figure()\n", "plt.plot(T,fu(T,2,3),label=r'$u(t;a=2,b=3)$')\n", "plt.plot(T,fua(T,2,3),label=r'$u^*(t;a=2,b=3)$')\n", "plt.plot(T,fu(T,4,5),label=r'$u(t;a=4,b=5)$')\n", "plt.plot(T,fua(T,4,5),label=r'$u^*(t;a=4,b=5)$')\n", "plt.xlabel(r'$t$')\n", "plt.ylabel(r'$u$')\n", "plt.legend()" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "source": [ "We also need to eliminate costly terms related to all the derivatives of primary variable w.r.t paramters and time by choosing appropriate Lagrange multipliers, we let\n", "$$1-bu^*-\\dot{u^*}=0\\quad\\dot{u^*}(1)=0$$\n", "and we integrate it backward from $t=1$\n", "$$u^*(t)=b^{-1}(1-e^{b(1-t)})$$" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "source": [ "And we recall the formula of SA to get the derivative\n", "$$\\frac{\\partial Q}{\\partial \\theta}=\\int_0^1(x+u^*\\frac{\\partial F}{\\partial \\theta})dt+u^*\\frac{\\partial F}{\\partial \\dot{u}}|_{t=0}+\\frac{\\partial (F_0)^{-1}}{\\partial u(0)}\\frac{\\partial F_0}{\\partial \\theta}$$\n", "We substitue the $\\theta=[a,b]$ and $u^*$ we get\n", "$$\\frac{\\partial Q}{\\partial a}=\\frac{1}{b}(e^{b}-1)$$\n", "and\n", "$$\\frac{\\partial Q}{\\partial b}=\\frac{a}{b}e^{b}-\\frac{a}{b^2}(e^{b}-1)$$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUMAAADuCAYAAACjxmWDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXuUXFd9Lvjtvc85Vf1uyVLrYcmSbVlP28huyxIXh+ubQC4QchMDYSWBGGwYmJnAdVbITMisJLOAlUAykODFzGVgcoNZ5A5JLmtIsiCQDCFeLDzXNn5itVqvllpqPbtb6ldVdT3O2Xv+2Gfvs8+pU9Wnqk63uuXzraWlrtep91ff7/X9iBACGTJkyPB6B73RDyBDhgwZVgMyMsyQIUMGZGSYIUOGDAAyMsyQIUMGABkZZsiQIQOAjAwzZMiQAUBGhhkyZMgAICPDDBkyZACQkWGGDBkyAACsJS7PxlMyZMiQFKTTAwzTHjEvvETXPY3KPwkh3tbpfSosRYYZMmTIsGKYh4cnu3Ymuu4vLJ7YkOZ9Z2SYIUOGVQNCCKjVscBsCxkZZsiQYfWAAMS+MaWMjAwzZMiwekCQKcMMGTJkIJSAdWXKMEOGDK93EIDYmTLMkCHD6x03MEzOmq4zZMiwakAAEEYS/VvyWIQMEkK+RQg5TggZJYS8sdn1M2WYIUOG1QMC0ARElxBPAvi+EOI9hBAHQHezK2dkmCFDhlUEAkI7J0NCSD+ANwP4IAAIIaoAqs1uk5FhhgwZVg0IAZjDkl59AyHkBeP0V4UQX/X/vgPAFICvEULeAOBFAE8IIYqNDpaRYYYMGVYPCFpRhtNCiAcaXGYBuB/Ax4UQzxFCngTwSQB/0OhgWQHlJgTnHLVaDZxzZKtgM6wtEFCW7N8SuADgghDiOf/0tyDJsSEyZXgTQQgB13VRq9VQqVQAAJRSMMZgWRYYY2CMgRACQm5M+0KGDM1ACBJVipeCEOIKIWSCELJHCHECwM8BONbsNhkZ3gQQQsDzPLiuCyGEHHanFJTS0GUKhBBNjpZl6etmyLAaQNL7LH4cwH/xK8lnADzW7MoZGa5xeJ6HUqkEy7I0CXLOtfKLU4FKQVar1dD1LMvSJJkRZIYbAkLAUjJqEEK8AqBRTrEOGRmuUShCKxaLGBkZwfDwcOLQVxGkIjuVV4wSZKMQO0OG5QJprYCSKjIyXGOIhsQqFO6EpEx1GCXIWq2GWq2mr0sp1QpSkWVGkBnSRIphckvIyHANwawSR/OCUaRFkIwFPV9CCAghUK1WUa0G/asmQaoQOyPIDG0hU4YZmkGFxK7r6hDXVHNxZLgcZNQo/2gSpOd5mJycxLZt28AYg23bmrQzgsywNBK1zSwLMjJcxVAhsQpT48gojgxXknSij4lzjqmpKWzduhWe56FSqYRUphliZwSZIYosZ5ihDtGQuBFpRMnQ8zyMjY1hamoKvb296O/vR39/P3p6ela0Ohy9LyEEOOeoVCq6BxKAVo9ZD2QGAL6FV+JxvFSRkeEqgxACtVoNnueFChqNoMhQCIHJyUmcPn0a27Ztw3333YdisYj5+XlMTEygWCyCUoq+vj709/ejr68P3d3dK0Y8jUJszjnK5bI+nTWJv96RjlFDO8jIcJXAzAsC8eQRB0IIPM/Diy++iFwuhwceeACO46BarWJgYAADAwP6uq7rYmFhAfPz85iamsLi4iJs29bk2N/fj1wu1xHxtDL+14ggsybx1zcyMnydQqmjWq2mK8BJycjzPJw5cwblchl333031q1bp48ZB8uysG7dOn09AKhWq5ifn8f8/DwuX76MSqWCXC6nw+v+/n7Ytt3Sc+q0ip01ib9+IXOGWWvN6w5xrTJJEA2Ju7u7QwTXChzHwYYNG7BhwwZ97HK5jIWFBczMzODcuXNwXRfd3d1aQfb19cGyVu6j06hJvFaraYKcn5+HZVkYHBzU4XXWA7k2kVWTX0dQSufkyZPYsWOHHqVLgmKxiOPHj8NxHDzwwAPI5XK4ePFiao+NEIKuri50dXVhaGhIP95SqaTD67GxMQgh0NPTo9Vjb2/viimzuB7I+fl55HI5dHeHzYyzJvE1BpLlDF8XiE6PzMzMYMeOHYm+nCoknp6ext69e9tWgu2AEIKenh709PRgy5YtAKSqLRQKWFhYwMWLF1EoFEAIQXd3NyqVCgqFAnp6elaMeMzii3le1iS+tkCyavLNj0bTI5zzpreLhsSHDx9eFbkxSqlWhbfeeisASdjXr1/H3NwcxsfHtYGEKs709/cjn88vC/HETdwkaRJXyHogVw8yZXiTolmVmBDSlAzjQuLVDMYYBgYG0N3djbvvvhuAzOvNz89jYWEBV69exeLiYqhA09fXl8rzSjp+2KzFp1KpoFwuh8Jw1QOZEeRKgWQFlJsNcR6D0S9So7niGxkSd4ro87FtG7fccgtuueUWfV6lUsH8/Dzm5uYwMTGBWq2Grq6ukIJstUDTySx2kh5IBTO8znoglwHZBMrNhaRV4miYvFpD4rSRy+WwceNGbNy4EYB83ouLi5ifn8e1a9dw9uxZeJ5XV6Ax84FRdGpMEUXSHkil+s0qdkaQnSBThjcFWm2cNsNkFRLbtr0mQuI0oQov3d3d2Lx5MwD5g6Iq2JcvX0ahUIAQQrf2REcM0ybDRo8zeh8LCwu4cuUK8vl86HpZk3h7kLb/GRmuWSQxVIgDpRSu6+LUqVNrMiReTlBK0dvbi97eXmzduhWATB8UCoXYEcNSqYS+vr4VIUUTnHOtCIHGRrnRJvGsxacxMmW4RpHUUCEK1dx89OhR7Nix46YNidOEKtDEjRiOjY3h0qVLOH/+fOojhs2gWnoUljLKVQQphKibwc4IElmf4VpE1FChFSIslUoYHR1FqVTC7t27dWiYoXWoEUOlIPv7+2NHDPP5fKhA0+qIYSNwzhOZaQD1RrkAQu09QNYDCWTKcM2g3ZAYqK8ST01NNS0KtPq4VsuX5kY8DvP5r+SIoed5bb2HrTiJK9X4eiHITBmucpitFseOHcM999zT0gdycnISp06dwq233qpD4mvXrqWy5F2FXerxTE1NYXx8HD09PRgYGEBfX9+yNTtHcaOW1jf7MVjOEcMkyjApmrX4eJ73umgSz8xdVzmiIXGxWGw5JI6rEi/VdJ0UigzL5TJGR0dBCMFdd92FcrlcFyqazc5phYqrAa0q41ZGDE0PyOiIobmWdTnQjCDPnz+PWq2Gbdu2AbhZmsQJSErRUqvIyLAJ4lplGjVKR2GGxHv27MH69evrrpNkHC8pxsfHcfXqVezevRu33HILarUaenp6dLOzIstoL5/phr2SZgtpI400QaMRQ+UBGTdiWKlU0NXVlcZTSAxFkEIIHTrHNYkTQvD1r38dv/qrv6oV8apHZuG1utCJxyAQHxLHIWrZ3w5mZ2dRKBSwbt06HD58WH8x4u5LhYqbNm0CIFWNcsNWSsh0w+7v70dXV9eaUBfLpdAYYxgcHMTg4KA+zxwxnJqaAucck5OTqY8YLgXP8+A4DoDGCvK73/0uHnnkkWV/LOkhqyavGrTrMQg0D4nj0IkyrNVqOHnyJEqlEnp7e3H77be3nMhXxNfX16eVkOu6uhI7OTmJcrncsdnrSiDa4rKcMEcMOeeaANMeMVwKSxVvCCEoFAro6+tL9X6XFQRApgxvLNq13QeShcRxoJTC87yWH+fly5dx9uxZ3H777di/fz9eeuml1AoXlmVh/fr1+jkIIfQssVmJbTQqtxoLKMsJVUBZjhHDpZCkkq1+LNcS0lKGhJBxAAsAPACuEOKBZtd/3ZNhEkOFZkgaEsdBTaAkRaFQwOjoKHp6evDggw9qhRYXbqdFDoQQ5PN55PP5UCVWhdeXL1/GwsKCLjR0dXXB87wVJ6cbTYZRpDFiaOJH6+X3+M3XX9DnJSFDNSGzVkBAQEiqyvDfCSGmk1zxdU2GKxkSxyFpNdlUnvv27Qvlr1o5TloghMSOyikVVCwW8ZOf/AS2bWNgYEArIZXfWg6sNjKMQ6sjhup1e2X/z8YebykyvFEqvSMQgGTmriuHTkPiSqWCV155BXv37k0cEschSWV6amoKp06dwtatWxsqzzQKMZ2CMYZ169Yhn89jcXER99xzT6xVl2p0Vnm2td503mmfYbMRw9H73g4AoBaBs97Gxn/6K0xNTekCTdKG77VQADPRQpi8gRDygnH6q0KIrxqnBYB/JoQIAF+JXFaH1xUZphUSU0r1Ss5O0KyAUi6Xcfz4cQghcP/994dcUaJoRIY3eiolLo+mwsSrV6/i9OnTOkw0l92385jXKhnG4af/5t8BAPJDMg1SvS5/tAcGBjA/P49Lly6hUqmgUqng4sWLWLduXWxha7l7IJcFsus66bWnl8gDvkkIcYkQMgTg/yWEHBdC/KjRlV83ZJhWSDw8PIzXXnstlccUF94KIXD+/HlcuHABu3fv1kSy1HFMMjT70FYT4hqdzTBR9fEpowX1L0kK4mYhw5G3/BwAINfvoDJf1UQIoG7E8IUXXkBvb2/siGE+n0e1WkVPT09qj22lkFYBRQhxyf9/khDybQAPAnj9kqGaHjl16hTuvPPOlkPis2fPYmpqKlQlZoylkqOLKsO5uTmMjo5i/fr1OHLkSOIQcjUSX1KYYeL27dsBhHc5X7x4EZVKpS68jmtTWctkqEgQCIhQoXtrDvf+6OnQ9dVz3bRpky7QmMp7ZGQEn/zkJzE5OYnHHnsMDz30ED70oQ+19dhmZ2fx4Q9/GEePHgUhBH/5l3+JN77xjW0dKxFSeD0JIT0AqBBiwf/75wF8utltbloyjBoqTE5OYteuXYlv36xK3E5LTBxUzlCRdaFQwN13391yK8RaJsM4xBktqDYVc47YnJ65Uc8/DTI89csyN+j0OqgWAhLMD+Zg5ZO7e0eV9ze+8Q380R/9ET72sY/h7NmzbT++J554Am9729vwrW99C9VqFaVSqe1jLQVCUhvH2wTg2/7rYwH4v4UQ3292g5uSDNv1GASCkNiyLAwPD8fm6tIcoysUCnj++eexc+dO7Nu3ry11s5rIcDkeR6M2FRVenz9/HqVSCS+99FJdeL3carETMjz//l9CpVBFrlfmnhUREkqQH8zBLcsQOaoKk6JQKGBgYADDw8MYHh5u6xjz8/P40Y9+hKeeegqA/KFazq4AIJ0wWQhxBsAbWrnNTUWGUUOFVj6kjULiOKQRJiub/2q1iiNHjnT0AVtNZAisTLhqzhFv27YNP/nJT3DPPfeEfAzL5TK6urpCBJn2FEg7ucrLH/kV1EqS+HK9DiqmGhzIobJQbXTTlqB2V3eCM2fOYOPGjXjsscfw6quvYnh4GE8++eTy5SJbK6CkipuCDDtplQFab5zuJEzmnOPMmTOYmprCzp07MTk52fEv7WojwxuF6Ca+lTKnaOWzpojQ7nY0IQJAvj8HyoLjWHkLVr7x1zPJ+72wsNDxKJ7runjppZfwpS99CYcPH8YTTzyBz33uc/jMZz7T0XGbIptNbh2tGipEf8VLpRKOHz8OxljDkDgO7YbJ165dw4kTJ7BlyxYcPnwY5XIZV65cafk4UUTJcHJyEidPntRVWdX4vNzhzWrDUuYUFy5c0E3OqjAzMDCwLN6P1z/xG6gslOH0hCvjhBLk+3OoFo0QeSAHtyJ/bHf/Q3yaK8lkSRpzydu2bdObGgHgPe95Dz73uc91dMylkPIESmKsWTJstVVGERhjTIfEk5OTbTVOt0qGlUoFJ06cgOu6uO+++7TlU1q5x6ifIaUUBw8ehBBCNz2fP39ezxQrclzLll3tIok5xeLiYsj7sVNziuuf+A0AgNOTQ7VYAQDUSlU4vXnUShV9vVxfXl++FJI0XBcKhY7nkjdv3ozt27fjxIkT2LNnD/7lX/4F+/fv7+iYTUGQKcOkaDckViR47do1HRIfOXKkLTJQx0ryWCcmJjAxMYG77rqrzlMuqTdiEkxOTuLEiRO6N7FarUIIUdf0XCwWMTc3F7LsMtVjUnV8M6Edc4q+vr4lPzvzv/9huIsVsJwDdzFMeqZnH6E0RIRWzoKVs1Ceb0yMSclQGb92gi996Ut43/veh2q1ijvuuANf+9rXOj5mY2Tmrkui0+kRAHj11VfhOE5LIXEckii6+fl5jI6OYnBwEIcPH27YF9epMlxYWMDly5fR39/f8H7M+1OzsUoVKW8+s+jQ3d2tyTHNkbm1gjhzCtNk4dKlS9oFu1wu4/LlyxgYGAh5P87//odh5R0IbjTDU+KTngyJKQufBiRRelX5Q98oRAaSkWGxWEzFsebgwYN44YUXlr5iGsgsvJqjk+kRFRLPz89jz549qfxSNiNDtQd5fn4e+/fvb5qz6SRMVuYN165dw8aNG7Fhw4YQESYtqsQVHRYXFzE3N6dH5gDofNpShq83ayEnzmShVqvhhRdeQLVaxdjYmJzJ/sHXAQBW3gmFwFZXDl4lTHrhEDkHQokmwqWQVBmuKS9DANKpIQuT69BplXhqagonT57E1q1bMTQ0lNoHgzGmm7nNx3r16lWMjY1hx44d2Lt375KPtd0w+fr16zh+/Di2bt2KBx98EOPj46mRkNnTZ47MKfU4NjaGUqmkc2qKIKNE/HqA2jmyY8cOVP/8E/AWy3Uhsd2dqyNFQqk+T6rFXEgdOr15bP4//6bpfd+8ZJjZ/ofQaUgcVyUeHR1NZWoEqFd0qlHbcRwcOnQocdW21ZaYarWKkydPolKphAoxy23hpRxp1q1bByDIqc3NzemWFc45ent7kc/nQ+/bzQzVcF39808AAFgueN+tLlk1NklPqkP5I2p3y8vdclgtupXXuTIkyPoMFdTe2E5C4snJSezZs0eHfkDyokcSKDLknGN8fBxXrlzp2M6rGYQQuHLlCs6cOYM77rgDmzdvrhvDWsnw1MypmS0rhUIBU1NTIT/DlWjtuVGhOf2LP8RBAMInQW9RLmOyunJaHTq9MjetSFGRpLtY0USoCihJiRBInjNcc2QIklWTFdSXvJ2Q+NSpU9iyZUtslThNMmSMoVAo4Nlnn8XmzZvbrkongVKduVwu5G5tYjU0XauqNGMM5XIZBw4cQLVaxdzcXMjPUFVkBwYGUmvtuSEq9KlPgzoOvLIkOW+xDNaV14QIAFZPF7zFsqEO5XNVRBmowyDl4vQ4OP8bn8D5558PTc9EzSluVmVICLJqsolWCgtmSNzM9y8tMqxWqxgfH0exWMShQ4fQ3d3d8THjwDnHuXPncPny5SVV52ogwzg4jtNya08788QrSYb0r/8EvFwBjM8ny0csxijVRAgAdq9MZ7g+Kdo98jMq1aEkQmpROJZUmKpHtJk5RZLdJmuRDP1doTfknlclGSaB53l6V3A0JI5Dp04zQghcvHgR586dw5YtW5DP55eNCJWV1y233KLXfzbDaiXDKBq19iwsLGBubi7U2qMIMklrz0qQIf3rP5H35XkgtgXhV4ZZPqfVIQCpDtVlXZL0vEoVbqkCqzsHzw+NtTrsCa4DAOu/8A0Azc0p5ubmcP36dUxNTem2qjhzCs/zVuUmwyWRVZOTY6mQOA6WZaFSSdbdH8XCwgKOHTume/kWFxc7skRqBNd1cfr0aczNzbVk5bXSO1CaoVVStm27ruG5UWuPIshoa89yk6H1d09C+KQiPA+iUgXN58H9he1KGXrlCrxKNZQzVKfrnnePrxbLyU0ZTHOKSqWC9evX6xWlqk+0Uqkgl8vh29/+NizLwtzcXN3OnFawc+dO/YNkWdbK9Btm1eQAjT7YSUPiOLQTJruui7GxMczOzmLfvn3o7+8HkK6Fl4JqA9q+fTv27NnT0pd7tSnDToipUWuPUo9xrT3LMUsMAPb3vgJRKUP4nxteLoPm8xAxYZxXroDlc3X2UyYReuVqqKKsiJBaDNTqQt+nm67oCN+fnzOM6xMtFovYtm0bZmZm8M53vhOLi4v48Y9/rLsPWsW//uu/am/JZUfmWtMcrYbEcWg1TFZONtu3b8fu3btDX7Y0yZBzjldffRWc87YnY1YbGaYNxhgGBwe1wjHH5a5du4a5uTkUi0WMjo5qgmx3l4qC/b2vAJ4HYtkQngeak++LMBqn49QhIENgs8naXazA7q5vVFcFlKSN1iYaFVBUKuLxxx/HU089hR//+Meo1WprK1zOCijxaCckjoNlWYnIcHFxUZu7NloBmoafocpBlkol3HXXXbpFpR3EkeFyqNfVgui4XLlcxokTJ3Drrbdibm4O586dQ7FYbKu1x/7h14FKGbBswPPAK2XQXB68IkmP+G00olLVSlERIq/K8Nn8UrF8PuTC4lVqIaJshwiBpavJi4uLOqfdCRESQvDzP//zIITgox/9KD7ykY+0fawW7nT57yMGq5IMCSE6JKaUthwSx2EpcjCrt0upz06LMcViESMjI+jr60Nvb2+ipU/NEEeGCwsL4Jx3rJDWAlTzs8qnKahdKklbe+wffh2wLMCzJSHm8lCXmoQoKlWQfA7mzzLN5wFKNTGCULB8HlyrwzKsnq7QdIXVldM7grs++aWWnvNSZLiwsJDKXPIzzzyDrVu3YnJyEm9961uxd+9evPnNb+74uA1BSJYzNHH16lVtGdROSBwHxpge64tiZmYGx48fx8aNGxOpz3ZVF+dcN4WrZfDPPfdcx3s0TDJURZjZ2Vk4joNSqYRcLtdwdO5mgBAi9vWL26US19pzpHwaYJYkwkoFaLKNj+by4JEfF5rPg1er+m8AmgQBgHXlQo3Eehql1p4qBJYmw7RMGtQc9tDQEB555BE8//zzy0uGQKYMTajtcGk2MseFtmq8rVwu4957701sZd5Ojk4R7qZNm0Ju2mnYeKnHc+3aNRw/fhzbt2/HnXfeqad4om7PnHOtouKqs2sNSavJ0dYe6yd/B1KuSCKs+ooul5OEqJDLh1QirwaXkXwOwm+roX7OkJcrmggJJWARgwbWlQsRJdC6KgSW3r2Shst1sVgE5xx9fX0oFov453/+Z/zhH/5hR8dMhKyAEsBxnDojhE5hVpOFELh06RLGx8djx9uWQivXrdVqOHnyJEqlEt7whjfU9Sam0RbjeR4mJycxPz+vizDmfHDUjkpVZ5XxgmlmqtRju7ZdN6KQ005rjfWTv4NgNgjz0x1OPkyIgCRFnwjhh8jU8UmvWoEoVyQh+qqQ+8TI/Aoyj/YbGtMprCsPYnX2GW/2nNMIk69evYpHHnkEgIw4fv3Xfx1ve9vbOjrmksjC5OWHZVlwXReFQgGjo6Po6elpON6WFlSf3M6dO7F///7YD2+nhY6rV6/i5MmT6O3txf3335/Y6DZanS2Xy5ibm9PTDgBC6rGV9pWVVpmtkCF7RXoECmaDVssQdg6kFtN/WqkADQouvFqRoXHkfKUORbUKrnoRfaJUREgoBevKg/s/9vYTn0/0uFtFGmHyHXfcgVdffTWlR9QCaFZNXlZwzrG4uIijR49i3759GBgYWLb7KpfLOHbsGCzLWtLFpt0wuVKpYHR0FIQQ7NmzBzMzM22TkLkrRE07KNuuubk5TE5O6k1zq9H0NXGYfOxpCMsG8RWgsI3coBCAnQNqFfm/EEDVCGfNcJkSXSgR1XADtjodDfWUOoyGyMuFtTmKB2R+hhGkrSxUew6lFIcPH1425SKEwPnz53HhwgXs2bMnUaNqq2GyEAKXL1/G2bNn9SqBmZmZ1MPTONsuczJEvZ6rYWXAUmQoTj0Lwj0Q7qdJbAfUyP0JO6cJEnYuCJfVj1i1GoTLhoqk+TyEEdKp04rweLUK6jhaHepcImMybVMOwuZWn+9S7/eaJcPM6Xp5oBYkEUJw//3346WXXlo2IlQje4ODgzhy5Ehi1dRKmLy4uIhjx44hn8+HQvyVCEvjJkPUIiU1V1ypVGDbNjzPw9zcXKI9IWmgERnWzr4Cyy1rEuSWA1rzewL93B+tVkCqZQgnHxCimT+sVuvDZVu21YhquAFb6IpyfTWa5oOZYe5XkdnH/7St55t0M150585agAAgMmWYHjjnOH/+PC5duoS77rqr4z6+RlCrSsfGxnD9+nXs378/1OeWBEnCZLVYSinOaLvRjZpNjlukNDU1hYmJCb0nhFKKgYGBkCtN2ogjw9rZV0C5B05tMO4Bov71odUKhC2JjlTLELYDUjPCWMdXuma4rEJpAMQnSUWCRE2pVCu6mAJKQPM5PbnCjXaaF198MdQfOTAwkMi15+b1MgQy15oIOlE6s7OzGB0dxYYNGxI5vrQLxhimp6dx6tQpbN26te3weykiKxQKOHbsGAYGBho+n7hWnxvRKqNyj93d3di3bx+AYOHU3NwcLly4oBufFUH29PR0rB5NMixPjIJwD5avBiE4POaAuWVACHArB+pWwK0ciBAgtaokxChZmurQDJeBECGKahUkF6hCUY202kTUo6ogi0f/AIcQVtdXrlwJufaof9H3PAkZptFac8OQIhkSQhiAFwBcFEK8s9l1VyUZtoNarYZTp06hWCzinnvuia2kKeLp9MtXrVZRKpVw7ty5kP1+O2gUJisX7atXr2L//v1NCz6raTY5+jgaGQmoqZBCoQDLskLqsVVHbEWGiggBwLMcMD8kJoKDMwfUlUTFrRxYrSzDZiAIj4GwOoyGyzE9iNGF58RRFeWKJkJCKEg+D+HWt9LEqWvlYzg5Oakr+8q1p7+/P3GYnEbT9YqDEIh0q8lPABgFsGTItmrJMOkX3Cwo3H777di3b19DVaR6DdslQ/O+crkcDhw40BERAvFkOD8/j5GREQwNDYUatBthNZEh0FyVxnkammNzatl9b29vSD02O2auuoBNOQ4PNizugUC+Ftw3S2W1MggEhOWAuFVJjpYD6vpqzr8ecataKdaFy+b9UyKLKYbqI44TUockn9fvW9TcwXvv/9T09Yn6GJp9oWfOnEGhUNDTTI2W3K/dMBmpVZMJIdsA/AKAPwLw20tdf9WSYRIUi0UcO3YM3d3diXoGFRm201tYKpVw7NgxdHV14cEHH8TRo0dTISCTyDzPw9jYGGZmZhqq26WOsRYRHZvjnGv1aJoumOpRvYcLl87Coxao54H4IbGQIJILAAAgAElEQVTlVUD8sJfVyvCsnCykuFVJiKqIYjmgvvJTlyloQnTCFWTkcoBWjpHwGQDJhUfv1BwzXFfPIbeKaF/o9evXMTk5iZ6eHly/fh3j4+PwPE//gBQKBRQKhZbz13HwPA8PPPAAbr31VnznO99p+fbE/xUTrXxAk4uVDYQQ02Dxq0II0wftiwD+ZwCJfhXWJBmqncHT09N6xjcJ2vE0NA0c9u3bp1tN0lojoJThzMwMRkdH9frPtexn2Ckopejr60NfX5/ec60su2ZmZnDu3DnsvHUzPGLBphao8OBRC5ZXBRUeOLXAvCoghCZCjzlgAKgKj92AwLhfHdZkaVwmbAf6nahVJBHaTkCIiggJAcnlIGpKHVZj55ibqcKk8DwPuVwOQ0NDoSX3hUIB8/Pz+OIXv4gXXngBjz76KH7mZ34GH//4x/WMcat48sknsW/fPszPz7d1e5MEfWIk/tkNPrCklWrytBDigdijEPJOAJNCiBcJIQ8nOdiNKdskQCMymJ6exnPPPQfbtnH48OGWXHxbJbC5uTk899xz8DwPR44c0UQIpGuRNTExgdOnT+PgwYPYuXNny8WPm40M45DL5bBx40b09Q9i87Y7JBHyCjwif8+JEPCor/iNvz3mSCL0quDU1qGzuh63c6C1CridCylDIJI/VM3YtnEd25Hhci7oryS2A2I72v9Qn5/L62pzp4groKiq9LZt2/DlL38Z27dvxze/+U089NBDbVfwL1y4gO9+97v48Ic/3NbtCSGUEPJeQsh+QkheSPCmKlGtCk3yrzneBOA/EELGAfw1gJ8lhPxVsxusGWVYqVRw/PhxcM7bLlokJUPXdXHq1CksLCw0DFfTIMOpqSmcP38eGzZswN13393RBMnNToYAcGFyHhQWbFThwQIlMj/oUge2Hxq7VIbJgCRCpQqJEKBeEO7KnsMKhOWAA6BGKGyqQ916A4TDZdsBlAtStQI4Ofk/EJwPOcusnLLdX/p4Kq9DkmpytVrFtm3bsH379rbv57d+67fwp3/6p1hYWGj3EDkA/x7AwwAWCSFXAIwBOAvgMoAZIURkFjKdAooQ4vcA/B4A+Mrwd4QQ7292m1VPhqrHbmJiQk9ctIskZKgcrm+77Tbs3bu3aTGmXTKsVqs4fvw4PM/DbbfdBsdxOrbKN8lQjQMuLi7q/rXltMdfbpy9sghKOGzCQcHhwYItKrpQIknQloQIoZWgziGqKjLzG629CogQIdLj/mgerVXqwmWtDtX4XpQUo4jJJaYJz/OaVtzT+GH8zne+g6GhIQwPD+Ppp59u9zAVAE8C2AVgN4BhAG8BUIAkw1cA/EX0RnFrFVYCq5YMCSF6S5yy9Oq0Z7AZGapZXwANHa5NtGPwKoTA1atXMTY2hjvvvBObN2/GhQsXOlaYigzNaveuXbvQ29urCxGnTp0KzRcPDg6mtrfYRNrLmQIirMETDJRwEHC4xIYtqrpQQiDgskAh6rwh/DYblQcUXDZie9U60lPhsvmK6EqzGS47+frcIfErzNFcImMgjKH29o+m9pokUYbyIbX/PjzzzDP4h3/4B/zjP/6jtoB7//vfj7/6q6aRZghCCA7gpwB+SgjpAbDoX7QDwNsBbPIfJwmFzin/YAshngbw9FLXW7VkeO7cOVy6dAkHDhxIrUUgjgyFELhw4QLOnz/fkvJsNUxWo4GMsZB5A6W0oelsUihifvnll+E4jm7HqVarde40pVIpZG7KGNPKcWBgYNXsyjhxyQUlHA7lcAUDBQclHB4YLPgKkVggRMDivoIzFKLKETJuEKJfRWZeVRdUFJYKlwE/hxj9oiplaPYQ2k6Q04rpLewUS5FhGsrws5/9LD772c8CAJ5++ml8/vOfb4kIFQghbwTwPwIoQ2YbxgD8vRDiPxmPN0yEmTIMY+vWrbj11ltTVRlRMlTTHX19fTh8+HBLDtBJw2Rz3/Lu3bvrRgM7HaVT3owLCwu47777Qu0pURBC0NPTg56eHl1drNVqmJub0z1+ZovG4ODgihu/vnYBmgQ9weAKDofU4EESIoGQ+UJUdZjsESsgRF8hEiHAeBUedTQhmsUTTYhetWG4DASEKGwHJEp4SgVGz1c/bv75aapCYGkyVOtCbzQIIfsA/EfIkPgnkErw3wL494SQzwoh/il6m2w2OQaO43SsmKJgjKFWq4FzjjNnzmBqamrJ6Y5GSBIml0oljIyMoLe3tyHZduJ0XS6XMTIyglwuh56enrbWOdq2XdfjF13LqULrpEvd24UiQgDwBINNZWjsqVyhYLCIq/OGBByWkISjqscWr8J2K3BZQHxmyEzdarii7CM2XI74HCrLr5D/YS4f9MUZTjhwnFC/YZpYigzTnj55+OGH8fDDD7dz07sBQAhhNjx/kRDyLgC/RQiZEEIcq7tVpgyXH4wxzMzM4Nlnn8WWLVsSTXc0QjMyFELoMN/sTYxDO8rQVJvKuOHZZ59t6RiNYBorqPsql8uYnZ0NWXeZoXWr43NRvHjOgkWD18CmngyJ/RwhRZAXDP72SZNasLgkRItXZejMBCyv6l8WhLmeT5Bmj6FSh0CQH4y+G8JyQDz5w0xqFWn55dUiOcJKcNpxAlX4c4919NrEIckyqFUyfdIH4DoAEEK6ALgAIIT4fwghGwD8DwA+TghhQgj/y0TASWbuuqyo1Wq4cOECisUiDh06VGe/3yoopbGrCZSV17p16xIZRbSTexwZGUE+n9dqM4m/XbswjV+VdVec+YIKrRljLT2WF89Z8AQBOIXDXJ8ECSgJq0SLSDJyjdYaiwSvPxHcD5dr8KgFIngdESrSU8qQutVQuAwglCOMqkMRVzlW50VDO9/xZmJiInYTXydIogyT7vNZZowC+DlCyL8RQvx/kcsYfHKsQ6YMw0grT2VWcDdu3KjnPjtFNP+oQu/p6emWrLySkqGpBvfu3Ruy8Vrpdpmo+YKaflCu2AsLC6hUKqHxueiX97+dycHjBI7lgREBh7lwOYXDOCgAjzMIQuBQPwyGJESpFgMiJEJIEhQyh6gmUcww2eJV3YjNfBVJ3So4CxeLVFGlLlz2ahA0aMAmXi08xRLNGfqfi5n7fhHU/8EwDSlUu1O7ijrJZrzVoAyFEP+NEHIAwCcIIXshW2muQZomvAHA8bobkSxnuCxQZqiO4+DQoUNYXFzExMREKsc2SWxubg7Hjh3Dpk2b8OCDD7akAJI0TC8uLmJkZATd3d0tF3pWAqYnX39/P65evYrbbrutbqeKIsfXru9EzuJgVIARAZdTUELBiPBJkMOmfqOyYLCpC1cwEAjYpAZXWLp4YqHmk6ANi1fhUkkwlhcUVDy/lQaA/pszG9QLSMxUh0BQXTahlGH0y6obs01zB6DOkMIsVpmK2tzjnOSHbSU246UFIcRfEEK6ATwC2Xw9CeAApGr8un8drSoESNZnmCbMnJ1phlqtVlOZJwaClpjjx49jfn6+pVWj0eM0UoZKDZ4/fz7VHdLLCUXsaiPfpk2bAMipnh+cGIB9XUgSpAIeJ3AJBSNckqKgcKgLm3r6b0KEJERST4g2qclwGZLUXOro0Nij8qNt8VpdKAwE+UMAoF6tYXUZhDRUgdxyZO4QBhFSBlCG2pF31702ccUq1Qd6/vz5kCGFIshGrU7NSHO1WP4T6W/2Uci+wh8C+CUA9wH4hBDin5vccEUeXxSrlgzbDf3m5+dx7NgxrF+/vi5nl5a5AiA/cJcvX8Zdd92FPXv2tP14G5GhqQYffPDBVacGW8Hfv9ILxxJwrIAEPU58ZSifuyI/TzDZFkOEzhUSBIToGYSo4MKWClHnDQPSc2k9mUSJsVG4DECTHeCTn/8+mypQWEEbC2nh8xVnSFGtVjE3N4fZ2VltZ9bX16cJMskPbloL5FPAfwfZSvMKgBkA3wNwBMAjhJBRIURMmJYVUDqG53k4ffo0ZmdnGzZqp0GGtVoNJ06cQLFYxPr163Hbbbd1dLxomGw2ge/bt0+bfrZ77BuNv3u5Dzmbg1LA5fLxqBAZADxBYTMPnBN4RBKdxxkYc/XfFnVBEZCjB3k9y8+/EwTN2ABCuUFVUGHcDZGgUobMqzYMl4lXk7uV/RyhqQJl36ELYeVA/HE/RYRxqjApHMfBxo0bdT+qmY8dHx9HqVTC4uKi9jIcGBio+6FcWFjo6HOTIt4B4P+IqkBCyFcAfJgQ8hKAZ4QQ0+blWZjcAaanp3HixAls27atqf1Vp2So5pZvv/127NixA2fOnGn7WAqmMlRqsKenZ1XmBlvBf/1JH2wLsJhUgkCgDF1OIATgWByMcHBO5OCBnwekhMPlFDb1QHyFSIkMmVUhBfCLKn6ITIjQ1WQFj9ogEGDcJ01/TI/6p1VorKBIURNl5DkJFh+yamVI04k6TJj52O3bt0MIgeeffz7kZcg51+qRMYaFhYWOf6TL5TLe/OY3o1KpwHVdvOc978GnPvWpVg/TBWAaAAghOcieak8I8VFCyHcB/CakcpzWI3kEWZgcRRJVowwPXNfF8PDwkqsq23WaqVarOHZM9oaqueXFxcVULLxUv6Iyo9i7d+9q+VVvGy/PDiNnAx4HAKKVoQqRHcZBFSkSCpupFhqiCyeECBASkKMHCgvSpcZstfH8j7CFGixeg0ttXw2GCypAUFRRhBgXLitC1L2HhEAYOUMdNhMasvhS6wbc4aZrNjqGsvyPehmqRvkvf/nL+Na3voUtW7bg7Nmz+JVf+RXcddddLd9PLpfDD3/4Q/T29qJWq+Ghhx7C29/+dhw5cqSVw3wPwGN+SLwYuawPwFuFECOAOZInu0lvBFYtGQKNK61qBG18fBy7du3SSfokx2sFcTuKFdoxaohDpVLB3NycVoNpTnekbZqwFP7qmT7Ydh88D/AYwKhUhpQCnEPnCWVfIWJJ0BMyLAYALqj+W5IghUWM6xHzMqvOndMsqACAyxxNiIAkRYW4HCI12nAAGb4JK6cJUxGhsB2Ap68K4xC3/8Rsgv/0pz+NQqGAt7zlLeCco1QqtXU/aj0DIFNDtVqtnc/SVwB8HsCThJDvAzgBadawHbLH8Fr0Btk4XgtQVv89PT2JrP7bhWrLyeVysffTqZ+haU2Wz+f1Nrk0oI49OTmpZ4yXc4zuP/9rL7gAbEuAUgLb/1TJEBlgHFoZuh5BzuKwmQyFHcuDTT14XCpETxBQQQNy5AE5AtCFFCBMiIy48ISsLHvEAhP+dYy/o0QYDZfjWm44tfW3RE2hAL6K9P/WS6ju/fk0Xs6mcF13yfRJsVjErl27MDw83NF9eZ6H4eFhnD59Gr/5m7+Jw4cPt3R7IUSJEPKHAH4HwPsAzEEaNhwB8FkAF2Jvl+UMm0Nti7ty5cqSI26dYKkdxQqd5B/NmeVDhw7h5Zdf7uQhh1Aul3H06FF0d3dj165dWFhYqBujGxwcTM2h5n//XjdyOfj5QUmEgRKU6lCdVkTocgpCVNhMQSFAfcVoU09eDhFSiwDAiBcqpAAybwgAEND5QwB1VWWPWDoJaIbLCnp22Wio5tTW6pB4rm65MQmTrJAiVEiy0KxYLKay/4QxhldeeQWzs7N45JFHcPToUdx9990tHcMvjnySELIfwEH/7E8JIa7G3yKrJsdChclqF/LQ0BCOHDmSugefQrFYxMjICPr7+5cMWdtxlzaJVhG6WkTfKVRP4vj4uM47VqtV9PT06C1rcQ41fX19mhxbMX/983/ogm0T2JYcnbMYgWWpPCFg+WGyUoY2E2AUssHa7zMEAEpk+Ev9fKAqnKgWG51DhAAXFJR4uqKsVSE8XWGWp105p+xXlU11CITDZaUOdSEl8vy1IWxEraiRPkWGYv/DiV63TsE5X1IZpt1nODg4iIcffhjf//73WyZDQPsVHgNQb8oQgyxMjoFqai4Wi203NUcRtzu5lR3F5nFagVKDyi5MEW0alv2VSgWLi4uYmZkJzStH0cihZnZ2FidPnkS5XEZPT48mx0YTEX/293lYliRCy5IkaFlyCo0xSYSUyhDZsWTOUOYJBWzLb6nhROcMCQlIkJIgb+hxBgrUhcmqsOIJBkY8v6ocXMeDBUKD5+9RW7svMOH6Jg6SKEPhsl94YdxXh35YTI0KtTBbbFZYFQLyO7ESC+SnpqZg2zYGBwexuLiIH/zgB/jd3/3dto7VymY8ATmFciOwqsnw5MmT6O/vb7oLuVWoXJ8iQ9WkvWHDho5cbBpBCIHz58/j4sWLyxLeX7lyBWNjY7BtGwcOHGjpdTIT7zt27AgteFcTEY7j6ND6Kz/YBMehsCwK2yagSg16QLUGOLYkQk/nCKHbamwmw2DmF05cTkCIJETOCSzKZcjMuO4vNMNk5hdO1GieyhuqywkRYJDXsVDTjdhmzyEgw2WTKIFwuBw6n4XPD5EiswNDgT1vSvyad4qlRvEA+eO4VGfFUrh8+TI+8IEPwPM8cM7x3ve+F+985/JWygEAJBvHi8WBAwdSmxhRsCwLruuCEKJ3FKfppm2iVCrh6NGjGBgYSL1SXK1W9ZqCQ4cO4cUXX+z4mHEL3svlMv7kWz1wHAbbpqCMgFLAsgi4J+BRqQ4ZlaRICOBYQYhsKkOHCV8FBiTIiU+EfvO1Jwgsv63GNQopXFAw6oVG8yzixecPI4g2YQMyFIsLl6PXN9WhHtdjdkgVKpeYlajcJymgEEI6/lG/9957U81lt4JMGa4QKKWYmZnB2bNn29pRnASmGty/f39L60yTYGpqCidPntR7VIAg3E77uXzuv3ZrErRsAosRcA5wT8CyiFaAQgC2LYnQ4wDlgTKkVIAS+CQoR+24T4iEBFMoQb7QJ0QjhwjIyjIAECp0i43qO1TKUeUPLUh3bKUWgcAAFkB9DtH/O0SKzNEqRXj1r6vHHFzOb8GsPxmSy+WaOvWkgaUKKMtp57ZSyJThCsB1XRQKBZw7dw4HDx5MxcorClWEWQ41qHKo1Wq1bmlVXC60E/wv/1n4apDBsilsi8CtCVAilSChBIxJNShzhEbBhEaUIZF/2/40ivDDY9dvpzFzhqrFhgsKRjxt2mD5M8yWP7+sYLbZBPlDIyz2CTEuXGbCrVOHHnNk7pA5mhij43qE+8lRANu2bdNzxeVyuc6pR43MDQ4OpmLFn6SAAqyOUcx2ILJqcjzSfEPVyJ7jONi9e3dqRKjUmOmUsxxq8Nq1azh+/Dh27tyJrVu31r02ae5O/r3/i8N2GBilYIyAUakGLTsIkVVYbEVaaUxl6Fiyr5AQmTPkgsCiQvcTWpRrtUghNBEqqIoyEITJpgqkEVWob0OCqrIJkxCjypAZRAhIYozmEk1SBIDZdXfAbLyKc+pRJriXL1/W1X2lHpNadplwXbdpPrBWq62apV7tIguTlwnVahUnTpzQI3tqljMNqGKMcp9eDjXoeR5OnjyJYrHYdOQwDTL8+BdK6OnNwc5ZYEyGxp4nQKiQlWNGwNR5hMCxoYnStsPKkBLZV6gUIxfEL4wAlEoi5EbuUPYZUhAOvQIgWkgBZKhshsmMBARp5g8BWVVmcOPDZaO6HJwfs6PGUIfczxUKRkG92pIq3LIsrF+/Xo9XmgWqiYkJFAoFbdk1ODiI/v7+JVVfEi/DVeJY0zay1pplgKq03nnnndi0aRMIIanaeBFCdEvOgQMH2los1QwzMzMYHR3Ftm3bmi60V4+lEzL82P9WRHdfHpbNYFlU554si/otNFIlytxgoAwBSZRBWCyP53FitNEAll/BZRSycIJwqOwJ6hdSCIggOiw2w2RzGsUV9T849flDkxjrw2UmXB0uK2cbAKFwWrXeRG2+Tnv92NxiSiKuQKXGMa9du4azZ8+Cc65D67jeT8/zmhJm2sugbgSEyMiwDu2GyY12FAPpeRoWi0UUCgX09/en0ghuFj845zh16hTm5uYS5zbbJcOPfGYGTt5Bd18ejiPzg57HYVuSFNU/LgSEIOF8oKEMPR6cLxuuhVSMlswTEgI4TPiPVbbZEJ8IVXVZhc6A35cIgCgiFKrqHJCdRTzthM1Bw+pPMKhoK0qKeo4uEiBElaFJigBkLosx5G/bDz46mkp+NpfLhUwXPM/TvZ9Xr15FpVJBd3e3JsdarbkiXS3Gru0jM2pIBUvtKAY6J0MhhB4L7Ovrw44dOzr+UpiV4Pn5eYyMjGDz5s04dOhQ4h+EVsnwsd+fgp2zYOdsdPXkwBiBW/NAKIHjF00si8KyCVyXw7apDH8ZMYok8rGZxRPVZ6jG8DxOYDFJjC4xG63hE6JPhJyCUR6qHgNyYiXaF6gIURGhPl+pv2geMSZcNhuszQkVUx261M8lUgdEhD8zaRarTDDGMDg4qHPOQgiUSiXMzc3h4sWLuHbtGhYXF7Fu3TpNkGaOcK0rQwGAZ2TYGUqlEo4dO7bknpBOyLBQKGBkZES7aL/22mup2Xi5rovz589jenoa99xzT8sf6FbI8LHfnwKzGbp68n5+UOYBc3kLlkVB/CIJpaqFRobIHpd9xhaTrTQelyGyUoYWg68GJRG6niyicIMkKZHkCMgCiDR1DT78qpDCaBAma/LjVCtHLuRtVLhsEU+31UQJMUm4DMgKs/AJPi6Jz6mF7m275d/LRIZREELQ09ODnp4ebN26FdVqFbt27UKpVMLs7CzOnTun/Qxd18WpU6c6ntSamJjAo48+iitXroBSio985CN44oknUnpGSyONAgohJA/gRwBykDz3LSHE/9rsNquaDJOoolZ2FAOSDKvVatPrxN2HUoPmuB5jLBUy5JzjxRdfxNDQUMsLpRSSkOGv/84F2Dkblm2hp68LzGagjIILwLJ98wQm84O6SOJQv1os4DhU9xQyFoTI1C+YKCL0OEB8IlTKULXWuNyfZfZJTZm/qoIKpUH1OBoWq/Ba5ROZqSCNsFhBt+AkDJepUKoxyCF61AIVHgQJf1VWigyj8DwPuVwOPT09ITfshYUFPPPMM3jqqacwPj6Oc+fO4QMf+AB++Zd/ueX7sCwLX/jCF3D//fdjYWEBw8PDeOtb34r9+/en/XRiQNKqJlcA/KwQokAIsQH8mBDyPSFEwwXjq5oMl4JSakl3FAOtK8OoGjS/AJ16GiqSLRaLOHjwoJ4ZbgdxZOi6LiilIITgfb9z0Q+Ju2DnLFCLwrIZBBc6JFZ5QlkkkWpQtc3ooomfKyQkUIYAJKFq9SeLJFItBoTocjmFokbxLBoQoee33ahCCmDkDUE18VmEhwoqwfleMJVihsMJwmVANvp6hPrhc/zXQqlC4MaSYSM/w3e84x2YmZnB/Pw83vWud6FcLrd1H1u2bNE7svv6+rBv3z49QLASSKOA4s9DF/yTtv+vqVpYk2TIOcfZs2cxNTXV0o5iIDkZmuYNBw4ciL2PTjwN1aje4OAg1q1b13Foo8hQueAoE9D3/sezsB0H3f3dsGxLVottBsti4B7384IMjFG/eCLJkVL4x5KE6HkCHgv3F5ptNUoZWky9NlINEhLkDC0GXSwBYBRFiK42a/WnlKNPfrrYYfBPo/OBsLUXECbF0OX+7aio/0xIVcg1SZq4UWQIJNuMt2vXrlTua3x8HC+//HLLXobtokWjhg2EkBeM018VQnxVnSCEMAAvAtgFuYvluWYHW9VkGPemd7KjGEhGhoVCAUePHsUtt9zS1LyhnTDZtPFSzdmvvPJKxz2CagJF/SOE4Fc+dkaqwd6uEBEyJivGsnocVI05F2BMutF4noDtKFI0Gq2NKrJShp4HUNV8LRDkBH2C5CRQjZZv8KrablwexKqKJC2/kGJRHpo+YdTzbbziz5e9hlRv3ItWl+WEiqXDZXW5ADFabIy5ZBG8t6YqBG4sGTZDoVDQqi6NY7373e/GF7/4xVT8EZOiBTKcFkI80PA4ch/zQULIIIBvE0LuFkIcbXT9VU2GJtT2u7m5ubYKDArNyDCJGjTRapgcXfhk2nh1mnskhKBUKqGrqwuUUjzy359Ed19PnRqkTJKeZTM/VJbESAmB7VBdTFGTJzI/SHQBJTBkCIonyscwyB0GRRIZTssplED9yYZsdR2VLzQLKaHGa18pKiIEpKBTUymKCAGAEa4JMS5clmFyEC7LY9W/9h61oXabD27e3vA1X21Iq7WmVqvh3e9+N973vvfhXe96VwqPLCmILo6lBSHELCHkaQBvA7B2yZAQokfRtm3bht27d3f0IWxEhgsLCxgZGWnJyitpmGzubNm7d2+dezaltG1lqMLioaEhTExMYGxsDF/4L0Po6pVhMbMZmG2BMgrqN1NbVtA6I9WgJEVCiW/fT/wWGgHHD52ZX2EGwsUTQiQ5On6oDAQEWE+IQfO1Jk2fCPV1/Qoz99WBMoFVCtJSYS0xxvY4qwuT9WWRcDkqOih4QI6GOjTD5nPnzunVCTdSDSb5jKSxM1kIgQ996EPYt28ffvu3f7ujY7V834B+7zsBIWQjgJpPhF0A3gLgT5rdZlWToRACx44dQ6lUwn333Yeurq6OjxklQ5V/nJycTKQGTSQhw0qlgpGRETiO07Dlp11lKISA53kQQmD9+vV4/JOTsHN9YD4JSuVn+WSniiWSCCmRFly2w2ShhBF5uUU1yVl+uOzY0phBhchKGVosIEdP3UYVcInQ7TaAdLSWITPRp0OFE27kCY0w2WyzUZcDiC2ihEfz6sPl0OWwfCKk9TPMxNKhWnf/IHL+bPHJkyfBGMPAwABc113xOeAkrkRpKMNnnnkG3/jGN3DPPffg4EHp1P/Hf/zHeMc73tHRcZMipWryFgBf9/OGFMDfCiG+0+wGq5oMCSHYvn17ql5xJhm2owajx2pGYmocsFEDuEKrhRizSKJu/x8+dAx2zgGzLT80tmA7tg6RNRFaFIzJiRLHJ0LBAeHnC9UInhq9Uw41kihJqHgiL5ePiRCTEMM5Qx0OG3lDVVxRUIUT5jvY6DCZIMgTGufHVeZkbegAACAASURBVJVDvYUx4bIXM8InG3zlk1Dq0FSFXV1d6OrqqludcPnyZfz0pz8Njc8NDg52bKraDHGV5CjSIMOHHnroxtmAidSqyT8FcF8rt1nVZAhIC6S0jBUASWCu62JsbAxTU1MdGbtSSlGr1erOjxqvmuOAjY6T9DmaapAQ2aISJULVS8iM9hnVU0j90TrLomDUrx5bQa7Q8fOG8nHJ/kLBEVKGquHaYgE5AmbBpD5EVr2GZt5Qn+/7FwLhMTwAukgCSFLk/nc0rOUkmoXLQP2ECgfV+UKlDqnwdGvNUMwPmFqdkMvlMDw8HBqfO3HiBCqVinamGRwcTPWHfKXI8EYjc61ZIRQKBb1Ltt0GZ4U4EpucnMSpU6dCxqtLIUnDdFQNEkLwSx8ehZ1zkO/t1gQIQIfFliWJkOr2GaIVolKHzHCiYUySq+cJ2LYqjkhlCCDUVgMY43ce9HrQQCHK21hMhHoNzTYaiwldSAmpPirtvqihErnRf0gJN6rHUk0uFS7HFVM8weocUtQEShwRxiFufK5YLOrpkGKxqE1fO13ZmpQMV7Lymz5IZtTQCGn9qnLOcebMGUxPTyOfz+POO+/s+JhmmKyMV2u1Wp3x6lJYShmaRNhIDTIWKMBQwYTLggklMhRW43dBOEx1OKzuS+UNTWWoLlcFE8sieixP5QxVflCHwywcDqteQ010Xv1onsUCIgSg84osQoxBOCzqCDE6mwxIN20tOPzfHRrJKVLiwRMWGInTneH3oxFMZxrT9FUZL3SysjUJGS4uLi6LafFKQQCpV5OTYtWTYRpQ5gdq3O3ZZxtO5LQE1Vqjqt233347tmzZ0jKBNyNDzrnOcSoi/MXHj8KK5AeZ7c/o+gUTxqihAokeuWOMgHMB2/LVoT+BYlaRuQiKI5QGxRNFfpal7OWJMnzWY3qUBkTIudlwbWyr49ClZ/W0KRUhpcgFATOIUN9WqwZFCjHN0ka43KiYQgmH6Y4NBLmqpVRhqz2G+Xwemzdv7nhlaxIyFEKsyv7HVpBeUqw13NRkaKrBu+++O/VcihAC09PTKBQKTY1Xl0Jca02cGgSAX3z8KJitcoKyYsxsBiEEbMfWeUIAUh36s8dq5li10lCfFJlRRaaMaGMGbqhBVTxRRKiUoSqYAJIMCfGVIo3vNVRKkfnfVVVIUeFzlNc81ZAdqSYrcgyHw/HhMiBzUG5kTjkaisX1GjZCpw3X7a5sXYoMl2MHzo1AFiY3QLtvrlKDjSZVOv3gKONV27YxPDzc0bGirTVxRRJFgvleGQJZtg1mM02KACQRGnlCpQ4ZI7KQImBUioU2ZFDjd5oIfWXI/QkTUxkqIgSMarEVDpMDKy+jsdrPGzIqQhXlkGI02myYNoM12mlUu40ivlD12FSekVE7tT9FrwvgunjiCSZVoq8Otw0tnW9Le/ok6cpWy7JgWVZTUlzrhCjSM2poGaueDFsF5xxjY2O4du1aw0kV1V6TZLFO3PGV8aoaYO/0w6fC5KgaVF+4X/jga7BzDizbAmWB6mNMkqHgXOcJuQgKJIrwqBWM30miRYgIBfdDWluGyJQExRNJXEFhxLZkHlGF0UEOESHVZ+YMFTEys5IcQ3wWNQmt3snG7DNsFC5r1Wg42gQjfNLIoZFfXhIiBJZ/FK/RytZxfwvfSy+9FCLQgYEBOI6TKIxeC8iUYQpYSg0qtEuG6vhbtmzBoUOHsLi4mJqfoed5dWoQCBMh80u2ls4VMniu51eSWbhSbIzcqfPNNhpFlEo5qn7DaFuNbckwmvgmDZyrgkk9IdpWkDdUkLuRw+Mfphp0udlrKP83VZ7LKSw/hHWhplDqw2VFeHHhchQmKapVAa3gRswl5/N53bKzZcsWuK6Lubk5zM7OYmJiAteuXcPXvvY1AMDY2BjuuOOOtn6kH3/8cXznO9/B0NAQjh5tOLm2fBDmD93KYtWTYZI3VKnB69evJ5pbbtXGy8w9msfvxLVGQZHf5OQkHMfBunXrYNs2fuGDrwGArhRTXwWqxx/MGMuCiXSgked7/t8qHxgUU6gmPcsOqsiBSqwvnni+QlQpTcYU4ZFQaGwbylBXjY0wmerzha5Uuzy+zSau+VqpQ1V1lgukpLehObOs4AkC+OFy2OCBhXYuK+zYlNw16EZ7GQLSc/CWW27Ro53VahXz8/P4sz/7M3ziE59ALpfD3/zN37R8Hx/84AfxsY99DI8++miqjz0pWnStSRWrngyXgnKx2bx5c+KF8K2QoXKw2bhxY53a7NTcVYXFGzZsAGMMMzMzGB8fx6f+k3KZkS0XqmosFPn5uUIhBJg/b2zOHstqctBTaDZZC45Q8USauIqQMjSLJ1L1CR0yUyqJUAgRrBCNhMgqpDbD42hFuVmbDTNsvBQxcmNcz4SrmrP906Y6BIJwWZElF1Q3bDNfcd6+ubUxz9XkZajgOA4OHDiAvXv34m//9m/bvo83v/nNGB8fb/v2aSALk1sE5xynT5/GzMxMyy42ScjQdLdu5mfYjrlrtIGaMYaNGzdi48aNeMejr8LOBURILQpmSfLjguvT3PN0nhCAriAzo4IsW2YUOQaTJ/KxB+N2KjQmFKHiiQ6ZiSquED2XrPafmDlDLoxKsfGdDSrJRn7QuFztUzYVXxRS6QVhciiXqJxsSExOsUExhXXQwLEayRBY+/tPFG7UJOCqJ8NmnoatqEETS5FhqVTCa6+9ph20G33w2wmTG7XMvOPRVwHIKjH1W2bUaWb7OU4/JFYFE5MAlQqkRkhs9hlKJUclqdk+Ifr9hypEBhAqngiT3CyiyU4Sov9a+v9HX06z5QbwewsRvJ8eF6HLFbifQzQJz1R6pjpUl8epQ/nYAnXocaZ7CynhcP3Cy84NRI9UKlfwpYhutZLhwsLCmh/FA0gqrjXtYNWToQlTDd57771tu0M3IsM449VmaJWE41pmAEmEOiR2LJ0bpMwkt4D8KGMhAlSTJ4QQXRAxiVA9VqUMdaO1r/aixRPlVqMI0CRCICiuWL6Zg+IFlU8084by8no1GNdmE/QfBnnCUH7QXwsAQDdRK5jGDXHFlDjs3dZVV8WPNrlTSuuIb7WS4c2gDAWyMHlJzM3NYWRkBFu3bm1LDZqII8NGxqtpoFHLDBAQIXOCSrFqn7GMXKEqmDCL6TyhZTFZLPEryPK5BdMmQW4waLNROUVukJ1ZPGE0IEJNbOZpPXIn/Q7NvKGIhMlBQYWECicAQu00AWkhVEDhvP49VkUXNVViqkOLxKt0fTyfJM1xL/VeqPc7So5mlV8Ro+u6N6SFJQkZrn1lKNMmNwKrngyFEDhx4gRmZ2fxhje8oeNdIUA417eU8WqnaKYGAWgiVOpPESFjTM8bqzwhgDqnamKQnTltomaOw200QfFEjeAxvxgiOAnZdpnEppquTaMGRYRAkDc0Z5RDSs/IFypCNI0bonA9otsHFSlSKkLVZ6UMlXoEAFcRm9GQbYbYZk5x95Z4UmlGjuq9LBQKcBwHruvq93QllOJKkOGv/dqv4emnn8b09DS2bduGT33qU/jQhz7U0TFbgoB2JlpprHoyJISgr6+vY4drE6qLP4nxaruI8xxUeMejrwbkZknSA5NVY2aoQi64VocAdLHEnD3WitHIFarQWRGfbTFNhNH+QtO/MKoMFbECvsITJiGGQ2f1HVWV5PBS+aBwErw+5lxyoN6iVWV5eZgQ9Y0AfRBKw7dRo3oS8odPNVvnFs/gpZfmAEA7zqiWpihMcuSc4/jx43BdFzt37vTvXt6/+nFNmndsB0nIsJMNiwDwzW9+s6Pbd4osTG4CQghuvfXWVM0mKaW4fv06Lly4sKTxajtopAYB4O3vfwWWHxIz2zbcZiw9o8xsBi64rw6DgongspVGj9n5M8lmGKwuI7paHFh1RUfwlDL0PAG1fkSbLXhBw7UqtERzhmavoSI287sqfQ/VqaDhWqrOoP9QITqVElSEw69vaFIlEi5HJ1PMncsKe/bsASCdhmZnZ7Xdlud5GBgYwLp16+qMWsvlMl577TUMDQ3htttuC72nKpxWP4AA9GnGWKrk2EwQFIvFmyJMzqrJK4RqtYqJiQnUajUcPnw4Fdt2RXpxnoPqw/v2978CALAcC8y2JcGpkNicL7aZPt9srFZEaI7cKSJU16VW0Eoj7x/wPB5ShuYInq4yGwYNwXMyiUyFmfVfRLVOFFAkWj+JEjjaCEM1hsNmIExyAEKkqHsNIxZfjWDOL1PCtdo4uCNga8uyQoYJnudhfn4eMzMzuHjxImq1Gvr6+uA4DiYnJ7Fv3z6sX7++7r6iRRazGLOSyvGmyRlm1eTlhzJeHRoagud5qRChacwa1zIDBERILTlJIjj3W2h80qLSqMEywmQdEvsFk9B5RiVZPYbotAnV+0nqlaEiQnVb7leSQ4WTaHjMwipQVo6DvKFaKcpChZP6irIOq30FKB+D//oJ1d4TMWtQbTX+lIr8G8F1I+qwEUwijANjDOvWrcO6desABBsZr1y5gu7ubpw4cQK9vb2hXddxSi2OHFutWLeDm6GaDGTKsCmSOEE3g+u6GB0dheu6eOCBB1AqlXD58uVUHhtjDLVaTX+Y44iQWkEekOpcoSK48JidGf5aynzBbKExQmRzs50qtHAdNiNosCakThmqEFneL/ELMETPHKumazNvGMoHRvKGZqU5OomiKsoS8XPKZr+hUn6ezg/6F/gNAMGOlXAxxRM0lEP0BJHb9towC/U8T+eT3/SmN+kURqFQwOzsLM6cOYNisYiuri5NoL29vbGk1k7F2rxdUtwMylAIErzvK4w1QYadIM54tVqtwnWbuxkngfrwXrx4ERs2bEB3d3coLBaCg/nq0yRCNWus/laVZECSJKUEANF9g4oI5SrPcIisFKFa2mQWUlSjNSCnS+KKJyYRAvFN1yGlaTZhG3lDs9KsqoEs5jOtQl2dmzT6DaMN2PL+RF24bBrASoR7D5U6NGePH7g9+ResWCzi6NGj2L59O7Zu3arPV8W8vr4+bN++HUIILC4uYmZmBhMTE1hYWNDz5cqLsFVyVPlmQBKy+nFNuhlvbVv+S2TKMGW4rouTJ0+iVCrVGa+mZbDgeR52796NqakpbcrZ19eH3/lsFUBQIAEQIkJmKEF5GQ0VTLhBjubssbwN1V8Ks5UGQECWhomrCpEBxBZPVIgc13StQ2OTGH0FqIgQCM4HgkkUM1yOttnI9yB4Lb2IapShOWkYLkehr2uEy0BQbHjwjuTfrqmpKYyNjSVaFEYIQXd3N7q7u0NWWzMzM7hy5QpOnDgBy7J0WD0wMBDbsRBHjoAkQ6Uei8WiXkDWKO94MyhDIDNqaIpWW2qU8er27duxb9++utu36lpjItpA3dPTg56eHuzcuRNCCLz9/S9rNagLJI6ZCwyUoCK5aMGEWSzoGzRyg4xRv0ostImrUoZ6fM8K9xea5gyeOYpHUKcMzdYakxgVTAUIBLk+VZwwJ1GC+/Crz6otxyichG5Dk4fL0RacuGJKq11YQgiMjY1hYWEBw8PDbeeT8/k8tmzZgi1btgCQBbvZ2VlMT09jbGwMADQ5Dg4ONm3nUf9fu3YNJ0+exN69e0M/5NGKdalUWvM5Q4GszzAVmMarBw8ebLgYp10ybNYy87b3vQQAkQKJT3JE5fmU2mMglICAhPKE6jLVSiMfK9VVXL2lLqbJWofT/umoMoxOnsjjBApKKUNNXoarDYvEu2a/ofI2VCrTrCgDYQUIqAq1UpThJmwVLsvLwrcz1aEZLpv3oSZTCBE6NfnGO5eOAGq1Gl577TX09/fj4MGDqTpFO46DoaEhDA0NAQi384yPj4NzrpdDrVu3LrRITI2HTk5OYnh4OLRyNlqxVr6GNwOyMLlDKPMGZbza7APdKhk2a5kBwkRoNlOr+5Knw1Mk0Tyh7hdUrtU0Evoa6lA9hugcstlorVtujOKJSXBqz4muGhtFEvVh1P/7P9XRfsOgYFJfSPEiHEQj4XK0z5BHSFIXXiLhcnRiJXDBrv8GJSHC+fl5HDt2DHfeeWfq/aZxiGvnUSatZjvP4OAgpqenYVkW7r///rqQ2Cy0nDhxAo8//jg+85nPpDo4cCMgW7qyMLkhmhFbI+PVZohbwNQIjVxmFN72vpeCYojuFQzCZLNqzP3ewqDyG5yWjjM+WVJSFx5Hp03k+b4yilSRzRBZ3ndg1ioEdNVYT5v4c8kAwEiYHAE0zBtKFRkmyCjMNhuTEKN5wkbhMjXbbnhwnej8svYoJCLxBMOlS5cwMTGBe++994at12SMYf369bp/kXOui36K2EZGRhq28/zgBz/AH/zBH+Cpp57Cfffdd0OeQ9rIlGEbWFhYwP/f3plHR1Wm6/63KyExMRMBMUISBoMhhDERwQkSr23T2DJ2O14Dh6nBiaPtwWVfoVu7W9SFB/Wi2LSK4mlBsVtRVhiSIBdFhRaFkIQhGAgQwpRKgEDIUPu7f1S+Xbt2KqkKqVRVwn7WqgWV/e29v1SqnnqH533fwsJCl41X24rWWIOAzuqzi6ZVoToyvC4SJvK5TIwoFp3r60JK42Q9Cl1fQi07bGliGRpdZPv+FKdsMoDaaCQbSdIYN9QnQ6SLrGoBHt0aW1OZjfFPI7WHThalxZFldsSNHNpD+/WaflL02kJJkrf2b97yV1WV/fv3a1KrQJobUl1dzcGDB0lNTSU2NtalnCckJITs7Gzq6urYsWMHGzdu1MaQdgZ4gwwVRUkAVgJx2L9GlwshXm/pnA5Jhp40Xm3r9VuyBn/5wE7A4BbrssbS4pM/F7qkiKwwcZTM6dxlg6jaQWjOlqG9e7UjVqi5zhaliWVodJH1gmv7vZpmlJuLGzYnf1FkMsaiP7eRLBvf2DLHoa9Gkc/t/zo+AfrkiiqktecYOSrX661DPSG2RISyrO7aa68lISEhoCbJnThxgtLSUoYOHapZqq7kPKdOnaKwsJDi4mJCQ0N5+umn+Z//+R8/79578FICpQH4vRDiR0VRIoGdiqLkCCGKmjuhQ5Ch/g0rNWDuGq9eLlpKkoCdCJ2Izyn2Z4gTOpGljOFZnLK/Mk7oIE19csS53M6x3jmLrF9n7F+otwzlN66mA9RJa5zPRUeqDq0hgKo4LEBJePJa0DSjrO9mo7cstVpiQ+2yMZboSk4TZLAE7Ruz/zOoezkNDTEuY2dWq5X9+/czYMAArcokECAz2XL+dktxv4qKCqZPn87YsWP5/PPPtTr7zgJvNWoQQpQD5Y3/P68oyl6gF9CxyRBa33jV02tKsmup5yA4W4PgTHxCFU7yGS3rayBCo5tsL4VrWUqjP1/OHjFmkV25yPbzG383FW1CXZDBTXYlrdGfa7QEVZusVGk+o6yH0V1ucj0dKbqS3iD304x1KI9JWK1WSkpKAGcJy/Hjxzl9+jTDhw930pz6Gw0NDRQUFBAREcHQoUNbtFSLioqYOXMmL7zwAuPHj9d+7qpeusNCeD9mqChKH2A4sL2ldR2CDGtra9m5cycRERFea7wq9VpBQUEeWYPgTIRGMbXR4nOXMNHXHtvXN3WRjbFCua45y9CVi2w/x0BwWlbYtYssh0DZ4UyKxkoU+acQwmFxyuHyFouzZaiH3jrUX8/5b9S4VnFkkYMaEy6SFPUZ5v+VUgfcANhJprKyEqvVSmFhIYqiEBcXx7lz5wgKCvJKXXpbIcdL9O7d223Mb/369fz5z3/mww8/ZPDgwT7aoe8haPpeaQHdFUX5Qfd8uRBiuX6BoigRwD+B/xRCnGvpYh2CDIODg7n++uu9+g0YFBSkleS56jkILVuDrp9bnNa7SpjYjzsToSaTceEiu+pZqM8it5Q8sd/T2U226IhQHpf/SgI0zk7W1yjrM8rg+FdKgSxSH+2CLOV5LdUsG61D2esQHBagY76Kw4SwE6EDwcHBhIeHU1JSQnJyMtdccw1VVVVUVlZSWlqKqqpOlqNew+cLWK1WDhw4wMCBA1uMeauqyhtvvMGmTZvYtGmTplfszGiFZXhGCHFjcwcVRemCnQj/IYT4l7uLdRgy9LYrEBQURF1dnVba5Ik1KM9z/dxBhMLg+toJK6iJpSdjhQBBwUbCc51FduUi2+8r3X20LHFzCRR752rnrLErItQ/B5wSKfbrO2eVLQa9odyPXAtNB0XZ79XUOnQlvZEJE630r3HNXam1GHHq1ClKSkqcyuqM+j5JjkeOHKGhoUEjx65du7YbOcpwz8mTJxk+fLiTyNqIS5cuMW/ePEJCQti4cWOLazsTvJFAUewf6HeBvUKI//bknA5Bht6EjA3GxMSwe/durr76ak3nFRYWhqIoTYhQsShOImiX/yq6EipL83FCR+bXou2nqX5Qlx1uxjJszkWW0GsMpfsvycwordGsO13cUJ9AcRXGMrrJ0LLMRlqCxiSO3aV2TqY0J8zWo7nQmhCCgwcPasmI5tzhoKAgpyHsUvwsmy40NDRojV6NlSGXC9kpWwhBenp6i8m/kydPkpWVxeTJk5k3b55fBlD5Bd6LGd4KPAzsURRlV+PP/iCEyG7uhA5Bht6SP+iTJImJiSQmJlJdXU1lZSX79+/nmZfsbrO0+pomQpqxCptoDR1kZowTyoSJfp39Wk2JUL/G0+SJvIY+kyxfP2PWGJz7GQrV3t3GaDXqrTtj52t9c1a5T7nWfq+mfweL7jyHJSm/VJpPpkjrUNY8A4wddEm7bl1dHQUFBURHR7e6rM6V+FmSo6wMiYqK0sixtUmYuro68vPz6dGjh1tJT35+Pr/73e9YtGgR48aNa9V9OjoEDmlVm64jxDfQuo4PHYIMoe09DWUHEHkt+WaUGq6Z/3US0CVEXIip9cf1mWMhVJcJk6brnN1jGScEnYXoQk5jMRKjgpNlCKAIB9HpEyiydZcxZghN44aKxfnngI5g7efJgfIWnbssoW/46kjEOI4Zq1GMUJSm7rKEXG/RxRv1ROjtsjqLxeLU6FVVVa0LdlFREXV1dURGRmprwsLCmr2WLA7o379/iwPHhBB8+eWXvPzyy6xatYqBAwe2+ffoiPAGGV4OOgwZXi7cCagB7rrv30DzRKhomeKgJvE/p/XNJEz0DRbszy0u3eOWssj6WmT9PZyuq4A+geKqLlnoyK2p+4yTJWiMG2rJESd3XK5xvJ6OAfH6RIyjHE8PfYmetA71A+aN1qGUoOmJsKysjLKysnYtq7NYLNrwqL59+6KqKufPn9c6JNXW1hIZGUlsbKxmOSqKwsmTJzl8+DCDBw9ucbKjqqosXryYb775htzcXK9Paewo0KsSfI1OTYbuJDOekKD+eHNZY0Crd3aVMLGf6xwrdOX+As1mke3nKi6TJ8Y2/4DW6UZPXM6xQZq08bLf377G2bpzZJShaTWJflSohFGErbcEjSV6ektQaawtNrrL9mOAcMQSZQxOVVXS09O9IrnyFBaLhejoaKKjo+nTp48TOe7bt49LlxxkPXDgwBZJuqamhkceeYRu3bqxfv36gJD9+BNt8QDbgg5Dhq1xk90JqKF5IlQskoBacItV4ZQ1tp/vuIensUKj+ws0WnOus8j2401dZKPG0Fh9ItfY7+Vs5enjhw4NoTOB6q1FPTkakyJOa1oQYWvutgvtoSRCI/TfY3cPuRRwZXV6coyPj6egoIDg4GAiIyM5dOgQNTU1REREaG617IpeXl7Oww8/zEMPPcQjjzzi998jEOAnLuw4ZOgpPLUGQZco0bnB4Fo+Y6w3BscgJ6MV6HQNvQXoIlZoMVhy9vs6W5PS2jRahnKNPoEiLU2j6FqTvtj0CRAHWblKoBihGAhUb9FJo8whnXE+3yjCdinQVp3P1VuH8gMyYXiNVlaXkpLilUokb6Kmpob8/HwSExO1Bq+9e/fWGi5UVlZy8OBB8vLy2LRpE6WlpSxYsIAZM2aYRNgIf8UMO02+XpJgQ0ODWyJULBb7Q7E/LMFBWlVJUFBj49VG8tJbefZz7QkTRxzQ4DorFq0aRSZNHLIcu5WnNLboknFAPRFKy1OW6sk1jvvp4nVGa08jEbtlqAqhJVCAxus1WpaNLrI8JnWGQm20TnUSB+2YcFimQrV3nFG1NWhrZNxHH/txlTAxCrRBr0dsah6MH3aRw4cPU1JSQlpaWsARodVqZdeuXQwYMEAjQgnZcCExMZEhQ4aQkJCAqqpMmzaNTZs28corr3hlD0ePHiUzM5OUlBRSU1N5/fWmjVqEEDzxxBMkJSUxZMgQfvzxR6/c2xuQ7x9PHt5Gh7EMW/rWbE2SxBGzM5TT6bLC+p/r41AOuYuuLtkQJ9Svc+UiN1dtYr+eTl/Ygots35+zxlCfPJHQN23QP3f1urqW3Thfx0kobXC39TBWo+jRUljPVRZZ/7M9e/YQGhrqstmpv3H06FFOnDhBWlpai5pEVVVZtGgRO3fu5Msvv/R6w4jg4GBeffVV0tLStBEGv/jFL5wy0+vXr6e4uJji4mK2b9/O3Llz2b69xbJdn6IV5XheRYchQ1dw13MQmpIguCZClz831Bs7rbE4E5WRCJ00hDoitD+3NF1j0BcGuWIGuQeDG+0KrojPk2MST45vWtXRnhBCcOHCBaxWK5WVldo8D5mZPXjwINf07t3E4vI3ZG9Em81GWlpai0mcCxcuMGfOHBISEli3bl27dKXWz1+JjIwkJSWFsrIyJzJcu3YtWVlZKIrCqFGjqKqqory8PGBeW6G2g9nnATosGbbGGtTDHRG2BD0RuoNqU/ngr9cCjtZR119/fbO1pVLkK8nAZrMRExOjSTVa/8ERzfzfGXKmdFBQEMnJyT7NyOqhKAoRERFERESQmJioxdiOHDlCcXExISEhVFRUoKqqVi3kb9TV1bFnzx66d+9OYmJii95LWVkZDz/8MDNmzGDmzJk+iQ8ePnyYn376iZEjRzbZS0JCgvY8Pj6esrKygCBDHbxu1QAAF3JJREFUU1rjAfRvHndJEolNH4/w1fZcQo4kOHv2rNvWUUaRr6ydtVqtHDp0CEVRtOMxMTFeIS0pBu4dgBYX2Jud1tXVcdtttxEcHMz58+exWq2adEVfEeJrcpSvXVJSklbv3Bx27NjBE088wRtvvEFGRoZP9lddXc2UKVN47bXXmjSCcKXKCKTkjZlN9gCeSGYCBTU1NRQUFNCtWzfS0tJa/WYz1s7W19dTWVnJ6dOnOXjwIMHBwXTt2pXY2FiioqJa9VoIITh+/DjHjh1j0KBBATdesrmyuqioKKKiopro+qToOSoqykn03F6QTSDcCamFEHz88ccsW7aMzz77jOuvv77d9qRHfX09U6ZM4aGHHmLy5MlNjsfHxztN0jt27Bg9e/b0yd48gWq6yS3j6NGjxMTYOxi3ZA0GAk6cOMHhw4cZMGCA1zKeXbp0cRo5WVtbS2VlJcePH2ffvn2EhoZq5BgZGdns62Oz2di7dy+KogTc/A+wTzncu3evW4vLlejZWC4nLcfY2FivNFoQQlBSUsK5c+fczla22Wy88MIL7Nu3j9zcXKKjo9t8f0/3OGPGDFJSUnjqqadcrhk/fjxLly7l/vvvZ/v27URHRweMZyAwLUO3+Oijj1i1ahV9+vQhIyODzMxMbrjhhoCyDm02G/v27cNms7VpELknCA0NJS4uTmsKWlNTo7WjOn/+POHh4VrjASnwra6uprCwkISEhICyBCTaUlbnqlzu3LlzWK1WCgoKqK+v17rQxMbGtrpFl81mo6CggLCwMLdNIM6fP8+sWbNITk7m888/9+kXzrZt27QGsMOGDQPgxRdf5MiRIwDMmTOHcePGkZ2dTVJSEuHh4axYscJn+3MLIbRyTF9DcVPV4SeOdg1VVTlw4AA5OTnk5eVx8OBBhg0bRkZGBnfccQfXXnut3yxG2ShAEo0/LVchBBcvXsRqtWK1Wrl48SJBQUHU1tYycODAgKt7tdls7N+/H1VVSUlJaRfyMCaoWtO/sKamhj179hAfH+/2S6S0tJSsrCweffRRpk6dGtAeTDugzb9sr37p4nd/9kzm88f/3WVnS81dW4sORYZGNDQ08MMPP2jkeO7cOW6++WYyMzO57bbbvD41zxWEEBw5coSTJ0+SmpraYgzJH5BusbSMzp492yS+5s+moTK2GhcXR3x8vM/IQ9+/UGbvo6OjtddEWvWy1njgwIFuXd1vv/2WJ598kmXLlnHbbbf54tcINLT5j9ezX7r43Qvfe7T2Tw+HmGTYHKqrq/nmm2/Iycnh66+/JiQkhNGjR5OZmcmIESO83r24rq6OwsJCwsPD6d+/f0C57IDmFkuLRhKN3oWUVpIrImhvVFRUcODAgYAoq9N3vq6srERVVYKDg6mtrWXIkCEtJpmEEHz44YesWLGCTz75hN69e/tw5wGFtpNh33Qx63nPyPCFqSYZegQhBKdPnyYvL4+8vDx27NhBr169NJc6JSWlTeQlP8j9+/d3K63wB8rLyyktLXVqe98cpJUkyVEIocXWvCXj0UPOva6oqGDw4MEB185edsO5ePEiUVFRnD17FiGEk1stdZ8NDQ0sXLiQI0eOsHLlyoDLzPsYXiHDmX/6zqO1f54WapLh5UC2g8/NzSUvL499+/YxaNAgjRx79erlkYumqqrWVj41NTXgPsgy/maz2UhJSbmsKgf9ZLmqqiqCgoI0coyOjm7Tl0hDQwOFhYVcddVVAWlNSyF1t27d6N27t/aeaGho0HSfVVVVHDp0iK+++oqSkhJuvvlmXnrppYDLzPsBbSbD6/qki+kLv/Vo7YszrjLJ0Buw2Wz89NNPWrzxzJkzjBw5kszMTEaPHk10dHQTcrxw4QKFhYX06NHD6YMSKLhw4QIFBQX06tXLY3L3BHV1dRo5nj17lpCQEM2ljoqK8vg+1dXVFBQU0KdPH7ejMf0BuT9PumXn5+czf/58IiIiqKioID09nbfeessr+5g+fTrr1q2jR48eFBQUNDm+ZcsWJkyYQN++fQGYPHkyCxcu9Mq92wivkOF/LPCMDBfNNMmwXVBTU8O2bdvIyclh69atANx+++3ccccdjBgxgg0bNhAXF0dqaqpPEjOthdQ2uhs96Q1cunRJy1SfP3+esLAwTcZz9dVXuyTHkydPcujQoYAUeYNDSO3J/rZu3cr8+fP5+9//rpW6NTQ0eK3WeOvWrURERJCVldUsGS5evJh169Z55X5ehFfIcOr/2ebR2pdnh3mVDDuMzrC9ERYWxp133smdd96JEAKr1crmzZv55JNPyMrKIj4+nilTphAeHs6gQYMCxiWy2WwcOHCA+vp6brzxxnYp/jfiqquuomfPnvTs2RMhBDU19h6DJSUlXLhwQWuwEBsbqzVZuHjxYrtrLy8HMn5ZWVnpdn9CCFasWMFHH31EdnY28fHx2jFvvu6jR4/m8OHDXrteR4K+rZyvYZKhCyiKQrdu3fjtb3/Ll19+yZIlS7jlllvIzc3ltddeo7CwkJSUFDIzM8nIyPCby3zx4kUKCgq47rrrfCpL0UNRFMLDwwkPDyc+Pl5rsCBriKuqqggPDycxMVHrLhQosNlsFBYWEhoayrBhw1qMX9bX1/Pss89SUVFBbm5uu81a8RTfffcdQ4cOpWfPnixevJjU1FS/7sebEGYLr8DEBx98oJHMrFmzmDVrFqqqkp+fT05ODk899RTl5eXcdNNNZGRkMGbMGLp27druxCTdTl+4xa2BbGKqqirHjx9n8ODBhISEOFWCyKxsbGys3yzFS5cukZ+fr8VXW0JlZSXTpk3j9ttvZ+nSpX5P+qSlpVFaWkpERATZ2dlMnDiR4uJiv+7Jm1D9ZBmaMUMvoLa2lu+++46cnBy++uorbDYbt99+O5mZmYwaNcqrHVVkFY6sJgk0txPshf+SCI2/u6qqWlZWynhkqzJZe97eqKqqYu/evR7pGw8cOMD06dN59tln+c1vfuMz6/vw4cP8+te/dhkzNKJPnz788MMPgSDxavOLc21imnhw/laP1r72eKQZMww0hIaGkpGRQUZGBkIIzp49y5YtW8jOzmbBggXExMSQmZlJZmYmQ4cOvex4o3SL4+LiSE5ODrhstqzNBpqdVmexWJyGteslKyUlJVqrMkmO3rbCZP2zu5ZqAHl5eTz33HO89957pKene3UfbcGJEye00tMdO3agqmrAlVi2BWajhk4CRVGIiYlh4sSJTJw4ESEEZWVl5OTk8Pbbb7N792769++vNZvo16+fR6Qms50pKSk+64DSGsj63dbGL4ODg+nevbtm1dTX12O1Wjl16hQHDhygS5cuGnlGRkZeNjmqqkpxcTG1tbVux4oKIVi+fDn/+te/2LBhg887ujzwwANs2bKFM2fOEB8fz/PPP099fT1gb7Tw6aefsmzZMoKDgwkLC2P16tUB98XYFvir07XpJvsYqqpSVFSk6RuPHDlCenq6Zll2797d6Y0tP8Q1NTWkpqYGpFvcnmV1tbW1mozn3LlzXHXVVRo5RkREeEQC9fX17Nmzh65du9KnT58Wz6mrq+Ppp5/m0qVLvPPOO+3aF7ETos2M3CNhuLjv9//Po7VLn4xu0U1WFOU94NfAKSHEIHfXM8nQz6irq2P79u3k5uayefNmLl26xK233kpmZibXXHMN33zzDffcc4/btvL+gJSlWK1WBg0a5JNqHNmNp7Kykurqaq6++mqNHMPCwpq8RlJI3a9fv2ZHLkhUVFQwdepU7rrrLubPn+/3REkHhFfI8N4nt3i09s3fx7gjw9FANbDSJMMOiHPnzrF161b+9re/sW3bNtLS0jRyTEtL80mCwRMEQlmdfoiU1WqlpqaGyMhIjRzPnz/Pzz//7JGQuqioiJkzZ/KnP/2JiRMn+ug36HTwChn+dt5XHq1967+6uk2gKIrSB1jnCRkGxifLhIaoqChGjBjBypUrKS4upq6ujtzcXFasWMHjjz9O3759tXijv0goUMrqXA2Rkt14du7cSW1tLT169ODChQuEhIQ027Vo48aNPP/883zwwQcMHTrUx7+FCT2EcMzp9jVMy7ADwdjc9ueff9aa22ZmZvqkuW2gl9XZbDaKioro0qULSUlJ2hAp48TBqKgounTpwptvvsn69ev55JNP3LrRJtyizW++a+KHicmPbfZo7fJnu5UCZ/Q/EkIsd9qQaRl2TlgsFgYMGMCAAQN4/PHHnZrbzpgxg7Nnz3LLLbdozW3dte5qDWS3nkAtqwO7kFqf0QaanTg4b9488vPziYyM5KWXXvKqcN1dowUhBPPmzSM7O5vw8HDef/990tLSvHb/Dg3RqoFQZ0ydoQnALksZNWoUo0aNYsGCBU7NbV9++WVCQkIYM2YMmZmZ3HjjjZfd3Fa2tYqNjWXo0KEBl8gB+yCpoqIiBgwYoJGfEXLioM1mo7KykunTp5OamsqGDRuIiYnh5ptv9spepk2bxmOPPUZWVpbL4+vXr6e4uJji4mK2b9/O3Llz2b7ds1b3VwLM2mQTbUZERARjx45l7NixWnPb3NxcVq1axVNPPUV8fLzWv3HAgAEexRtltcYNN9wQsMJeOfZ02LBhbqt9CgoKmD17Nn/961+5++67AZg0aZJX9+Ou0cLatWvJyspCURRGjRpFVVUV5eXlATOhzp8QeE9nqCjKKiAD6K4oyjHgj0KId5tbb5JhJ4WiKPTo0YMHH3yQBx98UGtum5OTw6JFi9i/fz+DBw/WyNE4xEoIwbFjxygvL/eIZPwBIQTFxcVcunTJrZAaYN26dSxatIh//OMffm1sUFZWRkJCgvY8Pj6esrIykwzBPh3P5p1ODUKIB1qz3iTDKwSKotC/f3/69+/PI488gs1m48cffyQnJ4c5c+ZgtVq15rbp6el8/PHH3HXXXR6RjD8ghdQxMTEMHjy4RdddVVWWLFnCli1byMnJ8XsNrys3MBBDD/6CvypQrkhV6YYNG0hOTiYpKYmXXnqpyfH333+fa665hmHDhjFs2DDeeecdP+yyfREUFMSIESP4wx/+QF5eHt9++y1Tpkxh8+bN3HTTTWzcuJFPP/2Ubdu2UVtb6+/tOuHChQvs3LmT+Ph4t+WMNTU1zJ49m7KyMtavX+93IgS7JXj06FHt+bFjxwJyjrU/YB8iLzx6eBtXHBnabDYeffRR1q9fT1FREatWraKoqKjJuvvuu49du3axa9cuZs6c6Yed+hayua3VaiU7O5vPPvuM9PR0PvvsMzIzM5k0aRKvv/46e/bs8WtfwjNnzrBnzx5SU1PdSmFOnDjBhAkTGDVqFMuWLfP6dMTLxfjx41m5ciVCCL7//nuio6NNF1miMZvsycPbuOLc5B07dpCUlES/fv0AuP/++1m7di0DBw708878D0VRWLNmjfb83nvv5d5770UIwaFDh8jNzeXVV1+lqKiIgQMHap14EhIS2t3NE0JQWlpKRUUFaWlpbolt165dzJkzh8WLF3PXXXe1696McNdoYdy4cWRnZ5OUlER4eDgrVqzw6f4CHf5yk684MnQVvHYla/jnP//J1q1bueGGG1iyZInTOVcaFEWhX79+zJ49m9mzZ2Oz2bTmtvPmzePkyZPcdNNNjBkzpl2a29psNvbu3UtQUBDDhw9vMQsuhODzzz/n1VdfZc2aNSQnJ3ttH55i1apVLR5XFIU333zTR7vpaDDb/vsMngSv77nnHh544AFCQ0N5++23mTp1Kps3e6aKvxIgSWn48OHMnz+f2tpavv32W3JycnjzzTdRVVVrbjty5Mg2ZaJra2vJz88nLi7O7ReSqqq8/PLL7Nixg9zcXK1nYmfAli1bePfdd/nwww/9vZV2hRBga7D55d5XHBl6ErzW6+lmzZrFM88847P9dUSEhoZqLrMQgqqqKrZs2cK6det47rnniI2N1UoGhwwZ4nF2Wgqpk5OT3RLbxYsXmTt3Ltdddx3r1q0LyAqZtmDXrl0MHz7c39vwCUzL0EcYMWIExcXFHDp0iF69erF69Wo++ugjpzV6AewXX3xBSkqKP7baISE7VU+aNIlJkyYhhODo0aPk5uby1ltvsXv3bpKTkzVy7Nu3r0uXury8nCNHjnikcTx+/DgPP/ww06ZNY/bs2Z1SprJ7925iY2MZOXIkp0+f5r333iMjI8Pf2/I+hDBjhr5CcHAwS5cu5Ze//CU2m00ryVq4cCE33ngj48eP54033uCLL74gODiY2NhY3n//fX9vu8NCURQSExOZPn0606dPR1VVCgsLycnJ4ZlnnuHYsWOkp6eTmZnJ6NGjiYmJYfPmzcTFxZGenu62ZdkPP/zAY489xmuvvcYdd9zho9/K99i1axcTJkxg+/btbNq0iQULFvD111/7e1tehzcrUFoLs2uNj2AW77tGXV0d33//Pbm5ueTk5HD06FGGDx/OzJkzufXWW5sdySmEYM2aNSxdupTVq1eTlJTk4537Dg0NDfTr14+DBw8SEhLCqVOnGDNmDHv37vX31oxos0ne9drBIvO+zzxa+9n/7e/VgVBXnM7QX5g2bRobNmxo9ri+eH/58uXMnTvXh7vzH0JCQhg9ejR//OMfCQoK4sUXX2T27Nnk5eUxduxY7r77bl555RX+/e9/09DQANizyy+88AJr1qwhNzfX60QYaKL8oqIikpKSNDnRjz/+2Hn7Lgq7ZejJw9u44txkf8Es3m8ZQUFBZGdna6207rnnHoQQlJeXk5uby7vvvstPP/1E7969OXHiBBkZGaxdu9brnb+lKD8nJ4f4+HhGjBjB+PHjm+hQ77vvPpYuXerVezeH3bt3c+jQIWpra6mvr+f5559nyZIlPrm3ryEQqF6qTW4tTDIMEJjF+zTpKagoCj179iQrK4usrCxtmNYXX3zBs88+2y6JkkAU5e/evZuHHnqIW265hZqaGhYsWMCoUaP8tp92hcBvFU4mGQYIzOJ997BYLAwaNIhBg9w2Lb5sBKIof/HixQD85S9/abd7BBLMRg1XOMzi/cCAp6L8w4cPk5+fz5133snUqVN9tb1OD4FACNWjh7dhkmGAwCzeDwx4KsqXY1FnzZrFzp07fbrHTg0zgdL5YRbvdwyYonx/Q2CzmeV4nRr+Kt53p2/csmULEyZMoG/fvgBMnjyZhQsXen0fHQWmKN+/EMIUXZtoJ2zdupWIiAiysrKaJcPFixezbt06P+zORCdDmzN+Ud0GipFjPWtGkfvRjabo2oTnGD16dKfq3mKik8OPMUOTDE3w3XffMXToUH71q19RWFjo7+2YuKLhv2yyGTO8wpGWlkZpaSkRERFkZ2czceJEiouL/b0tE1coBK0aIu9VmJbhFY6oqCgiIiIAGDduHPX19Zw5c8bPuzJxxUII1AabRw9vwyTDKxwnTpzQhMY7duxAVdWAHRZv4sqA6SabaBe40zd++umnLFu2jODgYMLCwli9erVZBmjCfwhgaY0JL0BRlN8ATwNhwHlgkhDitH93ZcJE4EFRlA2Ap8Otzwghxnrt3iYZtj8URekmhKho/P8fsf8RO/V4NEVREoCVQBygAsuFEK8b1ijA68A44CIwTQjxo6/3asIEmDFDX2Gaoig7FEXZDTwCXPL3hnyABuD3QogUYBTwqKIoxj5YvwL6Nz5mA8t8u0UTJhwwybCdoShKFnATcIcQYiiwH+j0Yj4hRLm08oQQ54G9QC/DsgnASmHH90CMoihmdwoTfoFJhu2PwcC3QohqRVGmALcAe/y8J59CUZQ+wHDA2BiwF3BU9/wYTQnThAmfwCTD9scHwBOKonwN3ACUCCEu+HlPPoOiKBHAP4H/FEKcMx52cYoZxDbhF5jSmnaGEKIAuF73o0X+2ouvoShKF+xE+A8hxL9cLDkG6FtExwPHfbE3EyaMMC1DE+2Cxkzxu8BeIcR/N7PsCyBLsWMUcFYIUe6zTZowoYMprTHRLlAU5Tbga+zxUVku8AcgEUAI8XYjYS4FxmKX1vyHEOIHP2zXhAmTDE2YMGECTDfZhAkTJgD4/8sZ5C7gwWWRAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAADuCAYAAACEaORrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXl8W+WV//9+JHm34yWJszkbWZ2FJDaJTVmatKU/YCh7p1BKYIDpAE3JFDr0S7+FFvptKR06LR1a2kxbtqEsZUqhaQIk0AwlhVASaOItsZ04cRzHjnfJtmQtz+8P6SqSrOVKutqc+3699Ip19ei5187VR+c55zznCCklOjo6OjrxYUj1Bejo6OhMBHQx1dHR0dEAXUx1dHR0NEAXUx0dHR0N0MVUR0dHRwN0MdXR0dHRAF1MdXR0dDRAF1MdHR0dDdDFVEdHR0cDTBFe17dH6ejoqEXEO0G1oUAOSaeqsS3Y3pBSXhzvObUikpjq6OjoJI0hnDyWN0/V2H8YPTglsVcTHbqY6ujopA1CCAymuA3clKCLqY6OTvogQGRlZihHF1MdHZ30QaBbpjo6OjrxIgwCY55umero6OjEhwCRpVumOjo6OvGhL/N1dHR04kcAwqiLqY6Ojk58CDDoYqqjo6MTLwJh0MVUR0dHJy6EAGO2MdWXERO6mOro6KQPAt0y1UkfXC4XTqcTo9GIEAIhMvPm1DkTEbrPVCf1SClxOBzY7XZsNhsABoMBo9GIyWTCaDTqAquT1gihR/N1UoiUEqfTicPhQErpLhZhMGAwGPxeUxBCeMXVZDJ5x+ropANCg3tRCJELvAPk4Na5l6WU3w4YkwM8A1QDvcAXpJRtntfuA24FnMBdUso3Ip1TF9MMx+l0MjIygslk8oqoy+XyWp7BrFDFgh0bG/MbZzKZvCKrC6xOShACozaFTmzAp6SUFiFEFvCuEGK7lPJ9nzG3Av1SyoVCiOuAR4AvCCGWAdcBy4GZwE4hxGIpwxda1T8tGYqUErvdjtlsZv/+/VEt3RXR9RVOIQQOh4ORkREsFgtDQ0MMDQ0xPDyMzWbzWr06OolEeAJQah7hkG4snqdZnkfgDXwF8LTn55eBTwv3h+gK4AUppU1KeQRoAdZFunbdMs0wApf0ylI+Hh+or3WqWKOKcNrtdux2u3esIsKKe0DxweroaEUUy/wpQogPfZ5vkVJu8c4jhBHYCywEfial3BPw/llAO4CU0iGEGAQme477WrDHPcfCootpBuFyubDb7d5lvK9fNBCtBNZoPJ3zJ6VESsnY2BhjY2Pe474C62vp6uhETXSpUT1SynNCvehZlq8WQpQArwghVkgp6/zPNv5tYY6HRRfTDEDxcTocDu9y3teaDCamvmL2Tpn7fruw78Nx46IhlP/VV2CdTifd3d1UVFRgNBrJysryir4usDqR0T41Sko5IITYBVwM+IrpcWA2cFwIYQKKgT6f4woVwIlI59HFNI1RlvTKMjuYmAUT01CipYiqL1oLrMvl4tSpU8ycOROn04nNZvOzcn1dBLrA6gQiorNMw8wjpgJ2j5DmAZ/BHWDy5TXgJuA94FrgbSmlFEK8BvxWCPEfuANQi4APIp1TF9M0JXBJH0p0QlmmCsEENNLr8QosMC4TQEqJy+XCZrN5c2ABr/Wq58DqAJ4SfJpsJ50BPO3xmxqAl6SUW4UQDwEfSilfA34NPCuEaMFtkV4HIKWsF0K8BDQADuArkSL5oItp2qFE6Z1Op19AKBSRxDQWkmHBwmmBtVqt3uf6JoMzHW0KnUgp9wNrghx/wOdnK/D5EO//HvC9aM6pi2ma4OsXheDiE4xIY/Ln5Y47NtJmjfr6AgU2lLhGI+yhBFbfZHBmo+/N14kJxTqz2+3eCHw8VpjD4aC5uZmenh6Md9wTdIwWAhvOeo03i0DfZHDm4vaZZub/oy6mKSRYqlOsSCnp7OzkyJEjzJ07l/nz57MvivdrLbDveP7Vwv+qCGywHFhFYIeGhjCZTJSUlHjdA3oObGaiFzrRUY1iaR06dIi5c+d6t4LGitPp5MMPPyQ/P5+1a9eSlZXllwcaK4m2YGMlWA7s0NAQOTk55Ofn+43VNxlkGEIvDq2jgsDdS/39/cydOzfmD7fD4aC1tRWr1crZZ59NcXGx9zwARTPdwmI+MaLNL8B4gdXC/wrxC6xv8Mr3mL7JILMQ2kXzk44upkki1O4ll8sV9VxSSrq6umhtbWXOnDnk5+d7hVTh0Of+P+/Piqj6opXAJirABdEJbLAdX2o2GSjoObDpg26Z6gQlXJReCBG1mFosFpqamsjNzWXt2rVkZ2fT3t4e9XVlosCGE1e122fDpWjZbDasVqufG0HJgdUFNlkIPQCl40+wGqOBH8RQ++qD4XA4OHz4ML29vVRWVlJSUqL5NQcKbCLdA6Ct/zWeWgRqcmAVfN0Deg5sAtDbluj4ojZKr2aZL6Wku7ublpYWZs+eTW1tbcQP75EbPhfztfsSyXotmpkfl+BqLbAdnn+1zCDwJVgOrLLq8M0i0AU2HnTLVIfoE+8jLfNHRkZobGwkOzubc845h5ycHNXXUjClcNyx4R5LkJHRESiw8QpqIOka4ILg/59ms5mTJ0+Sm5vrN07fZBAb7rYlmfm30sVUA9QUJAlGqGW+0+nk8OHD9PT0sHTpUkpLSzW5zkCB1UJcIbwFmw7WKyROYF0ul9cihdOZFJE2GegpWqHRLdMzFLUFSYIRbJnf3d1Nc3Mzs2bNoqamJmqL5vAXL1M9NpL1WjClMGbB9RVYrVO00klglZQshUiFthWBlVKOq0GgCyx6numZSGBBklj8ZL7L/JGREZqamjCZTFRXV/stG5NJoMDGI6iBpHuAC6LLIAD3l6maYjQwvtA2MG5zhZ4Dq1umZwyxLumDYTAYcDgctLS00N3dzdKlSykrK4v5uoQQ5E8u8Ds+0jsc03y+hHMPaGW9KqSbwEayXp1Op59IqiWaTgaK1XqmCKxumU5wfFNlGhoaWLlyZdw39OjoKJ2dncyZM4fa2tqYgxTKsjHY9SRDXBNpvUJmCOycBGYQuFwunE7nGbHJQKvi0KlAF1MVBC7ph4eH47pxR0dHaWpqYnh4mPnz5zNnzpy4rk8R05Nf/ULEsYHiqhCvyIbzv8YrtpkqsIlM0XK5XBw7dgy73U5FRQUwUTYZCEQMln46oItpGIKlOkWTaB+Iy+Wira2NkydPsmTJEm+lo3jRokB0oi1Y5edMtWDTKYNAEVgppXfpH2yTgRCCp59+muuuu47y8vK4z5sUNCrBJ4SYDTwDTAdcuDuXPhYw5t+AGzxPTUAlMFVK2SeEaAPMgBNwhGvcp6CLaRC0rjEK0Nvby8GDB5k+fbp3SW82mzWpkq8IfE6xW7Bsg27Byiku9P4cLcEs2ET7X+MlEwNcELvAOp1OsrOzgdAW7J/+9CeuuuqqmOZPDZpF8x3APVLKfUKIImCvEGKHlLJBGSCl/Hfg3wGEEJ8Dvial7POZY4OUskftCXUxDUDLGqMAVquVpqYmpJSsWbOGvLw872uxFjoJhuXB270/K6Lq+3OsoupLMvyvkLnWKyRXYCMFv4QQWCwWioqKor6mlCEADSxTKWUn0On52SyEaARm4e7rFIzrgefjOacuph5ibRsSCpfLxdGjR+ns7GTRokVMnTp13BiDwYDTGbFPV0TUCL6vwCrEK7DJsl5BF9hg4qomk2BkZITCwvF/z3RG6wCUEGIe7n5Qe0K8no+7DfQmn8MSeFMIIYFfSim3RDrPGS+magqSRIuypJ82bVrYKL2SGhUvsV5voMAmwnoFt8DmTy6IS2iTLbCQuE0G8YhrtGlZyg6tTEEgEEK1ZTpFCOH7LbMlUPSEEIXA/wD/KqUcCjHP54DdAUv886SUJ4QQ5cAOIUSTlPKdEO8HznAxTcSS/uDBgzidTlavXj2u6nsgsZTgC8bSt5+BkiJsA+a45kmE9QqnBVb5VwvrFRLrfwV/kU1H6zWSmGrdtTYpCBDqi0P3hAsMCSGycAvpc1LK34eZ5zoClvhSyhOef7uFEK8A6zjdjScoZ6SYxrukV0RQEV8lTaWjo4NFixapjpzGkxkQjJyS8b6xdBTYiWK9plpg1W4YyLT0KC2W+cL9S/8aaJRS/keYccXAJ4Ev+RwrAAweX2sB8FngoUjnPKPEVKslvRI4MhgM9Pf309TUxJQpU6itrY1qSaVlACoUyRDYRFiv4G/Bxiq0E0lgz9n3rt/zSGKqrLgyCnfWvhYznQfcCBwQQnzsOfZNYA6AlPIXnmNXAW9KKX1vrmnAK56/nQn4rZTy9UgnPGPEVMslvcFgwGq1cvjwYex2O6tWrYq4pA+GFsv8sS3fivo9gQKriGtOjK6CRLsHtCaT/a++RBLT4eFhCgoS8zdMJFpYplLKd3HnBkQa9xTwVMCxw8CqaM854cVU2b3U3NzMggUL4g4wSSmx2Wx89NFHLF68mPLy8rj25mthmZomucXBMRSbIPiKq/JzJrkHtCCY/zXdiry0tbUxadIkioqKyMrKilhkxWKxZFwkH9AkNSoVTFgxDSxI0t3dzcKFC+Oac2BggMbGRqSUrFq1ikmTJsU1n9Y+U0VUIXZhVQjlHojVeoXkZg/EiyKuviKbyg0Gy3fvYGhoiN7eXo4cOYLT6cRqtXL8+HEmTZpEYWHhOCs143JM8cQvMij7wJcJKabx1BgNxtjYGIcOHfK2VG5tbdXEFxXvMj/cEt9XWH2JR2QVgU2k9QqJsWAhsfUH4iWS/zUvL4+8vDymTZsGuO/xPXv2YDQa6ezsxGKxIKWkqKiISZMmkZOTw8DAQMaJKeiFTtKCwIIk8aY6SSk5fvw4x44dY8GCBUybNg0hBEajUZPleTICUIEEiqwW4upLvNYrJMaChdDBrXhIhf8V3PeO0Whk5syZzJw5E3D7UC0WC0NDQ2zfvp1HH30Um83G3XffzUUXXcQll1wS9nxWq5ULL7wQm82Gw+Hg2muv5cEHH/QbY7PZ2LhxI3v37mXy5Mm8+OKLzJs3L+7f1Yt2AaikMyHEVOvdSwCDg4M0NjZSWlpKTU2NX0ESLXcuxbLMdzqdtLa2sqDI/UF2mmP/8AazYNPJeoXMcg9A4v2vEDyH1Gg0UlxcTHFxMV/60pcoLS1lz549XHrppYyMRPbR5uTk8Pbbb1NYWIjdbuf888/nkksuoba21jvm17/+NaWlpbS0tPDCCy/wjW98gxdffFGz3wsA3TJNPtEWJFHTDnhsbIzm5mZGRkZYsWJFUAe+VhZlLMv8np4eDh06RM3R0/nDxiL/a4xHXCE51ms8JDt7QCv3QKz+1yVb3xx3TM3OJovFwtSpU/nMZz6j6jxCCO/9brfbsdvt4z4vr776Kt/5zncAuPbaa9m0aVNcbbaDX4dumSaVaFOdFAEMdQNKKeno6ODo0aOcddZZLFu2LOQNopWYRjPP2NgYTU1NOJ1Oqqqq4GjozRiB4gqnBdZYVBi12CbKevUlXQUW0tM9oCZhP5ZovtPppLq6mpaWFr7yla9QU1Pj93pHRwezZ88GwGQyUVxcTG9vL1OmTInqPCER6JZpsoh1SW80GkPegENDQzQ2NlJcXDxuSR9urnhRs8z3FfmFCxd6AxDRnt1XYI0JcA9onT2QCPcAZFZ6FoQWWLViqhSOVovRaOTjjz9mYGCAq666irq6OlasWOF9Pdj9qu3GAD2an3Di3b0UTACV/FOLxcKyZctURz6Ttcy3WCw0NDRQVFTkJ/Ly1f/EkO/+ULtGYv8gh3IPTFTrFTLP/xpsiQ/qxHR4eDjmPNOSkhLWr1/P66+/7iemFRUVtLe3U1FRgcPhYHBwMOa+ZUHRqARfKsgIMdVi95KvmEopOXHiBG1tbcyfP5/Kysq4WzTHQqh5nE4nhw8fpqenh2XLllFcXBx6jvzxH+RYBTbTrFdIX/dAsNqv8dYe8EWtZRpNatSpU6fIysqipKSE0dFRdu7cyTe+8Q2/MZdffjlPP/005557Li+//DKf+tSnNLdMybQtsB7SWky1jNIrYmo2m2lsbKSoqIh169aRlZUV01zKZoB4CLbMV8r3zZw5k5qampi+OAIFdqJarxDcPaB1ahZo5x7Qyv+aCDHt7Ozkpptuwul04nK5+Md//Ecuu+wyHnjgAc455xwuv/xybr31Vm688UYWLlxIWVkZL7zwQsy/Qyj0Vs8akogao0IIDh8+zNjYGJWVlXHtXtJyme/bP/3gwYOMjY2Nq8jvi9z5ZNTnySTrFdwCa5pUGJPQBqZmQea6ByqeCl01LhFievbZZ/PRRx+NO/7QQ6cLJuXm5vK73/1O9ZxRI9DzTLVC6RuuVY1RKSWdnZ10dXUxY8YMVq9eHbcwa5lsrwSY2tra/DYGhKXA54M9HNuHOl2tVzgtsPHWHFDIZPdAKNT6TDNvB5TQo/laoQiJFtaoxWKhsbGR/Px8KioqmDRpkib+Ha2i+cPDw4yMjDA4OBizy8FPWMEtrgWFUYtsKOvVkF8QtdAmy3qNh2S4B7RKzQpGIizTdEAI9Gi+lsRr+TkcDlpbW+nv76eyspLi4mLa2to0EUAtrs/lcnHkyBG6u7vJyclh2bJlqt6naomviKuG1quv0GrhHlBwmi1xW68KWomrlu6BeGoPlP3o2bCv+3YmDUUmiqmn13OqLyIm0lJMY0VKSVdXF62trcyZM4fFixd7LVGttoAqc8Uqpv39/TQ2NjJ9+nRqamp4//33Vb9X5hUgRoe9/6om0HqFtHIPZJL1qgVaWLBqLFOn0xnbaifV6NH81GKxWGhqaiI3N5e1a9eO+9Y2mUzYbDZNzhXLMt9ut3Pw4EGsVquq/lChkHkFfv9GJaq+BHMPxECk4FY0boJwO7diIVNzX9Wgpv9TxlXZV9Cj+doRzU3gcDg4fPgwfX19LF26lJKSkqDjtPJzQnSWqRIAO3LkCGeddRbTp0+P6SZ37X4p+Px548UsJoFNoPUaD+lcdwASVzkrEmos04wUVI2qRgkhZgPPANMBF+7OpY8FjFkPvAoc8Rz6vZTyIc9rFwOPAUbgV1LKH0Q6Z1qKqRqklHR3d9PS0sLs2bOpqakJe+OkYpk/MjJCQ0MDubm5sQeYPLhyPf5La2ShDBTYdLdeoyHdrVeIv3JWwQNPRBwzITuTKmgTgHIA90gp9wkhioC9QogdUsqGgHF/kVJe5ntACGEEfgZcBBwH/iaEeC3Ie/3ISDEdGRmhsbGR7OxszjnnHHJyciK+x2QyaSamkeqZulwu2traOHnyJJWVlZSWloadLxoLQhFVXyIJbCZYr4lIzYqVTNi5FUlMR0dHY3YlpRwNrGkpZSfQ6fnZLIRoBGYBYQXRwzqgxdMLCiHEC8AVkd6blmIaSlh8t1kuXbo0okj5omVuaDgrV2ltUl5eTm1tbcQ8WSVxP5yYOvb+KewcgQI7kazXeFOzFNLVevUlGoGNJKZmszkz+z8JEY3PdIoQ4kOf51uklFvGTynmAWuAPUHmOFcI8XfgBPB1KWU9btFt9xlzHKgJ8l4/0lJMg9Hd3U1zczOzZs2KaZul0Wj0bkuNl2DCrBRNGR4e5uyzz1bdFdK3bbRWTDTrNRFFXSA9BdZ01w9VjVXTmTQjxRSisUx7pJTnhJ9KFAL/A/yrlHIo4OV9wFwppUUIcSnwB2ARwbuaRvSbpL2YjoyM0NTUhMlkUr2kD4ZWrUbAfxuobzrWvHnzYiqaEs6/ZavbBTn+Qme0RS8qE9l6jZVEuwcgfoENRaQvYLPZnIE5ph40yjMVQmThFtLnpJTj9ub6iquUcpsQ4udCiCm4LdHZPkMrcFuuYUlLMRVC4HQ6OXLkCKdOnWLJkiVxl/nSMpqviOXo6CgNDQ1kZ2cHTcdSO1e0Iu/MGS8q0Qps2lmvEJPIJtL3Csn3v9bV1VFcXByy46gv4b60z5BlfphphAB+DTRKKf8jxJjpQJeUUgoh1gEGoBcYABYJIeYDHcB1wBcjnTMtxdRsNrNv3z5mzJgRc+WkQEwmk2bLfJfLhc1m46OPPmLJkiVMnjw55rm08uUGCmzGWa+QkJoDkF4CG05cjV99hHnDwwwNDdHZ2YnZbEYIwaRJk7yPvLw8VSufjF7mGzSJ5p8H3AgcEEJ87Dn2TWAOgJTyF8C1wB1CCAcwClwn3ctEhxBiE/AG7tSo33h8qWFJSzHNy8ujqqqK3Nxczeb0XZrHw+DgIA0N7qCemgBTJMIt84cPfgBZ7oisyR65IZov6WK9auYagLQVWM3E1dODqbCw0Ntx1OFwYDabGRoaoqWlBavVSk5ODjabjb6+PoqKioKm3GXmVlLQqp6plPJdgvs+fcc8Djwe4rVtwLZozpmWYpqVlaV5nly8ycsOh4Pm5mbMZjMrV65k//79mljMapf5jiz/NJdoxRVSY71q5hoAzXyvkDz3QKy1BxRMJhOlpaXezBUpJVarlY8++oje3l6OHDmCy+WioKDA6x4oKCjIXDHVK+1PbLq6umhpaWHu3LksXbpU010lsS7zA8UVMt96TaeaA6CdwKoS1JsfUDWvEILs7GxycnJYtGiR+zpdLiwWC0NDQ7S3t/Pcc8+xY8cO5s2bx5w5czj//PMpLy8PO297ezsbN27k5MmTGAwGvvzlL7N582a/Mbt27eKKK65g/vz5AFx99dU88IC661aLBGSm7dryoItpGKxWK42NjRiNxqABJi2264Va5g8criPa/VITwXpNSM2BGEoSQuKtV4jNRRCYFmUwGLw+VYDvfe97ZGdnk5WVxf79+5FScs0114Sd02Qy8aMf/YiqqirMZjPV1dVcdNFF4yqaXXDBBWzdujXqa1aPXjVKU1K9n1hKydGjRzlx4gSLFy8O2sZWSbWKtD86EuGW+fYg1mdWFAI5kaxXiDNzIA2DW+BTMSuK96jZl2+32/n0pz/NJZdcomrOGTNmMGPGDACKioqorKyko6NDdXlITdHFNP1RhCucr3NoaIiGhgbKysqoqakJedMqu6DiFdNgy/yBw3Uhx/sKbDTCqpCp1iukX94raGO9Oq+5O7rxKgtDxxrNb2tr46OPPqKmZvymn/fee49Vq1Yxc+ZMHn30UZYvXx7TOUIiBFKbaH7SSVsx1Sr67ouSaxpMTB0OBy0tLQwODrJ8+fKIzvtEdyhVQ7yWK6SvuEJm79oKJF4L1pdEtiyxWCxcc801/OQnPxnXJ62qqoqjR49SWFjItm3buPLKK2lubo76HBHRfabpjyKmgakkylbVOXPmsGTJElVuhkQ01VMYM/k308t2jKqeL1Bg4xVXSI1rACaO9QradCtQUGuZRts00m63c80113DDDTdw9dVXj3vdd75LL72UO++8k56enqBusLjQo/npT+AuKKvVSlNTE0DUW1W12lEVKMrdx1rHjUmluMLEsl7TLe/Vfsm/RP3+RCzzpZTceuutVFZWcvfdwd0OJ0+e9DZ8/OCDD3C5XEE3rHh2HyEDrARPabtPSCn/EvpKhB7N15pELvOllLS3t9Pe3s7ixYuZOnVq1HNpucxXfs/RUXUiGSiuoF5gE+EagMyxXoO5BiD17oFoULvMj8Yy3b17N88++ywrV65k9erVAHz/+9/n2LFjANx+++28/PLLPPHEE5hMJvLy8njhhReCruKCiaiU0gmUA/8LGIQQInCcezB6ACoTMBqNmM1mGhsbKSkpoba2NuYAkpbLfKfTybFjxzAYjWB07/rKdlqjmke3Xt3EYr2Cv8hqtiUWTotrjOlZwVAjpmNjY1GttM4///yIxsumTZvYtGlT2DFCiKnAFuB94APgIynlgOflAqBfGUrQSkx6ACrtcTqdDA4O0tfXx6pVq+LeHaJVFSq73U57eztTp06l0Oeaxoz+W2lTKa6gW6+auAcCBDWWJT5E7kyayir7UspTnn3ttcBSYI3HMv13oAx3BXwIs9VT6paptmiZa3rq1Cmam5vJyclh1qxZmmyzi7cNisvl8uayTp8+nSVLlnC8oyPk+EBxhegENh7XAExs6zWlga0YUJuSl4p8bSFEOfBPuJf05cAI7l5KAMWe55EmSdTlJZS0FVMtsNlsNDU14XK5qKqqorOzU9Nq+7HOZTabqa+vZ/LkySxYsMDdFPB4D5BDtlDfQVW3XtNHXIHY2nDHQJr3f5oF5AAP4K4DWoVbVAFKAOWPI4IGqjRqqJcKJqSYSik5fvw4x44dY9GiRd59yVrWNI1lme9yuWhtbaW3t9eby9rZ2cnY2Jh3zJgc7+dSK7BaW6/RiCukh/WaDn5XNVti7RfeEPV1KUQSU5vNFnMRdQ0oADo9ftIBIUQpcCGwA5gMKAWZncECUPre/AQQ6xLFYrHQ0NBAUVERNTU1mEynf0Wj0Yjdbtfk+qJd5g8MDNDQ0OCt0ar8fgaDAbLDR10DBTZZ1qvWrgFI/qaCdMp5hTiDWx4iiWk8u580oB34jBDicinla8AU3EWXwW2ZKmJaJoSYg9t32gOclFK6rQrdMk0tSrO93t5eKisrKS4uHjfGaDRitUa3FA6FWjH1Ld23atWqcb2hhBDYXO5gQo5hLNgU49BSXCF2gY3WcoX03FSQbOvVsfbKqM/ni5pmeqkqvyelPCqEeBa4UgixBXeleqUjZAmgROBWAvcCZqALd//6t0DgEno0P2X09vZy8OBBZs6c6Wf1BaLlMt9gMES0cnt7e2lqamL27NkhS/f5bm1VRFUhVnGF5Fiv8VquoL31qkVQC5IrsNGixjJV29AxQRwB3sS9tD/K6aBTMadTo4o8P38fWABM875bt0y1Rc0yf2xsjKamJhwOB2vWrCEvb/yH2xetfaah5rLb7Rw8eBCbzUZVVVXY6zo1EjrFJVZxhfRxDSTbetXCcoXUugcioaYzaaosUyHEJ4ErARuQBzwvpXzf83IpcMzzczPu1stTcAtrp3sCbXymQojZwDPAdMCFuw30YwFjbgC+4XlqAe6QUv7d81obbqvZCTgidUGFNBbTcEgp6ejo4OjRoyxcuJBp06ZFfhPaW6bBAlDKPv/58+czY8aMiF8KdlcWWQZ1ftxAcYX0dw0kwnpNhWsAtHEPxLvEh7TvTLoMeA94G/fJgd5eAAAgAElEQVRSvlYI8WngYSAXOOUZNx1oAq7HrUPfB5AIrfJMHcA9Usp9QogiYK8QYoeUssFnzBHgk1LKfiHEJbg3G/iWytogpexRe8KME1OLxUJjYyMFBQXjAkyRSKSYjo2N0djYiJRS9T7//W1uUbG7/AuvqBVXyDzXAEyMwBbEJq5///vfKS4upri4mKKioqjuX1/CfUmnuGVJAfCOR4T+LISoAmZIKV2eyP5RIcR1wHJgFXAIGMTduM6NNj2gOvFYu1JKsxCiEXfaVoPPmL/6vOV93KlcMZO2Yhp4s7hcLg4fPsypU6eorKykpKQk6jkTkRolpaSzs5MjR45EZSWHI1BcQb3A+oprNG4BSJ1rALRNy9IiJQsSkzmwZMkSBgcHOXXqFK2t7qI2RUVFXoHNzc2NO9k+xZ1JPwRuFEI8JaVsAuYCf/C8NgX3ctoKbAU2AvuBy3Fbqs1RBqCmCCE+9Hm+RUq5JXCQEGIesAa3WyEUtwLbfZ5L4E0hhAR+GWzeQNJWTH3p6+ujqakp7tbPWlumY2Nj7Nu3j5ycHNatWxe0S2Qo/tbqALLIMaoTSV+BTYZbAPzFNRphhdTmvGphuYL21qtY/AlygdzcXO+XrtPpxGw2Mzg4SHNzM1arldzcXD/rNdr6EWazmbKysqivVQuklLuEEF3A7Z6k/A+AfZ6X8wGXlPJtACHEC8BtuJfbf/fOoX6Z3xPJlymEKAT+B/hXKeVQiDEbcIvp+T6Hz5NSnvDs6NohhGiSUr4T7lxpLaZjY2McOnQIm83G6tWryc8f/yGJBq3EVEpJd3c3PT09rFmzJmgZMrXYnP4CrEZcM9EtAP4CG6/lCql3DUBsAuuL0WikpKTEu9KSUjI6Osrg4CBdXV00NzcjhPAT10hYLBbmzJkT13XFihDiImADMA+YCfyN09H8fKDXM84gpewDfug/AZptJxVCZOEW0ueklL8PMeZs4FfAJVLKXuW4lPKE599uIcQrwDogM8XU5XKxd+9e5s2bx/Tp0zXZZ6xFpaeRkRHq6+vJzc2lrKwsJiF1W6XB0UJcITnWayp3a8HE2LEViBCC/Px88vPzvT2ZHA4HQ0NDDA4OcuLECYaHh6mrq/MKbGFhod9qLZXRfNxL9+8BjwBfAP4P7mDUCdx6MwAgpXRBsNqnAokmLdQF8GugUUr5HyHGzAF+D9wopTzkc7wAMHh8rQXAZ4GHIp0zbcXUaDRSW1urabGGeOaSUtLW1kZnZyeVlZXk5+dz4MCBmOayOd3LthxjZCs5FnGF1FivMHH8rgpaBbbE4k9ENY/fHCYTZWVllJWVYbfbOXDgAPPnz2dwcJCOjg4sFgtGo5FJkybR1dXFwMBAVGKqps2zlJLNmzezbds28vPzeeqpp6iqqgo23V2e6Ph/A/8I2DmdqF9KQKGTwC2lGm4nPQ+4ETgghPjYc+ybwBzPeX+Bu37AZODnHm1QUqCmAa94jpmA30opX490wrQVUwjdBjnZmM1mb5O92tpab8J+vFauIqoKyRRXmPjWa6pzXuG0uEbbtjvkfA4HWVlZFBQUUFBQwMyZMwF3bvPQ0BCvvfYaf/nLX9i9ezdr167lvvvui9j0Tk2b5+3bt9Pc3ExzczN79uzhjjvuYM+e8fEcKaWSlP8H3BH7Xh9f5Tc5nRoVEi1So6SU7xKmzJ9nzG24fbaBxw/jzjSIirQW01SjZBD09PSwbNkyv8rlsfpf3z0U+stBC3F1v0+3XoO+N0U5r1nzV0d1jnCEagiZlZXF5MmTufvuu9m3bx+PPPIINpvNW+QnHGraPL/66qts3LgRIQS1tbUMDAzQ2dnpfV8gUko78HHAsR9E/g317aQJIRGtS9QyODhIQ0MD06ZNY926deNu4FivbczhvlGyTWqEMnpxdb8v9dZrqsQVMq9SVjS4XK6IuakWi4WSkhKmT58e9fyh2jx3dHQwe/Zs7/OKigo6OjpCimk86FWjMgQhRNgdJE6nk+bmZoaGhjj77LND7nGOxf/6dsPpcyqiqpBMcXW/N7HWa6rEFdJrQ4HW4upwOCKmSsW6Aypcm+eg7ZoSIHoS9y6oTOSME1Mloh9MTJV81oqKCtUtn7UimeLqfm9yA1up8rtCagNbWi7xIfJWUnDXM83NHW+xhyNSm+eKigra29u9z48fP+7112qK0Gw7adJJazFNhJiZTCYcDoffUsnhcHDw4EFGR0dVFUyJhe37T58vxxQ5cKWFuELyXQOx+l3j2a2VTMsVtPG9xkrgvRsMIURUG1vUtHm+/PLLefzxx7nuuuvYs2cPxcXFCVnig26ZZgyBuaanTp3i0KFDzJs3j2XLliXFGrU5/G/0WMQVMsPveiZYrhB/nVe1hApAKUgpo/blq2nzfOmll7Jt2zYWLlxIfn4+Tz75ZOy/RAR0yzRDUKLwSmESl8ulujBJrPhapcEIFFdIP+s1Vr+rlhkDkFkpWSXTZ0cYGT1qAlAQ3apOTZtnIQQ/+9nPVM8ZK1KP5ieGRFiJBoOBrq4uurq6WLBgQUwRT1+klBGvc8zh/3q2KbLlEK/1qkZYvefSwHpNRsYAZG7WgFY4HI6w/lC73R5VjYh0RF/mZwBWq5Xe3l4KCgqiLkwSDMVlEC66+uq+8edIhrjG6haA5G4mgMzMd4Xw7oFEWKWgrpZpCitGaYKeGpXG+BaTLikpYcaMGZp8e6sRUzX4iqsaYQVt/K7JFFf3+zIr3xXit161xul0hl3mp7iZniZIqYup5mixzFcKkyjFpI8dO5a0ds8v7Rn/4czJimRRjv+dk+EWOH2uiZ3vCskrQ5gIHA5HWMs0xYWhNUCbQiepIK3FNB6klBw9epQTJ05QWVlJaWkpoH1N02jnstmDBJuiFNhYxBWSF9RK53xXiD0lS63lWj51quo5oyXSSijTLVMJuHQxTR8sFgv19fWUlpZSU1Pjd/Mlow8UwHO73R+8LBV/4UCBTYb1qkZY3eea2PmuWlqukHjr9YxY5usBKO2Jdpnvcrk4cuQI3d3dLF++fNyWOHCL6dhYdAnioYi0zAewByldGklgoxVXiN56TablCqnPd4XkCGwirVKInGc6MZb5upimFKUwSXl5edjWJslY5itWaSgCBTYdxBXSP6jlfl96Zw10dHRQXFxMQUFBQlL7IrV5znwx1QNQKcPpdNLS0sLAwAArV66MuMRJ9DLf4XBgG/MX05zxho4furgmfzMBJEZclSLiw8PDfr2cJk2aFHfWh0KkzqSZvMzXC50kiEjf7EphklmzZrFu3TpVlkAiOpQq9Pf388rH4zcB2HyMmEjCCv7imgifK6ROXN3nSk/rNV7XwILpucAkKioqkFJitVoZHByku7ublpYWDAaDV1yLi4vJzlZxM0SJxWJJ2J75ZKGLaRJxOBwcOnSIkZGRqBvtJWKZ73Q6OXToEBaLBXfH2tDYAlaH0VqtkL6WK0xs10A0lqsQgry8PPLy8ry77JRq+AMDA7S3t+NwOLxtnktKSsjLy4vbNZD5y3yBS2rSA2o28AzuD6QLdxvoxwLGCOAx4FLc7VRullLu87x2E/Atz9D/J6V8OtI5015MA4swK4VJ5s6dS2VlZdQ3n9ZiajabOXz4MBUVFfxv+yrcC5XTZGeFv75AcYXEuwUgMelYkLyMAUh+vms4y9VtlYZHqYavNGF0uVxYLBYGBgZobW1lZGSEvLw8SkpKvJ1IfX3/agqYDA8PZ/wy36WNZeoA7pFS7hNCFAF7hRA7pJQNPmMuARZ5HjXAE0CNEKIM+DZwjueS9gohXvNpyRKUtBdThbGxMZqamnA6nVRXV0ddr1FBKzF1Op309PRgtVqprq52W8dN48eN2cd/AKIVWK3FFZKTjqWV5eo+V/JSsuIJakWDwWBg0qRJ3qwT3zbPJ06cwGw2YzKZ/No8RzIeMt8y1WaZL6XsBDo9P5uFEI3ALMBXTK8AnvE09XtfCFEihJgBrAd2eFpRI4TYAVwMPB/unGkvpkIIOjs7aW1tZcGCBUybNi2upZAWYjo4OEh9fT35+fmUl5eTn5/Pf/4pC8UqzYogloECm4niCsnzu7rPlbwiLtFarktnahdYCmzzPDY2xuDgIAMDA97A1sGDB70Cm5ub6/d5yHgxlVFF86cIIT70eb5FSrklcJAQYh6wBgjsADgLaPd5ftxzLNTxsKS9mNbV1eFwOFi7dq0mDvt4xNTlctHa2kpfXx+rVq1icHAQm218krY9QCzTTVwhff2uEy2oFS/Z2dlMnTqVqVOnYrVaOXjwINOmTWNgYICuri6sVisFBQUUFxdjsViibllyyy23sHXrVsrLy6mrqxv3+q5du7jiiiuYP38+AFdffTUPPPCAZr9fMKKwTHs8rZlDIoQoBP4H+FefLqnel4OePvTxsKS9mC5evFhV/Ua1xGrVDg0NUV9fz/Tp072ZA2azGZfL5bFKQ5Nu4gqZkzEA6R3USpaowundTyUlJZSUlABu18DIyAgDAwP853/+JwcOHODGG2/kwgsvZPPmzd5t1KG4+eab2bRpExs3bgw55oILLmDr1q2a/i6hEZrlmQohsnAL6XNSyt8HGXIc8C3vVQGc8BxfH3B8V6Tzpb2Y5uTkaBYwigXfds+BeaxKalS0ftF0E9d0dgtAem8m0GqJr4ZgCftCCAoKCigoKODnP/85F1xwAc888wzvv/++qpXchRdeSFtbW4KuOHokaBXNF8CvgUYp5X+EGPYasEkI8QLuANSglLJTCPEG8H0hhPJN9FngvkjnTHsxTSVms5n6+nqmTp0atN2zwWDgtfrKoO+NRgADxRXCC2wmuAVgYlbIgugKuWhJpN1P4LZUZ82axbXXXqvZed977z1WrVrFzJkzefTRR1m+fLlmcwdDnRc9IucBNwIHhBAfe459E5gDIKX8BbANd1pUC+7UqH/yvNYnhPgu8DfP+x5SglHh0MU0CL57/FesWBHSB2UwGLDb3f/1WVnhv02jFUBfgU205QqZbb2mKqi1bl7ylvgQWUzVdH2IlqqqKo4ePUphYSHbtm3jyiuvpLm5WdNzBKLFMl9K+S7BfZ++YyTwlRCv/Qb4TTTnTPtaV4lqcBcqZ89isfDBBx8gpaSmpiasM/+XOyd7f7bbXeMe4RizS79HOOx26feIRODckeYHt8D6PiJhd/g/1GCzG/weahhzCL+HqvM4DH4PdecxjnukG2otUy0/M5MmTfK6ti699FLsdjs9PT2azR+I9BQ6UfNIN85Iy1SJ6PsGtpQ91SdPnmTZsmUUFxfHfZ5AQQ1nvfoKXjRW6+m508fvqsZqBX/LVY3VCukT1Moz7wNWRpxDSyKJqRqxjZaTJ0960xE/+OADXC6Xd9NBotALnWQQgWI6PDxMXV2dt/6pmp7jDz0Hgd6d7Ozw71MrrrEk+iczqJUuPldI3U6tgij60mtFImqZXn/99ezatYuenh4qKip48MEHsdvd7ovbb7+dl19+mSeeeAKTyUReXh4vvPBCYtuhS3DqYpoYEvEfp4ipbzX+5cuXq7ZG3UI6nrGxxIgrxOdzdc+tXlyT4XOF5OS6QmJ2aqn5wtUap9MZtiV5LM30nn8+7KYeNm3axKZNm6KaMx70qlEZhtFo9FqjxcXF46rxR8LuI5pZYQQzUFwhvMD6imsiA1ru+dVnC6iZP95cV0gv6zVcUGvl1C5OnkyNmIa7TzN9X76CvszPEJT9z01NTaxYsSJiUnMg9z/p/+G1BwhmOHEF9dZrsABWuliuauZPhrhC8jMGckyuiO2WE4WawtATQ0xTfQWxkfZiquUyf3R0lLq6OpxOJ0uWLIlaSAHG7O4gRHZW8Js6UeIK6esWUDN/MnZpQfxBrUjCev5CK7296Smm0W4lTU+EVlWjkk7ai6kWSCk5fvw4x44do7Kykt7e3pjm+caW03mFiqgqqBVXUO8ayFSfq5r5M3kjgW6ZJg6JvsxPW6xWK/X19eTl5VFTU4PJZGJgYEDzLapqxRXUW6/x+FwhOnGF9NoCC+m3keCipYO4XAYcDofmKUhqOBP6PwG4dDFNDLEu86WUnDhxgra2NpYuXeqXGxdLv/t7fmYdd8wURjB9xTWcsEJ0roFY3QKRAloQ+xbYSMIa7dwK6VZjQAiB0+nEYrGQnZ2Nw+FACIEQIimW6hkhphJcus80fbBarTQ0NJCdne21Rn0xmUxRiWkwIQVwBFijocQ10GoF9ZZrqgJaoF4AtdhEEG5+hVSK62WrrLhcJpqamnA4HMybNw/A2wNMuZ8MBkPCxFWNmE6ZMkXz8yYTfZmfYAJbl4RCSklnZydHjhxhyZIlIW8s9576KKqpj50Ww6zs0DezWnGF2H2uqQpoQXrv0kp0toDVauXAgQOUl5czZ84cvxWTy+Xy5i37iquUEqPRqKm4hlupDQ8PZ75lih7NTzk2m42GhgZMJhPr1q0jKyt0jVGTycTw8LCqee/6sf84X2EF9eIaTlhh4ge03PNn7kaCvXv3UllZSVlZ2bjXDAaDn1i6XC6/ByTHcp0Qy3w06wGVdCaEmJ48eZLW1lYWLVpEeXl5xPHRVNtXBDGUGKoV10CrNdyckBifazoFtNzzZ8ZGgvLRN8jNz+fgwYMUFhZSUlJCaWkpBQUFQS3FYOKqWK3KQ7n/FGHVQlwnQjQfdMs0oYRa5o+NjdHQ0IDBYIiqrYnBYPDrdx+KO394usuB2iV8rJZruDmjyRRwX0PiA1qQ2rKDscwfq7ied955GAwGpJTebqKHDx9meHiYvLw8SktLKS0tpbCwMKgoKscUf2eguCrtwqWUfsIarcBOBMtUSoHTpVumSaWrq4uWlhYWLlzItGnTonqvyWTC4QhfN+6f/5+7FmxWdvA/UTqJKyQ/oAWJFdd0qYx1Xe0ISqVKIQRFRUUUFRUxe/Zs7266/v5+2tvbMZvNZGdnU1pa6m3XHK24Sim9VqvT6fRmC6gprWexWLydTjMZ3TJNEna7ncbGRlwuV8xN9tRapgD2sdOiG0pYQb1/VG0wK3DOSPNmms8V0qt4C0Rvufp2E501y9280mq10t/fz8mTJzl48KC3Z1NpaSnFxcVBqz4FE1dwi6livQ4PD3sDp6H8rhPBMgXtCp0IIX4DXAZ0SylXBHn934AbPE9NQCUw1VNpvw0wA07AEalxnzJB2qN8I3d3d9Pc3MyCBQuYPn16zPNF8pkqVmkgvsIK6q1WCC6EgVare87kBrTc15F6nyukX/EWt1UaHbm5ucyYMcOvVfPAwAA9PT20trYCeMW1pKQkaKA0cJnf29vLoUOHWLp0qZ8hEJgxMDIykvE+U3cPKM2mewp4HHgm6Lmk/Hfg3wGEEJ8DvhbQnmSDlFJ1JeyMEFO73U59fT0Oh4NzzjknbBkyNUQSU/VL+PGugmS5BdIhoAXp4xZwz5/YXVqxkJ2dTXl5uTcw6nA4GBgYYGBggLa2NlwuF8XFxV6B9b23pZS0t7fT3d1NdXW13yosMGNgYGCA9vb2cefPRLRa5ksp3xFCzFM5/HogfD3CCGSEmHZ2djJ58mRmzJihSeGTcGL6T98+Ne5YNMvtWNwC4ebUfa4+c0e5bI9HXP/506MR548Fk8nElClTvDnQTqeTwcFBBgYG6OjowG63U1RURElJCT09PZhMJqqqqoI2c1SOHTx4kFtuuYXvfve7mrZFTwVSEk0AaooQ4kOf51uklFuiPacQIh+4GPAt3CqBN4UQEvilmnkz4i8/d+7ciAGjaFAis4Hc+M1Ov+emEEmHsVqu6SqukJ4+V0htN4JkYDQaKSsr8+avulwuent7aWpq8gpjfX19yHSsnTt3cv/99/PUU0+xZs2alPwOWhOFZdqjxpepgs8BuwOW+OdJKU8IIcqBHUKIJinlO+EmyQgxTRWOgKTDVImr2oCWe86J43OF5BXM9hXWRFmlarBYLLS0tLB8+XLKysqCpmNlZ2ezbds2xsbG+OCDD3jjjTfiiiGkGymI5l9HwBJfSnnC82+3EOIVYB2gi6karv+30/6m0KKZGnGNxj+q+1x95o4zFSvZnDx5kqNHj7Jq1Sry8/OB4OlY3d3d1NfX09zcTE5ODl//+tf57//+7xRfvXYks9CJEKIY+CTwJZ9jBYBBSmn2/PxZ4KFIc2WEmCa0gRf+QgrRiGZ6WK7h5zxzfK4Q/xbYOy8OXtQmkUgpaW1txWKxUF1dHdbv2dvbyy233MLFF1/MH/7wBwwGA319wbNPMhEtC50IIZ4H1uP2rR4Hvg1kAUgpf+EZdhXwppTSd9/4NOAVj+6YgN9KKV+PdL6MENNEoSRCO33EwRhEFHRxDT8nJMfnCqmvL6A1DoeDuro6CgsLWbVqVVjDoaGhgdtuu42HHnqIyy+/3Hs8WL2AjEVqGs2/XsWYp3CnUPkeOwysivZ8Z6yYKvl619/jb5U6A0Qh2eKqNlMAzjyfK8QnrpHcAsm2SkdGRjhw4ABz586N6PPcvn073/3ud3n22WdZuXJlkq4w+UjAqW4/TdqREWKaqHbPn7/rsPe5KUSVqUhWK8QmrmqtVvdYbX2uWohrsnyuqXQLJJK+vj4OHTrEsmXLwm4Bdblc/PSnP+XNN9/kzTffVFXIJ9PRt5NmGIFFdh0B9U2Diasaq9U9V2RxDRwTapx7bGIDWomwXMPNG43PNZGpWHBaYC+Y+Reamkq8RUti2aasBiURv6urizVr1oTdgGK1Wtm8eTPZ2dm88cYbcW9WyRT0SvsZglJQ4ju/yAMcYQQsueIa3bj0ENdU1BZwX4P2qVhr165lcHDQW7TE4XBQXFzsFVcthMzlctHU1ISUkurq6rBVobq6uti4cSNXX301mzdvTkkDv5Sgoc802WSEmGq1zFeE9Ko7DnmPqRewzBBXLXyusQaz3HNq73NNdCrWv11tB8YnzyviquxMmjRpkldcc3Nzw17T+POOsX//fsrLy5k9e3bYe3r//v38y7/8Cw8//DCXXnppVOfJdCSgsgZR2pERYgrqW5eEQqnAA+D0iIoxiJjEIq5q/K2gTlxDnU/tuInoc40nFct9DerFVcFgMHiFE9ziOjQ0RH9/Pw0NDYyNjVFUVOQdk5eXF/IcZrOZ+vp6Fi1a5NfYMRApJX/84x955JFHeP7551m2bFnIsRMZXUzTFN8ivEIIrrit0fuaM0BMYhVXNVYrpCZTwD02PdwC7jmTm4rlvobQ4vp/r1PXccFgMFBSUkJJSQnz58/H5XJhNpvp7++nsbERm81GUVERZWVlXstVCEFXVxdtbW2sXLmSgoKCkPO7XC4effRR3n33XXbu3BlWdCcyUu9Omp4ohXaVfNLL/qkOGB98UvAV12DCChNPXJNZtMU9Z2w+10S4BSJlCoTDYDBQXFxMcXEx8+bN8xPXpqYmrNbTaVbLli3z7mgKxujoKHfeeSeTJ09m+/btYfuXnQnEswJNJRkjptEs8wOt0UDnfWDFqGDiqsZqhcwX13QqN+ieM3luAbVWqRp8xbWiooK6ujpMJhNFRUUcOXKE0dFRCgsLvW6B/Px8hBB0dnZy4403csMNN3DnnXcmfLdfJpChWpo5YqqWQGtUuTkvvmEfAMZggaMEiWs8wSxIb3GFiesWiIfR0VH279/PnDlzvAWi586d6y1Y0t/fT0tLC2+99RZvvvkmR48e5f777+fWW2/VhdRDpvpMJ0y+hSKiDocjpJACOO12v0cwlAZnyiPomDGH3yMYDrvD7xEKh93u9wiF0+70PkLPpfacasc5/R7hsI85vI9wqJ3PPafT+4hENPN+Z6P25k9fXx8ff/wxS5cu9QqpglKwZM6cOZx99tnMnj0bl8vFzTffzJtvvskPf/hDTa6hvb2dDRs2UFlZyfLly3nsscfGjZFSctddd7Fw4ULOPvts9u3bF2Sm1CCl+ke6kTGWabhv7cBlfeBYl8P94TKYglicAeKVSMt1oqVhucelriKWe97o3QLfv1V7G6K9vZ2TJ09SVVUVNifV5XLx8MMPs3fvXv74xz96swW0wmQy8aMf/YiqqirMZjPV1dVcdNFFfpkB27dvp7m5mebmZvbs2cMdd9zBnj17NL2OeNC3k6YAXxEFggrpZ7/wN+/PiqhCcGEFf3ENJqzgL65qglmQnuKqNg0r/LWlrmiLe95Y3ALaianL5eLgwYM4nU6qqqpC3g8Aw8PD3H777cyePZutW7cmpCq+b/+poqIiKisr6ejo8BPTV199lY0bNyKEoLa2loGBATo7O8dZ06lCZmg4P2PFNJI1Cv5CGoivsEJirVbQLlPAPU6bHNfotrSmh7hGiupHyhb44e3aRcrHxsY4cOAAU6ZMYc6cOWFXTx0dHdx4443ceuut3HbbbUnxj7a1tfHRRx9RU1Mz7lpmz57tfV5RUUFHR0daiKmeGpUEfG++UEGmQN58cS0QXlQVkimu6ZopoPac0Y1L7O6scPNGY7VGi5KIv3DhQm8/p1B88MEH3HXXXfz0pz9l/fr1ml1DOCwWC9dccw0/+clPxhVSCZYVk07Br3T0h6ohY8QUIqc8hUIRVVAnrKCLazTnDByXzN1ZweYNNadWVml3dzeHDx+OmIgvpeTFF1/kiSee4JVXXmHBggWanD8Sdruda665hhtuuIGrr7563OsVFRV+nUyPHz/OzJkzk3JtanBlqGmaMWLa3t5OSUkJJpMprDUaCV9hhYkjrslIw1J/ztRVxIpmzmiRUnL48GGGhoaorq4Om1zvdDp56KGHaGpqYufOnRQXF2tyDWqu8dZbb6WyspK777476JjLL7+cxx9/nOuuu449e/ZQXFycFkt8UCrtp/oqYiNjxPS3v/0tzz//PPPmzWP9+vVs2LCBxYsXx11NRwtx1SqYBemRKQDa5rhGd32JKZR9w3kHaGx0V4EqKyuLusSe0+mkrq6OvLw8Vq9eHfbL3Gw288///M8sWbKEP/zhD2GDUlqze/dub6nSkBgAABa9SURBVAHp1atXA/D973+fY8eOAXD77bdz6aWXsm3bNhYuXEh+fj5PPvlk0q4vIlLi1MgyFUL8BrgM6JZSrgjy+nrgVeCI59DvpZQPeV67GHgMMAK/klL+IOL5IuwqSqvvCJfLxaFDh9ixYwdvvfUWLS0trF69mvXr1/OpT32KadOmae77USuuvoQSV19CiavfGJUfwlCWqy/hhM5/nIrrUmnpqT+n+u90tVZmoLg+9rU8BgcH6evro7+/H4fD4W2fHKl+6ejoKAcOHKCioiLicvjo0aNs3LiRr3zlK9x0001p5YtMAnH/srPOqpb/8l11aVrf/lLW3nCtnoUQFwIW4JkwYvp1KeVlAceNwCHgIuA48DfgeillQ7jryRjLFNxb9pYuXcrSpUv56le/isPh4MMPP2THjh3ccsstDA0Nce6557JhwwbOP//8sBXM1RKL5ZrKTAFIzzSs8OdMbNGWX9znXmL7VoFyOp1+9UudTifFxcXeQiXKEl7Za79s2bKIS/W//vWvfO1rX+OJJ57g/PPPDztWJzjuZb42NpyU8h0hxLwY3roOaPH0gkII8QJwBRBWTDPKMo2ExWLh3XffZceOHfzlL38hOzubCy+8kA0bNrB27VrNq6fHYrVCci1XNVYrTAzLNZiwKkIaCafTycDAAP39/fT39+NyuTCZTNhsNs4++2wKCwtDvldKybPPPsuTTz7JSy+9xNy5c1WdcwISt2U6c361/OcH31c19qGbso8CPT6Htkgpt/hdkFtMt4axTP8Ht/V5AreVWi+EuBa4WEp5m2fcjUCNlHJTuOvJKMs0EoWFhVx88cVcfPHFSCk5deoUb731Fi+++CL33HMPs2bN8roEKisr4/K39vb28uC/Oli0aJE3NWaiBLMg+XVcw59T+7oCgRiNRiZPnszkyZO9FfFHRkaYMmUKjY2NSCn93AJKwr3D4eCBBx7g2LFjvPXWW2FFV0cdUVimPeGW+SrYB8yVUlqEEJcCfwAWEfxLIeJFTSgx9UUIQXl5Oddffz3XX389UkpaWlrYuXMnjzzyCE1NTaxYscIrrrNmzVLl33K5XLS0tGCxWMZtHUxWMAvSQ1zTIQ0r3Di1VqkvSiL+5MmTqays9N4TDoeDgYEB+vr6OHLkCEeOHOHPf/4zhw8f5txzz+V3v/tdUgNNExUpwelMzoJYSjnk8/M2IcTPhRBTcFuqs32GVuC2XMMyoZb50eB0Ovnoo4+8wayenh5qamrYsGEDF154IcXFxePEdXh4mPr6esrLy5k7d27UwYVUBrNAO7eAli4BSJxb4FcPRNdP3mKxUFdXx4IFC5g6dWrYsfv37+fee++lsLCQ3t5eqqur+fnPfx7V+UJxyy23sHXrVsrLy6mrqxv3+q5du7jiiiuYP38+AFdffTUPPPCAJueOk7iX+TPmVct/uv+vqsY+fFtu2AAURFzmTwe6pJRSCLEOeBmYizuCfwj4NNCBOwD1RSllfdhznaliGsjo6Ci7d+9mx44dvPPOOwBccMEFfOpTn2Lt2rW8/vrrTJ8+neXLl2sS2AI9UyDkOTUQ16e+G11LZCURf8WKFRGX6u+88w733nsv//Vf/+XdqulwODTba//OO+9QWFjIxo0bQ4rpo48+ytatWzU5n4ZoIqY3/d/dqsY+8uW8SNH854H1wBSgC/g2kAUgpfyFEGITcAfgAEaBu6WUf/W891LgJ7iF9TdSyu9Fup4Ju8yPlry8PD7zmc/wmc98BiklfX19vP3227z00kts3LiRiooKrrnmGvLz81mxYoUmS7p035kF6ZvjGs15wyGlpK2tjf7+/oiJ+FJKnnzySX7729+ybds2KioqTp9bw6IlF154IW1tbZrNl0lIKbWM5l8f4fXHgcdDvLYN2BbN+XQxDYIQgsmTJ/P5z3+eP/7xj/z4xz/mE5/4BDt37uQnP/kJ9fX1VFZWsmHDBtavXx/Tkj+QTNiZBYkr2OIep424/vcP1G2NdDqd1NfXk5OTw+rVq8MGJO12O/fddx+9vb3s3LkzbBuSZPDee++xatUqZs6cyaOPPsry5ctTej1aIjO0BJ++zI+AUkzFF5fLxf79+73+1s7OTtatW8f69ev55Cc/SWlpaVpsHoAzLw1LrZBarVb279/PrFmzmDVrVtix/f393HzzzVxwwQV861vfSkoP+7a2Ni677LKgy/yhoSEMBgOFhYVs27aNzZs309zcnPBrUkHcN/30uVXyS//nXVVjf3RnQUSfaTLRxVQDbDYb7733Hjt27ODPf/4zTqeTCy64gA0bNlBbWxu2DXC0KLvA7vq2Oer3qhFWSE9xVSusasR0YGCAxsZGKisrKSkpCTv20KFD3HLLLdx3331ce+21SdvRFE5MA5k3bx4ffvhhxOpVSSDuP860OVXyi/e+o2rsT75alFZiqi/zNSAnJ4f169ezfv16pJQMDg6ya9cutm3bxv33309JSQkbNmxgw4YNrFq1KmZ/68jICHV1dUyfPp03Xlji98HWamcWJLemAGiXhqVGSDs6Oujo6GDNmjXk5uaGHfvWW2/xrW99i9/85jdUV1dHnDtZnDx50rt1+oMPPsDlck2o1tB6oRMdwO1vLSkp4corr+TKK69ESklHRwc7duzgF7/4BX//+99ZtGiRt1jLWWedpcraUaLNlZWVQbc1pjKYBdp1HwBtc1wVXC4Xzc3N2Gw2qqurw36hSSnZsmULv//973n99deTXlHp+uuvZ9euXfT09FBRUcGDDz6I3fP73n777bz88ss88cQTmEwm8vLyeOGFFyZUDYBMrbSvL/OTjMvloqGhwetvPXbsGNXV1V7LdsqUKX4fDEUERkdHWb58eUw91TPB3wrxpWH97qdnhXyP3W7nwIEDlJaWMm/evLDCMzY2xte//nWsViu/+tWvIlqvOn7Erejls9fIL9zzv6rGPv614rRa5utimmLGxsbYs2cPO3fu5O2338ZqtXLeeeexYcMGpk6dyrvvvsvnPve5iG0xomGiieuP782mrKyMvLy8cX8jJRH/rLPOorw8fO5pb28vN910E5/97Ge59957kxJommBoIqb/+LVdqsb+7J4SXUx1QjM0NMQ777zDL3/5S3bv3k1VVZVXXKuqqhLShC1RmwcgOcGsx+7Lpa+vj9HRUYqKiigrK6OsrAyz2Uxra6uqRPyGhgZuu+02vvOd73DllVdGvB6doGgipp/f/GdVY3/+b6VpJaa6zzTNmDRpEmvXruWZZ56hubmZsbExdu7cyZNPPslXv/pV5s+f7/W3Llq0SBPrKVFlBiHxwaxXnlgMwJw5c5BSMjQ0RF9fH3v37sVms1FeXs7w8DDZ2dkhq4a98cYbPPjggzz99NOsWrUq6Bid5JDMvflao1umGURgcezW1lZvcewNGzakTXFsSE5Ngdd+vWzcMafTSUNDA1lZWSxcuBCz2ewtCO10OikpKaGsrIxJkyaRlZXFz372M7Zv385LL70U0Q2gE5G4b76pFavl1ZveVjV2y32TdctUJzbCFce+9dZbGRwc5BOf+IS3OHZRUVHc51SsVqVa1qb7B1W9L9mZAuBOxD9w4AAzZszwbvUMLAitVH7avHkz+/fvp6ioiB/84Aea1VuAyIVKpJRs3ryZbdu2kZ+fz1NPPUVVVZVm589opN5QTycFmEwmamtrqa2t5f777/crjv3II4+QnZ3NJz/5STZs2MA555wTc3FspSxdWVkZb7xwTtT5raD9ttc/PbXS7/jg4CANDQ0sXbrUK56BKDVLnU4n/f393HLLLSxfvpzXX3+dkpISzj33XFW/SyRuvvlmNm3axMaNG4O+vn37dpqbm2lubmbPnj3ccccd7NmjrlXHmYBWe/OTjS6mE4hgxbF37tzJ888/z913301FRYW3fuvSpUtV+VuV3UKLFy8Omhie6hquACdOnOD48eOsXr064m6zuro6vvzlL/O9732Pf/iHfwDgqquuUnXNaolUqOTVV19l48aNCCGora1lYGCAzs7OtOkQmkokmZtnqovpBEUpjv3FL36RL37xi97i2Dt27ODhhx/m4MGDrFy50iuuM2fO9LM4pZQcP36czs5OVSKlkIxg1uvPVXmvsbm5GavVGjERH2Dr1q08/PDDPPfccyktDNLR0cHs2adrD1dUVNDR0aGLKbi7kzozs9KJLqZnCEIIFi1axKJFi7jzzjtxOp3s27ePHTt2cPvtt9PX1+ctjl1dXc2LL77IZz/7WVUiFQ6td2YpQqok4peUlLBy5cqwgTeXy8WPf/xjdu3axY4dO1K+hz3YMnYi7WCKl0y1TM/IrOTXX3+dJUuWsHDhQn7wg/HtsJ966immTp3K6tWrWb16Nb/61a9ScJWJxWg0snbtWr75zW/y1ltv8de//pVrrrmGt99+m3Xr1vHGG2/w8ssvs3v3bmw2mybnfPPFtX4PtbgcTj+BHR4eZu/evVRUVETcjjs6OsqXv/xlOjo62L59e8qFFNyWaHt7u/f58ePHI7aQPlNQupOqeaQbZ5xl6nQ6+cpXvsKOHTuoqKhg7dq1XH755Sxb5p9m84UvfIHHHw9aN3ZCohTH3rJlC9u2bWPRokW89db/3975x0R9n3H89QiT2BGrtJm0ThsZlfijmkMrRhtQ07RKJ4hbmMb0ZFYvsrXrki2lXSqmpunSBmfb4Y+ZYZ2mSoLOShhzchqCiyK1yrmpWzSFFiNUMevWzo4K9+yPg8sVgTv0+H7vuM8rucDd98t93wTy3PfzfJ7n/Rzj0KFDvPzyy4wbN86fEpg2bZot9a1H3k+nvb2dK1euMG3atKDVCm1tbTidTvLz83nhhRci5u4vJyeH0tJSVqxYwenTp7n//vvNEr8Hs5sfPTQ0NJCamkpKiq+Xe8WKFRw+fPiOYBqLiAgVFRX+5/n5+eTn56OqNDU14Xa72bx5MxcvXmTq1Kl+J6wJEyaEJVANFFz/Uj6b5uZmbt68SXp6etDKhMbGRtavX09JSQlPPfXUPWsbDMGMSrKzs6muriY1NZX77ruP9957z1J9kU64lvkisgv4PnC9nxlQq4Ci7qdfAoWq6uk+1gx8AXQBnaHUs8ZcMO0r+d9XWcrBgwepq6tj8uTJbNmy5Rs/E2uICCkpKbhcLlwuF11dXX5z7BdffJHPPvuMOXPmkJWVFVZz7J7g2uOIHxcXh8PhGPCuWFX54IMP2Lx5MxUVFaSlpd2zjsGyf//+AY+LCFu3brVITbQR1iX8bnxjSfb0c7wJyFLVf4nIEmAnkBFwfKGqtod6sZgLpqEk/5cuXcrKlStJSEhgx44drF69muPHQ+vKiAV6gprD4eCll16io6ODkydPUlNTw9atW/F6vX5z7IyMjHsyx+7o6OD8+fMkJycH/UDzer28+eabNDQ04Ha7SUoa3HTSSKa2tpaysjL27t1rt5QhRRW6em1A3v17aV33dNL+jgeOQa3HN9L5rom5YBpK8j+wnnLdunUUFRVh6J+EhAT/kl9V+fzzz6mtraWqqopXX32VpKQkf8vrjBkzQq4O6CnET0tLCxoYb926RWFhIQ899BBVVVV3ZVUYyTQ2NuJwOOyWYQmDuDN9UETOBDzfqao77/KyzwF/DpQBHBURBX4XyvvGXDB9/PHHuXz5Mk1NTYwfP57y8nL27dv3jXMCC6grKyuZMmWKHVKjEhFh7Nix5OXlkZeXh6rS0tKC2+1m27ZteDwe0tLS/MF10qRJfaYEWltb+fTTT0Oqcb127RrPPvssBQUFuFyuiNloCicej4ekpCQyMjK4ceMGu3btYsGCBXbLCj+qg8mZtoejN19EFuILpk8EvDxfVa+JyHeAGhH5h6oOOE8l5oJpfHw8paWlPP3003R1dflbCouLi5k9ezY5OTm8++67VFZWEh8fT1JSErt377ZbdtQiIkycOJE1a9awZs0avF4vFy5coKamhqKiIq5evcqsWbNYuHAhmZmZjBkzhuPHj5OcnMysWbOCWg6eOXOG559/nrfffptFixZZ9FtZT2NjI7m5uZw+fZqjR4+yYcMGTpw4YbessGN1B5SIzAB+DyxR1Zt+HarXur9eF5FDwBxgwGBqXKMswphf9M3XX39NfX09brebmpoaWlpacDgcrF27lvnz5/c7UllVqaiooLS0lPLyclJTUy1Wbh2dnZ2kpKRw5coVRo4cyfXr18nKyuLSpUt2S+vNPS8Jxo57TBf+6FBI5x767aNBXaO6c6ZV/ezmTwSOA87A/KmIfBsYoapfdH9fA2xS1SMDXSsmi/btoKCggCNH+v9bBJpf7Ny5k8LCQgvV2cfIkSPJzMxk48aNxMXF8cYbb+ByuTh27BiLFy/mmWee4a233uLDDz+ks9PnadrV1cWmTZuoqKjA7XaHPZBGWlPHxYsXSU1N9ZeDnT17dvj6rqrvzjSURzBEZD9wCkgTkasi8pyIrBeR9d2nFAMPANtEpDEg/zoO+KuIeIAG4E/BAinE4DLfLoz5xcDExcVRXV3tt8JbunQpqkpraytut5uysjLOnTvHI488QltbGwsWLODw4cNhnzwQiU0dHo+HpqYmOjo6uH37Nq+99hpbtmyx5NpWoyjeMPXmq+rKIMfXAmv7eP1jYNCfViaYRgjG/II7PEVFhIcffhin04nT6fQPI6ysrOSVV14Zko2mSGzq8Hg8rFq1innz5vHVV1+xYcMG5s6da5ueIUV9JW7RiAmmEYIxvwjOiBEjmD59OtOn35H+ChuR2NRRUlICwOuvvz5k14gkjNGJ4Z4w5heRQahNHc3NzZw/f54nn3yS1atXWyVv2KMoqt6QHpGGCaYRQk5ODnv27EFVqa+vN+YXNhFqU0dCQgLga+r46KOPLNU4rAnjBpTVmGW+RRjzi+jANHXYjd4xrTZaMMHUIuwyvwhW31pbW0tubi6TJk0CYPny5RQXF4ddR7RgmjrsRTV6c6amaH+YU1dXR2JiIk6ns99gWlJSQlVVlQ3qDMOMe94xHf3AVM1YHJqZi3vf7Iga9WxypsOczMzMYeWeZBjmRHHO1ARTA6dOnWLmzJksWbKECxcu2C3HENNE726+yZnGOOnp6XzyySckJiZSXV3NsmXLuHz5st2yDDGKEr1jS8ydaYwzevRoEhMTAcjOzub27du0t4dsLm4whBdV/wDFYI9IwwTTGKetrc1fqN7Q0IDX6/2GObbBYDVmmW+ISILVtx44cIDt27cTHx/PqFGjKC8vN22sBvsYxqVRhjAgIj8EfgmMwjfxME9Vb9irymCIPETkCPBgiKe3q+riodQzGEwwtQAReaDHxVtENuL7JxjW4ylFZAK+qZDJgBfffJ53ep0jwDtANnALKFDVs1ZrNRjCgcmZWkOBiDR0m83+BPif3YIsoBP4hapOAeYCPxWR3j52S4BHux8uYLu1Eg2G8GGC6RAjIk5882MWqepM4J/AsC/mVNXWnrtMVf0CuASM73VaLrBHfdQDY0TEuLsYohITTIeex4CTqvqliPwAmAf8zWZNltI9h8cB9DYGHQ+0BDy/yp0B12CICkwwHXr+APxMRE4Ak4GPVfW/NmuyDBFJBA4CP1fV//Q+3MePmCS+ISoxpVFDjKr+HfhewEu/tkuL1YjIt/AF0vdV9Y99nHIVCLSo/y5wzQptBkO4MXemhiGhe6e+DLikqr/p57RKwCk+5gL/VtVWy0QaDGHElEYZhgQReQI4gS8/3NOu8itgIoCq7ugOuKXAYnylUT9W1TN9vJ3BEPGYYGowGAxhwCzzDQaDIQz8H1xkDz9FLRW4AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUwAAADuCAYAAABSzT4OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXmUJVl13vs7JyLukENl1pRdY3f1VN1VPdBDdVfjxqhlyc8CYQkEEshqIwzv4UF6Ftiy/SwbISHZsvWsgbWwZCEhGyQ/nmwhy6jB8rMMWBYGNUXTQFVlTVnzmDXlnHeIiPP+iDgRJyLvzTtFZt6sjm+tXHmHuOfO3/32/vbeRyilyJEjR44crSHX+gHkyJEjx3pBTpg5cuTI0SZywsyRI0eONpETZo4cOXK0iZwwc+TIkaNN5ISZI0eOHG0iJ8wcOXLkaBM5YebIkSNHm8gJM0eOHDnahN3i+rwNKEeOHO1C9LrA03JQzSivrWNPUf2vSqnv6fU+O0ErwsyRI0eOVcMMHh8t72nr2O9dPL5lZR/NUuSEmSNHjr6BEAJp9yxUVww5YebIkaN/IEA4/Wut9O8jy5Ejx2sPAqQt2vprazkhLCHEN4QQLzW4riiE+D0hxCkhxJ8LIfa0Wi9XmDly5OgbCCmwypnquJ8AxoENDa57H3BbKfWAEOJdwL8E3rncYrnCzJEjR/9AgHBEW38tlxJiF/C9wG81OeT7gU+Gp38f+C4hxLIL5wozR44c/YMwJM8Ivwr8Q2C4yfU7gQsASilXCDENbAZuNFswV5g5cuToGwhAWKKtP2CLEOKQ8ff+aB0h3gJMKqW+3uLu0li29jxXmDly5OgfCJBW2wrzhlLqQJPrnge+TwjxZqAEbBBC/K5S6kXjmIvAbuCiEMIGRoBby91hrjBz5MjRRxAI2d7fclBK/WOl1C6l1B7gXcAXUmQJ8FngR8PT7wiPyRVmjhw51geEAKtgreD64iPAIaXUZ4FPAL8jhDhFoCzf1er2OWHmyJGjfyBoqR47hVLqS8CXwtM/bVxeAX6wk7VywrwD4fs+nudhWRZCCFpUSuTI0UcQneQwVx05Yd5BUErhui71ep1qtQqAlBLLsrBtG8uychLN0dcQAu2A9yVywrwDoJTC8zxc10UpFQwwkBIpZeI6DSFERKC2bUfH5sjRDxB9/FnMCXOdw/M8FhYWsG07Ikrf9yMF2UhNaiVaq9USx9m2HRFpTqI51gRCYPXx8I2cMNcpNOnNz89z5MgRnn766bbDbE2imhB1JUWaRJuF8zlyrBTECpg+WSInzHWGdPitw+5eiMxUmWkSrdfr1Ov16FgpZaRENaHmJJojS+QheY5M4Ps+9Xo9CrnNPGUaWZGoZcU1cUoplFLUajVqtVp0uUmiOpzPSTRHV8gVZo5eocNv13WjcNpUhWnCrFQq3Lp1i+HhYUqlUmbk1SwfapKo53lMTk6ya9cuLMvCcZyI2HMSzdEaeVlRji6hw28dEjciLJMwfd/n3LlzXL58mU2bNnH16lUqlQrFYpHh4WE2bNjAhg0bKBQKmT3G9GPyfZ/r16+zY8cOPM+jWq0m1KoZzuckmiONPIeZoyukw+9mxKIJ8+bNmxw/fpy77rqLgwcP4nledF21WmVmZobp6WkuXLhAvV6nXC6zYcOGiEhtO9uPQtphV0rh+z7VajWqEQUiFZrXiOYAwvFuK9ca2StywuwzKKWo1+sR4bUq7alWq8zPz3P+/HmefPJJyuVypEwhINRSqUSpVGJsbCy6j8XFRWZmZrhx4wZnzpzB8zwGBwcjFTo0NJTIX/aKZuG87/tUKpXofF5o/1pH68Eaa4mcMPsEZp4SGhOMCd/3OXv2LFevXqVQKPDkk0+2fV9CCAYGBhgYGGDbtm3RevPz88zOznLlyhXm5uYAGBoailTo4OBgSwJvMexlyeNoRKJ5of1rGzlh5mgKrbLq9XrkbLdSU2b4/dxzz/HVr36158chpWR4eJjh4WF27NgBBEXxc3NzzMzMcOHCBebn56PjdDg/MDDQMK/aLfJC+9c2ghxm/76POWGuIRqVCS2HSqXCsWPHUEpF4fdKwrIsRkZGGBkZiS5zXZfZ2VlmZma4fv06i4uLOI4TkWipVOpIZbaDZoX29Xo9ItGZmRls22Z0dDQK5fMa0fWJ3CXPkYBWTCdOnOCee+6J2hqbwQy/9+7dy5YtW1bx0SZh2zYbN25k48aN0WW1Wo2ZmRlmZ2e5dOkSMzMzfPOb30yYSlk785CsEZ2ZmaFYLDIwMJA4Ni+0X2cQeQ4zR4h0l87t27e55557lv0C37hxgxMnTrBt2zaee+65vgw7C4UCW7ZsYcuWLdRqNY4cOcJDDz3EzMwMU1NTS5x5TaRZOvOmYWRelhfary+I3CXPAc27dHzfb3j84uIix44dA1iV8DtLNHPmFxYWmJ2d5fr165w+fRrf9xkcHIxUaC/OfKPOpnYK7TXyGtH+Qa4wX8NYzv0WQiwhTN/3OXPmDNeuXVvz8LtbNCIaIQSDg4MMDg4uceZnZma4cuUKs7OzCCEYGhqKVGg7zjy03wq6XHlTtVqlUqkkQn5dI5qT6GpB5KbPaxGNZlSmv2zpPvD1EH63QieGj+nMa5jO/Pnz55mfn8eyrESnUrlcbkh63ZJZOzWiGmYon9eIrgAy6vQRQpSAPwWKBDz3+0qpD6eOeQ/wfwOXwos+ppT6reXWzQlzBdCu+61Dch1+CyHWXfidNZo589pUmpiYiJx501QyZ4BmgXZrRHX0YLrzOYn2gswUZhX4S0qpOSGEA/yZEOK/KKXSNXi/p5T68XYXzQkzQ3RafA5w/vx5pqam1m34vRqwbZtNmzaxadOm6DLtzOtwXrd+Tk9PR0SapTMPjd/P2dlZrl69SqlUShyXF9p3h2CLit5fq3C73LnwrBP+9VzvlhNmBmhnSEYa169f5/r162zfvn3dht9rCdOZBzh+/Dijo6MIIbh9+zbnzp3DdV0GBgYShfZZ98z7vh8pS2g+jDldaJ+XNzVHBwpzixDikHH+40qpj0frCGEBXwceAP61UurPG6zxdiHEG4ETwAeVUheWu8OcMHtEu0MyNMzwe2xsjO3bt+dkmRFKpRIjIyNLnHldZG8685pAe+2Z1+VMGq2GMWsSVUot6ZnPSZRO6zBvKKUONLtSKeUBTwghRoH/JIR4VCl12Djkj4BPK6WqQoi/BXwS+EvL3WFOmF0iPSSjnd5v7X4/9NBDbN68mWPHjjUtK8rRGZqVFWlnfvv27UDSmb98+TJzc3NdO/N6vVbHNhvGDCRKmyCvEYXsWyOVUlNCiC8B3wMcNi6/aRz2m8C/bLVWTpgdotvw++TJk0vC7+XqMLt5XP3yxVqLx9Hu8zed+Z07dwLNnXnTVGrkzOvbdqNQO5lor9Xna4VEM3LJtwL1kCzLwHeTIkQhxHal1JXw7PcB463WzQmzTZhlJkePHuWxxx5r+aFdWFjg2LFjSCl56qmnEsYALC0r6hY6xOuHL1HWfeSd3G+3z7+RM1+v1xv2zJudSsVisS2F2S6WK2/yPO81UWif4QDh7cAnwzymBP6DUuolIcRHgENKqc8Cf1cI8X2AC9wC3tNq0Zww20A6/J6fn1/2w+l5HmfOnGFycjIKvxuhUeF6N9CE+VpG1j8YjuMs68xfvnw5qtEslUqUy+VVc+Y1iZ4/f556vc6uXbuAO6XQXiAymMOqlPoWsGTmoVLqp43T/xj4x52smxPmMmhUJtRKFTYLvxshq5C8EWGuvy9Kb1gNhZ125pVSnD59Gtd1V9WZ1ySqlIrC9EaF9kIIPvnJT/Kud70rMsL6Hvl4t/WHbmZU6vDbsqyG4XcjZKUMswrt1zOyLlxvB0KIqAtpOWfe87yEqZTVNHvP8yJF20yJfu5zn+Ntb3tbz/e1esinFa0rdDqjst3wuxGyNn1ey0iX96wW0jnMbpz5DRs2MDAw0PHjb2U4CSGYm5tLtJ72PQSQK8z+RzddOpOTk5w8eZIdO3Z0VXwupYz23ukF/aQw16Pp0wvaMX2aOfOzs7PMzs5y7ty5jpx5jXYc+oWFBYaGhjp/YmuIXGH2MdoZkpGG7/t8/etfx7Ztnn766bbC70aQUib6krtFo9A+S/e2m8ez2uhnwmwEy7IYHR1ldHQ0umw5Z/7SM+8E4C/e/Fr0PNshTN2JtF4gEAiRK8y+RDfh9+nTp1lYWGD//v0JB7UbZOmS63V83+f06dNcunQJ27YTU34GBwfvWDNovRFmIzRy5qvVKl9/6Dui8y+//HLkyC8sLCz7+emXqKMjCBD5AOH+Qi/h986dOxkaGkoog26RdR3mrVu3OHbsGNu2bePZZ58FiAqyz549y8LCQqKWcMOGDRSLxZ7vvx9wJxBmGv9rz3MAuDPB5/SNtw6hlKJSqTAzM8PVq1eZmJjA930GBgaicD7tzK+3H8k8JO8TdBN+LywsMD4+juM4Ufh97dq1TL4oWZk+SimOHz+OUoonnniCcrkcFTnrguzdu3cDyVrCixcvUq/Xoy+b/sKtpxBO404izFee/YuJ88W74tpOIQTlcplyucyVK1fYv38/juNEzvzk5CQTExNMT0/zm7/5m9Trdb72ta/x+OOP9/Tj6HkeBw4cYOfOnbz00ktdr9MSQeX6yq3fI14zhNlt+H3jxg0eeuihRJiUZf1kL+sopbh8+TI3b97k/vvvZ8+ePYnhD43Ua6NaQv1lu3btGqdOnQJIhPKNttLtN9wphHnku7+r7WN1DrORM1+r1fB9nw996EP8xm/8BqdOneKLX/xi16/RRz/6Ufbt28fMzExXt+8EucJcQ+gunZMnT3L//fe3VJVKKSYnJzl16hQ7d+7k4MGDS74QlmVlQpi9EO/c3Bzj4+MMDg6ydetWNm/e3NWXodGXTTu4MzMznD59msXFRQqFQiKUz7qjJQusZ8LURFmdCSIDYQnK2wvUpoJw/OD4/+rovguFAo888gi7du3it35r2SHiLXHx4kU+97nP8U/+yT/hl3/5l3taqy3kZUWrj/SQjMnJSR544IFlbzM/P8+xY8dwHIcDBw40DWHWshzIVL779u1jdHSUw4cPZ5rgb+TgVqvVaEjv+fPncV03GpOmQ/nX4pi6LAjz5FvfBEBppEh1pkZptEh1ttbiVq1VdVY1mB/4wAf4xV/8RWZnZ3teqxWEyKY1cqVwRxJmpzMqTRJ6+OGHE3tuN8JaheQ3b97k+PHjbN++PaF8V6OXvFgssnXrVrZu3QoEX9ZGxdgDAwNUKhUWFhZa1hHeCeiFMM+/+P1U52qUNhSRVvA6lUaTP9ID27orWYNsCPOll15ibGyMp59+mi996Us9rdUu8pB8lZAektHqg2yG37t27WoYfjfCaofktVqNY8eO4bpuwz1/1mL4hu5UGRoaYseOHUAwZfz69evMzs5y6tQpKpUKxWIxEco7jrOqj3Ol0U3u9Mr7f5D6Qi0iy9p8oCarszXKG8tMnZ8GwC4FX8/HvviFrh7b3Nwcg4ODXd1W48tf/jKf/exn+fznPx+58y+++CK/+7u/29O6TZGbPiuPbsqE2g2/G2G1QnKlFJcuXeLcuXM88MADjI2NNXxe/TKtyLZtRkZGGBwc5NFHH0UpFYXyt27dioZTmC2BQ0ND6z6U74QwNVk6A4UlSqq8MfghHNgcqMrafPOmhnbe79nZ2Z4V5i/8wi/wC7/wCwB86Utf4l/9q3+1cmSpkSvMlUGnQzL08RMTE9y8ebOt8LsRViMkn5ub4+jRowwPD3Pw4MFlJ970C2GmIYSgVCpRKpWi4RRmX/XFixeZn59HSplQoaVS6Y4L5W9+8EVq81UKg0t/mEsjAVHW5mvU5qsAOGUHp9xcjbfTwbPu+shD5J0+K4BOy4SEEFy9epXTp093FH43QlaE2WgdM5+6f//+xFDbZuhXwmyERn3VuiVwenqaq1evUqlUKJfLCRLNekTaauLmB18EoDBYjAjRrdQpDpeoLwampA7Ly6MBebrVQF3e9x8/13DNdtoi5+bmMu0jf+GFF3jhhRcyW68hBLnCzBLdht8LCwtcu3at4/C7ESzLWpGQ/MaNG5w4cYIdO3Z0ROjriTAbId0SqLtZpqenuXHjBmfOnMH3/SiU12F/v6vQ6Z96H+5iFbtcxF2sJq4rDi81c0ojJeoLrd1xaJ8w9XDh9YPcJc8E3XTpuK7L6dOnuXnzJkNDQzz00EOZtAJmHZJXq9VoQ7R2Z2mm11nPhJmG2c2ybds2IIgo5ubmmJ6ejqb72LYdKdB+2kxu4ef/DvWFgCDtcvLzVhoZAKC+UI3UpbRlgizdqktxuER1tkIztEOY8/Pz625SUT7eLQN0Gn4rpbh27RoTExPs3r2b5557jm9961uZqELIljAXFxc5dOgQDzzwAHfddVfXj6fRxPW1INGVuk8zz6lRr9ej2tBKpRINpjBD+ZVs82z0XBd+/u8A4AwERFlfqOIuVikMD0QqU5OpVpn1xVhVlkbKEZE2C8ehfYW5/nKYInDKe11FiBLwp0CRgOd+Xyn14dQxReBTwNPATeCdSqmzy63b14TZbfg9Pj5OsVhMhN9ZhdF6LV0Q3y1mZ2c5evQonufx/PPP95Sj6zeFuVqhsuM4bN68mc2bN3Pz5k0OHDjA4uIi09PTUU+1Uipq8xwZGcm0zdMsKar90geXhN+aGAvDA4nbFTcMJK6HgDwtp31yv3MJM7MtKqrAX1JKzQkhHODPhBD/RSn1VeOY9wG3lVIPCCHeRbCr5DuXW7QvCbPb8HtiYoJbt241dL+zJMxeFKbnedHj3LdvH0eOHOnZ0MhqTNx6hy6cHxgYSLR56lD+zJkziYlNIyMjPbV56qL12i99EFgafhdCYnQNYpTh6DJNltKWFIdLuJXgB1iry1a4YwlTkEkdpgoUxFx41gn/0qri+4GfCU//PvAxIYRQy6iPviNMvS9zL+F3I3LtB8K8fv06J06ciFz6rJROvynM1cZyz73RFrp6YtP09DQXLlxITGwaGRlpe88d8fEP8TqAchBae4tBztEeLONVw3xkSIxCCpzBEl41JsTCcHmJGaRLjDb/yvK1ju3mMNcdYSI6ccm3CCEOGec/rpT6eLRSsMXu14EHgH+tlPrz1O13AhcAlFKuEGIa2AzcaHaHfUeY5rSdVoSiB1CUy2WeeeaZZZVC1iF5J2uZpk4vE9qbISfMzrptmk1smp6e5sqVK8zOziKESITyiTbP3/4ZAKxSEa8SEJ4my7Rh4QwG77VJjM5gCWEljysMlfBq7U/fv1MVphB04pLfUEodaHalUsoDnhBCjAL/SQjxqFLqsHl3jW623B32HWFCawVnht96AEUrrIXCVEpx4cIFLly4wIMPPrhiW53mhNnbaDdzYpNu8/Q8L5obOjExEU1seuKVP2y4hj0Y1k+GxOgMlHFDEtWXSdtC2hZupRZdbppBGq3UpX58rVIJ65Eww312M11RKTUlhPgS8D2ASZgXgd3ARSGEDYwAt5Zbqy8JsxmUUlHx+XLhdyNk1c6o12pFmNrUGRkZadmp0ytywsx+FqZlWWzcuDHKhcv/518EV4TRgR/u/20NlKPT7mIVe6CMX03WUmrTJ6Eyh8pRPtOEVqSt0I7C9DxvffbuZ+OSbwXqIVmWge8mMHVMfBb4UeArwDuALyyXv4R1RJidhN+NYNs21Wq19YFtYDm16nkep06dYmpqin379iXKYFYK/WT6rFUp00o689Yf/AoKEKUiqlLFr1SQA2X8SvLzZA8kh6Jo1WkSqLAtnKEynqEyAaRjI532v46tCHOtBipngmxc8u3AJ8M8pgT+g1LqJSHER4BDSqnPAp8AfkcIcYpAWb6r1aJ9SZjmG63D79u3b/Pwww93vZfOaoTk2tTZvXs3e/fuXbUPbL8pzNX+oq4UOTif//VIPWqyBJApYrTC895iFb9awxosRznNiCylTJhBGpH6DAl0w8+3N+y3HYW5Lkkzo2lFSqlvAU82uPynjdMV4Ac7WbcvCROS4ffdd9/dMwGtZEheqVQ4duwYwIqYOq3Qb4S52lgJYnA+/+sAyFIpQZoAqlbDr1QT4bgXKkVrsLHKTOcpnfDyNIG2i3YU5rpF3hrZGWZnZzly5EjX4Xcj2LadqUvu+37C1Nm7d280XLdTZGFapL8gtVoNpVRfbiWRNbIkTOe//1uoVsApQj1UlAZpqloNWSotKa7WKtOv1fAWK0Eus5YMu71qDWcgVpn6v3RsCo7NhR/4P6lMTka7eS73nFoR5uLiIgMDA02v72v0sSruS8KsVCrs3bu3rUk97SKrdka9VrVa5eWXX2Z0dJTnnnuu6xY8TXZZEabv+5w5c4Zr164hpYzmT+paxPUwtKJT6JrdXuB8+fegsgBOAXwVkWUa0oge/EoFWY5zmZog07lMfZlMfUaiHGctqM3ctGkTMzMzXLlyhWq1SqlUisqa0lvntiLM2dnZ9ddHDgFZ5r3knWFsbCxqh8wKlmVlsqbrupw8eZKFhQWee+65nss2NJH3MkRXE+b09DRHjx5lbGyMAwcOoJSKtpIwh1Y4jhMR6J0wBV0p1dPr53z598CyA7LUxmAxJMZqoCxleQBVjVWmKJaQKZK2wkn4Wo1CqDyFjHKZXrWWyGVqsgSiNk/9nBYXF5mZmeH69etRm6f+8avVass+53U5eEOjj3/Q+5IwVwJZbCsxOTnJyZMn2b17NwMDA5nUuHWzEVoaSilu3LjBzZs3eeyxxxgaGsJ1XTzPS8yf1KO+9BT027dvc/bs2Wh0mibR9bCtroluFbr9tT9E1KoBWdZCkiuF6rBWCciyNBCRJoAolROmhF+pIgfKKE2AOt9pW1h2OcptQpDfFA1KiezBMvaPJytezDZPc2KT3s2zUqnwyiuvRFPu9bARPTshi2nra4Z8gHBnWIkvay8ueaVSYXx8HCllNNDj4sWLmTyuXkuCbt26xYkTJyiXyxw4cCDx2jUjkvSGZuboNN1vXSgUEiq03TrS9VJWZH/tD1GWg7CMz4T+otYqUCglv7hCIEplVKhAVa2KKJWWqDztoKtabOZYA0uJUoftfgelRFLK6D25evUqzzzzTNTmOTMzw6VLl6jValy8eJH/8T/+BwsLCywsLHSdy6xUKrzxjW+kWq3iui7veMc7+Nmf/dmu1mobeUjeH7Btu+OQXCnF+fPnuXTpEnv37o1a6bJEt7lV13U5fvw4i4uLPPDAA1E7X7ePQSuU3bt3A4EKnZ6e5ubNm9EA3+Hh4egLu9yOkP1cVmS9+sfBbSwHWTPmTRZKUK8tPV2tBOF5LVaKolxe0u8sSsWIJCOyFDJw0sPzfrUWnNdqtMeJV9C4zXNsbIxDhw7x6quv8p3f+Z08//zzXe0nXiwW+cIXvsDQ0BD1ep03vOENvOlNb+K5557r+XEvC5m75GuOTktvZmZmOHr0KJs2beLgwYMrNlexm5Bcpwb27NnD/v37uXXrFtPT05k+rmKxyNjYWNTOaU790a2CxWIxItC0KbGaaIcwxdEvBcfaDiIkSr8Q5CllrRIQZLGUCL+jPKaGlIhyOZHLlMUSfi1pEGljyCxYt8rlpj3S6XC8Fwgh2LNnD0899RRjY2N86EMf6lr1651BIZg9Wq/XV+HHMJt5mCuFviTMlXhT2l1Tmzqzs7M88sgjK54H6iQkr9VqjI+Po5RKzPrMIg/aCumpP3obibQpUS6XqVarq7oveSvCVCe/CpaDrIdEFxKlqFWQtQp+IRVaF0tBWKjJU4jgsrrRsVMaSGzWJcsDqHANVatFZCksC6ucVJnQeWdP+vm2er/NPvJe3gPP83j66ac5deoUP/ZjP8bBgwe7Xqst5BPX1w+0crvnnnt4+OGHV+XL3k5IrpTiypUrnDlzpuFk9rUwaMxtJPTj8TyPa9eucenSpWhf8lKplFChK6HUmxGmOhnMihX+0ty1qFVQhRJLXnmTGLXCNBWkkAjTCLKsJQ46GLnMaiqXGT5/pcPx9/5Mm88yRrs7RmYx7MWyLF599VWmpqZ429vexuHDh3n00Ud7XrcZFKByhdnfWFxc5NixY1iW1dEmaVkUTLdSh5VKhSNHjlAsFnn22WcblgD1Sy+5ZVkMDw8zNDTEvn37EpuZXbt2jVOnTgEkhvdmsaVuo/ehfuZVpAxeKyskTN8pIeuV4D9EoTlCRtcBqEIxcM8hJkspw1xmSIBl7aabqrMcdamoxOVFrAbueLdYi1mYo6OjvPDCC/zxH//xihLmSkwryhJ9SZirpZiUUpw7d47Lly93bOroMqVeFVMzsjO7iB5++OGoPq/ZGo329FlrNNrMzHXdJVvqDgwMRCq03eG9JkzCrFwYR/getqEqPbuE5VZiskyH5vVadJ1wUwXrWmVGqrMYn47MndBBr6dNHxG0U4ZmoxmmC8vC/2v/V0fPM3o+bRBmFmVF169fx3EcRkdHWVxc5E/+5E/4R//oH/W0ZlvICbM/oMlJSsn09DTj4+Ns3ry5K1NH96b3SpiNQvL5+XmOHDnChg0b2hoN10+95K0eh23bibFpukDbHN6rXXtThba6z7GyjMhSw7MLWG4Ny63gWXGLqEmaol5DOYUlobkqFBGaGOu10DlvQqZp0ye8fKkZFPai13troFitPcmvXLnCj/7oj+J5Hr7v80M/9EO85S1v6WnNlhAClbvknWMlSMCyLKrVKmfPnmV2dpZHH3206w9VVq2W5jq+73P27FmuXbvW9mBk6C/ChM7UbaN9eFzXjbaQuHz5MrVaLVKhGzZsYHh4OGHSFGuzSOXhSQfb9xCoiCw9uwDKx/KWDrmIQvN6rAiVU0LUY6dcFUoJcwdIlh0ZIbswQnZNlsKywbJR4fleyRJWLyR//PHH+cY3vtHTGl2hD6KjZuhbwswaegfKQ4cOce+99/Zs6mS51a5SKipj2rJlCwcPHuyo1a/fCLNX2LbNpk2b2LRpE5DcQuLy5cvMzc0hpeTeXdtxvCqetJGeh1A+nlXA9qq4VrhbaEh+WmFq4jRVZlReVE+aO6pQMlRmNUmUGumQPYQsB8XiZi4TYjPIfetPdPXaQPsKczVmsa4Icpd8bbG4uMj4+DjzNznkAAAgAElEQVS1Wo3Xve51S3aU7AZZztfUHRrdljHdaYSZRqMtJG5du4wnbKT0cLwqrnRwvGpElrYXTghyShFpWl4NzyokSBNAuLUEWSqnhHDDfKTOc6Z/XM1wXJOlZQVmUKqAXVgWojyAcnsvVIfVC8m7gQhfqPTk8nALiL+ilGq+2XpwZO6Sd4MsSMD3fc6dO8eVK1d46KGHuHz5cmZlLVkozNu3b3Px4kU2b97Ms88+27XivdMJ08S1yRv4WNjCxvGruLKAUH5Amkae0pMFLD9Wd15IjmnS1MToO2FNa0icproU9ZRTng7HNXmmCFHoaotUh1kv6hLaD8nXQmE2IEor3IxsDPgjQC67lW1G2+yuFPqWMHuFntyzdetWnnvuOaSUXLt2bc232oUgR3fixAnm5+fZuXNnzyPXXguEeXFyBgALC5s6HjZCKhyvEpAmCtur4VoFnJTTrVWmJk0Tyi5EpCnr1aCI3U2G0VHIblyuCsa8SjMcN3vQU6aPSHcOdYl2CLNWq7VdHpcVwn10/i3wVeBl4OtKqZvh1QPAbX0oTXdnzMb0EULsBj4FbAN8gi14P5o65gXgPwNnwov+QCn1keXWveMIs16vc/LkSebn56PJPRpZb7Xby97k99xzD/v27ePChQs9K9U7nTDPXF3EEhJHBArOww5J00LIQqQ009Aq05MFcOJ8JkJGpUYavlNMmA2iXsM3nHJNlkoISDvoEPQ/F6yl6jM0fdLqsxe02jFyrT4LSqnrQoj3AG8g2Av8SSGEo5T6eWAToF+EZdWBykZhusDfV0q9IoQYBr4uhPhvSqmjqeP+p1Kqbeu/bwmzU8WllOLatWtMTEywZ88e9u3bt2SNrPf16WStWq3GsWPHolYzXSqTRWjfT4SZ5fTzM1cX8ZAUhIcj6rjKNkjTwlbBaVcWsMPwWyiFaxWww5DbDM2jsNxUikKgnKJBiBLPWTrrMs53GrlO00FPE2Jo+pAyfepv+pudvxAptFvOttq1uEKI7cCPAaPAVmCWeKfGUWChzYV6fixKqSvAlfD0rBBiHNgJpAmzI/QtYXaChYUFxsfHKRQKy25psVZ7k2siv//++6MCbnOdXgcbN+oW6ofC9V5w/LKLJSUFUaeubAQqIE1sHMKtH4SDo8LTocJ0QrOnGWmaZOnZJWR4vG8Htxee8V6knPKILNMOuiZLnePU52vG9enBHj2gj/fz2Uao7AjI6fXAw8BJgj2/582DG+YyO9sEbYsQ4pBx/uNKqY+nDxJC7CHYEO3PG6zxeiHEN4HLwE8qpY4sd4frmjBNU+fhhx+OylCaYbVD8kqlwtGjR3EcpymRZ9XW2C8Ks1d8+yLYwsexPFw/yFMWQnUphMKhhouDjVaXDrYfnBbKj87rfKZt1F96shB94i23hvSq+FYxIk2TLH27iPRi1aicQqR8RCKXWYqnEC0pOQpziOH1WahLaE2Y1Wp11fOXIQaB60qpKnBaCLED+IsEZs9mYCY8TgJeI+Onw17yG0qpA8sdIIQYAj4DfEApNZO6+hXgHqXUnBDizcAfAg8ut17fEmYrhTQ1NcX4+DhjY2ORqdMKlmVRz2AGISwfkiuluHjxIufPn+ehhx5atuUyi0lDWe5XtFb4+jmbguVii+B5uL6NI+t4ysJF4ciYNLXpY4uYNLWytP06rlzab59WmZ6d/PHy7BKWiJ3zNFmKUDVGZKlVpj5uSS4zVKMZb7UCrQlzrUqKgHPAdwkh3q6U+gyB4tQcswmYBlBK1YUQ24D9BHnNCaXU5WiVjFxyIYRDQJb/Xin1B+nrTQJVSn1eCPFrQogtSqkbzdbsW8Jshnq9zokTJ1hYWODxxx9ncHCw7dtalkWlkk1Y1IwwFxYWOHLkCENDQ223NWaRw1zP+Po5G1v6+EriAo4MXldPWTjCxVUWQqkojylE8APjKiciTYjDcq04YWloHhwQh+ZKiIAsjTIj344NINMZ951i9MMs6ubl8QARkSbIcMuL2ut/cHmnowO0swHaWmxPoZS6IIT4beAHhRCfAk4RqDaADYSEGWIf8CJwnIBkP62UOg4CX2TikgvgE8C4Uqrh9OSQtK8ppZQQ4lkC5Xuz0bEa64YwzX3K7733Xvbv398xUWSdwzTVqlKKs2fPcuXKFfbt29d2cXxW6nA9huRfOV3EkuFz9yUFKyAbNzxd962gdEiGpElMmraIiUkolTB+tMJsFJprlenaYSeQGbJbBaRBa9KthQM5aoExFKrJyEF3XZS0otxmRJZCBOVFAGFv+8svv0y5XE70yHdbE9yOwuxESGSMq8B/BV4CLhLkNCHIYc4ACCHuBb4L+F9Kqd8SQrwTOEhAnlkpzOeBvw58WwjxanjZTwF3Ayil/g3wDuBvCyFcYBF4V9P60BB9S5gmGWpTp1gs9rRPedY5TL2W3kd98+bNbacHNLJyyU3UajWOHj0aKY1+3GL3K6eLeL7AkmAJFRFkQboIoaLTrh/mLkVMmposBQpP2UY+MybNRqG5LmyXoQI1i9g9qxARovRqeHap4RfXtwuNZ286JYhC+vCHNCTL+l/4IZ41Rt3pgctA4v1pd9RdK8LMerRbuxBCfBfwVqBKoCh/Vyn1p+HVm4DT4emtgAPsEEK8FdgLfCVYJJt5mEqpP6NV+ZJSHwM+1sm6fUuYEA+juHr1akeqrRlWoqzo5MmT3Lx5s2/aGvXcyfvvv5+9e/eyuLjI1NQUZ8+eZX5+PjHQtxeVsxyW+9J/6UQZzxcUbR9LKiyhcH2JEAFBesrCFi6SMI9p1SPzxwmJ0lPBY9bEmTSB4h/TZqE5kJheFF0Wqk6zDlC4tSAUd2sBWWqV6bpRblM1KIiH0CgyXpP0qDvP86IhI5OTkywuLlIul1sOXG61LfMa7hj5EPDfgT8hCLmfF0L8b8DPEhCkDsm/CdSAXcAjBDWb/w1AIbKqw1wR9C1hLiwscOjQoY5MnVbIkjAXFha4dOkS9957L88++2zXjy/LkPyb3/wmSimeeeYZbNumVqtFW+zu3r07MdB3cnKSU6dORaPURkdHGRkZ6Vq9m4+jGf7L4UEKtgqIUipcTyCFDB1xiSUCBen5FlJ6CKEi8wegrmwKZs7SCM1N0rT9WkPidK0Cll9PtEYqIXGNHKZp9nhWoWk9phRJRzzqPZcWqmDFZtAysCyr6ai7a9eucfLkSYQQURg/MjISud/L/SiZ21OsMsrAaaXUHPA1IcQbgYHQ5Bkldsn/LjAEPAGcJSg7uh6t0idRUCP0LWGWy2Ve97rXdb1FaCNkQZh6z5/bt2+zefNm7r333p7Wy4IwJycnmZ+fT9R5Nlqz2UDf6elppqenuXjxIvV6PREmZrFH+R99cwjbUhFZArieoGD7uL5ACEkxJE1HE6WSOCIY1eb6NrYMidEgSVu4S/KZLg5IloTmptqEWGFK301eZpg9OnSPcplefF4j6kGXjQvY3Wfe2vbr1GrUnR64XK1WOX/+fKRC0z/W8/Pza+WSvwy8KIT4lFLqMHAvoN3pMUC7zxeB/wS8l0BtvhXYAUxkZfqsFPqWMKWUmZIl9E6YN27c4Pjx49x9993s2LGD8+fP9/yYegnJ6/U64+PjeJ7HwMDAkqL4dojOtm02b94cTXQ39yg/ffp0tJmZGca3q6Z//9AwtgVFx0dKcP3g8RQsH9eXSF/hWL4RlqeJUi5xzCHo8gFAsYQsG4XmGkqIRGieJkvLTxKiH46IS+cyzSlHYKjSqIDdCsygeu8VGY1G3b388svYts2VK1c4ceJEYuDywMAAs7OzLWuSW+HChQu8+93v5urVq0gpef/7389P/MTyQ0OUUv9TCHEV+IAQokAQmr8SXj0I3AqP+zSAEOL/Bf53gtzmN6N18pC8P9AtYdbrdY4dO0a9Xo/aGufm5jIfINwJdE/6fffdx7Zt2/jKV77S82PRj8fco1yH8VNTU1y9epWTJ08ipWRkZCQK4xvtM6TJ0rYUnh/MWijYCilCF9z2kAI8X6KEwrGC98UkSkd6AYGGpOkqCydUmhZe0EseznCw8LCpNwzNg/8OljLI1SpghV/MtFOuhIzKjrTKNB10k2ij2zklZDg0Qps+najLTiClZMeOHdGoOx0lzMzM8LGPfYzPfOYz7Nq1i8XFRd7ylrdw3333dXwftm3zS7/0Szz11FPMzs7y9NNP85f/8l9m//79TW8jhPhe4AUCtXgX8GUCAwiC4RtT4XG2UspVSt0CfjG5CHlI3g1Wws3thpyuXr3KxMREREz6cXU7fKPXx1Sv1zl+/Di1Wq2jDdu6hRnG6zCxXq9HYfz58+fxPI+hoSFGR0f5wpm92PZuig54PoBIKMyCpZBShTnLQGECCTUpRaAohVI40sPzrSgkB6j7dhB2G+oyUp0h0qG5pdyYPK0CVkh6kVMe5jZNMnTtIpYXkqQOx8PrdQ+68Fw8acUlRxkO2WgE3/eXfDfMKOEjHwmG7TzwwAMUi0WuXLnSFWFu3749er+Hh4fZt28fly5dWpYwgXcCHwZ+BfhB4GcIzJxLBFyjC9ejF3np/EyBIleYXSFrB7kTEq5Wqxw9ehTLshqWMnU6fKMZOun00SmBe++9l+3bt7d8PlkOwjDhOA5btmyJOph832d2dpY/OrwLxwHPA88CSwbhuOsJCqEj7vngq8Alh4BENWl6voxO29INzJ/wtM5j1n0bJ/yvv1e2cCPFaeE1DM2VSn4JG3UDQVDcLv16VKeZuM4uorxgHekvJUbfLiBClan2v9Duy9kR2tl4b35+nkcffZTv+I7vyOQ+z549yze+8Y129iT/W0qpBSHEvyUIteeJjZ6NpHrJYen8zHyb3XUGpRSXLl3i3Llz7N27l61btzY8LsstKlqt47oux48fp1KpJCYdtbP2auDf/ekGCs4IrqeQUuDYAVl6fmDuyLDWMiBHRTE0exJEqcPu8LTnW1FIjp/8mGrS1HCVvaTiziTNRCgu41ylNoIUIrw8GWpbXi1y0D2jtzwiSyGDeZpePSDLBvufZw3XdVt2j2XZGjk3N8fb3/52fvVXf7XlQGKllJ5G9DlgHJhWSs2Gl/0YMNnOfeY5zHUC3dY4ODjYsq0xqxKlVgrz5s2bHDt2jD179rBjx462SXA1yPLX/79BCo7A80FKhW0FZClDsrRkcNr3icjSVyIiy6CjxwjJ9elQDQqlsIUf5TE9ZWGJOJ9ph6fToblF/L64OCgZvBaJusxQeUahefhfGqG5ay/9YfLtAiyjMmHl1CUEtZutTLespq3X63Xe/va38yM/8iP8wA/8QNu3C0PuE6nLfr29W+cueddYrTmP5v7k7Uw9yvKxNVOqeir74uJiR6pytfArny1TLMbEaFuBkqy74NjBn+eD5YNjBzWXliQgSi8oJSqEpxN5zND8caRH3bdAxr3lEOQ27YS6TBaxp0NzS5cgheVFlu8mOoIgMIC0qrHSPzRC4NlFLC8oXJdeTKxA8OW2LaRfjyaFr+RPle/7bSnMXuswlVK8733vY9++ffy9v/f3elqr4/vOQ/L+gbk3OQQfriNHjrBx48aO9ifPSsE1It5bt24xPj4eTWXvl3ZGgH/5mSIFR2LbAtsOSNC2wfMVICgWYoVZsBVCEJKlChxwT0SXSWKlaZKmLX3qOiT3ZeSE29JP5DNNlemq8KOceqk8fbmMVaR2zy3lJg0gHaILmSgzSsO1i0g/+JzIVIG62PsXun9x24Drui0/o1l0+nz5y1/md37nd3jsscd44oknAPjn//yf8+Y3v7mndVtBEaRI+hWvOcI0Fd3p06e5fv06jzzySF9sSaqL4ufn53nqqacol8sd3X6lTB6Nf/EfCxFR2nZwP54PwoOCEyvMYiFwuoP8ZVBOBHFYDkTlRUKEqtPIaQJL6jCD20vSH9lGoblSApe4oF2rTE82/7i70omUTTqXqZC4Vgnp1/FtK3LKzZxmesuLlUKrtkgIDMteI5I3vOENazPQReStkV1jJb78tm1z69YtJiYmuOuuuzreA3ylcPv2bcbHx9m9e3dXe6avJFH+3L+3cQoS25bYTkCWnhd8mYoFgWXFCtNxwrKgMBQvhOG4E5KmrwR22O0jQiNIiIAsPV9iST9BlFppQqAwTVPIMslUxarLzGEqRGIMnBWVBUlcEahIs0Yzuj40gszLTJhdQSpUmyutLqE900cI0Ref6W6RK8w+ged5zM/PMzEx0fEszZV8TJVKhVOnTvHEE0903d2kQ/ssifOf/jY4BQvbFggpArK0BPW6wgmJ07KCMqKCI+KSIhnkNX1f4Ho6RBeR0vT8oKAdiEJyKYhGvUlURJ4QD9vAj/OZlkGapsqE2PhxlR2ZRBDMz4xUJEnDLio/IqkyLaPuUptBZri+Gs64iVamj1JqXY76M5ErzD7AzZs3OX78OI7j8Mgjj/QFWU5NTXH06FGklBw4cKDnrXbbCdfaxU99QlEoWFiWwHYkji1w6wop4pDc9xSeFFE47nmEajMgTCECopRSIYXC9YhCcs8X2JaKnHLXEwjdSSP1MXFu0xKBS06DCiwvNIc0aZpkqJ11VzlYxMaQS3Be5zIhzmFavosnbaTyo5FwjfKZnlVAhPdZvOfR3l7wNtGO6QPrd6i0yl3y7pHFm647Y6rVKk8++SSnT5/OdDuHblSd53mcOnWK6elpnnjiCV599dWen2tWrv0/+DUXp2hRKFhBCG5L3LqPJUPyDI0e31NIa2k4DkFIrp+OCImyYAeXmXlM3xdBmO0l85fa+DFPmyVF2kFvGpqH971ERRI8wEadJJ6IC+HTaGQGedbq1F2m4brusvnJer3esFV1PSEPydcIejak2RmzEjtHdjJTUqvKHTt28Mwzz6yo294pfvJf13EKFpYlESLIUwqhsB0ZkWWQuxQ4Tmj6hOG4EMH2NYWwJVIaYbclY0WpSbNgxY9ViCRJQrIuU6NRaK4QDV1zMyQ3Q/OE+sTGwsUT9hKVKZUfmUTNzCAIVObArr1dvNrdoZ1ZmGs0qSgz5GVFq4xqtcr4+DhCiCVtjWtFmL7vc+rUKW7fvs3rXve6zFMCvRDm3/xn0wxuKIcheKAqlVKhyROE47Yt8HxFwZGRwnScWGHakdoMajBdD6SIzR4dntuWomAFZo8d9pRrlxxi0tS5TW306MvToXmSZO3oy9boS+ctoz4hdMp1DjMkUKlCok2ZQVJ50W6QqwnP85YNyddwA7TMoFROmF2hU/WllOLy5cucPXuWBx98kLGxsSXHrPZWuwDT09McPXqU7du38+yzzzbe4qBHw6YbwnzvT9/AKToMDJcConQsfKXwPD8iTydUldJSWFJELY8RWXqEZBqsaYdkGYXghkMuhQq6fkRAltr80eQJ4IVfFuHHKsokTTM0Ny93/VhFJgyg8HjzdposFSIqbneFExs9KiZHT4QqUzZWmaupLiEIyZdTmGs4PDgjZDN8QwixG/gUwc6VPsGe5R9NHSOAjwJvBhaA9yilXkmvZaKvCbMTLC4ucuTIEcrlMs8++2zTPM5KbFPRDL7vMzExwa1bt3jsscea/vJn4XB3Sph/459eZ3BkAKdoY9sWTtHCrXsUSjaWJUOlGZClZQksGShMzw/CcW342LbA91WoQnWIrp1wM4cZPzbXW9oNY9ZhBsozVqDJ42ScazR+q0xSTITmCZc8FWKnc5wizHHqrp8oPE+qTF9a+OF0pKmpqY5mhPaKVhHNeleYCvCzmVbkAn9fKfWKEGIY+LoQ4r8ppY4ax7yJYB/yBwk2Yfv18H9TrHvCVEpx/vx5Ll261FZb40qE5I0wMzPDkSNH2LZtW1NVmV6nly9du4T54j+8jFNwGNhQxnYCFel5PpYrsB0LKUVk9AghKRQk0grIUitMbfgEfeLBwI24gD0gRN0aaVtxeVFcSmQQoieiy2O1GCvOpIpcGppbwkuSaAhdl+mH1Jwm0GSOM+mgQ0yWUfhNTKT6/FRdsjCdnBGq/3rd6qMZXhMheQamj1LqCnAlPD0rhBgHdgImYX4/8KlwYtJXhRCjQojt4W0boq8Js5Xi0m2No6Ojbbc1WpZFrVZreVw7aBSS+77P6dOnuXHjxrKq0kQnI96aoR3C/Gs/eZGhkUEsJ1CV0pL4vgqIMsxXWlLie4HRY9sS3w9Ca9sWKBWH476n8ERs/kgRDtkIydI3yFIPERYiGYJ7SofmMWmC7ujRr+tSM2i50Ny8XIpQsRqq01MWEh+3wUffxYnCQR2CR+oyldMEuOuuu6J5pOaM0AsXLuC6LsPDw9GQ5XK5nInB16oO884Iydt+nbYIIQ4Z5z+ulPr4khWF2AM8Cfx56qqdwAXj/MXwsvVJmM3g+z5nzpxhcnKS/fv3MzIy0vZtVzIkn52d5fDhw9x1110dbYzWzoi3dtZIE6bOd/3wB85jOTaDI4NIy4oIMjB2rIgcLSnxVVB/qVVlIXTIlSJRUqTzllZo+ASPIazFlAFZaoVpEqI+7RkdP0CkNJe65YEZBGmDp3FoHl9vJ8qNmsFTFlL4YV2mVp9JcvSkHc3T1Jedu3yNR7fsjNZpNiN0enqaU6dOsbi4yMDAQGJHyG4iinb2JF/fhNmR6XNDKXVguQOEEEPAZ4APKKVm0lc3uvvl1lt3hKkNlLGxsa7aGlciJNcEfv36dR599NGOP7BZ7U2uuzz0Y7Isix/6u2cYGB7EKTrYjo3tBISpQmVpOxIpAsXoW0G+UloidMEDsvQ0QYYlRZosC452v5OkWXdDVWp8r03zR5/XsKVaojA1OSZItUlobl5vCRWE2jIZgisEdWUHKjM1As6EhxU75ZHKDDuQDHXZKoVihuh33313tCPk1NQUly9fZnZ2Ftu2E2F8u/WTrXaMXM8heZbDN4QQDgFZ/nul1B80OOQisNs4vwu4vNyafU2Y5gdDF3tPTU21Heo2QtYu+fz8PCdPnmTr1q1db7ebVUiuiVJvY/AjP3mJgeHBkChjsvRdH6doI0NzJ1KVQgTnwxyl56vI9NEKUxNnwRGhQx7ct1aTwfMJQnOIL9Pmj22RyFtKEfSX698L3eXjhxumuZDIZ+r/jUJwE56vH0z4TzQYoRfmMCMnnSBch3hgR7QeVmQWbR0bY+L8pY7ea3NHSL0XT61WY3p6mqmpKc6dO4fv+4kwvlQqdRzGz83NRVtLrFdkQZihA/4JYFwp9ctNDvss8OPhZmwHCQYeNw3Hoc8JU+PWrVscO3aMnTt3tjRQWiErwvR9n6mpKRYXF3niiSd6mnaUVUiud3iUUvJDP3EGp1BIEKVlSZSvsBwLIYKWR1+pwBWXEs/3kX5wufKDOkwrEW4HheeWFROkJk2dw9R+hA7J9VsVbIimc5sqynFC0hXX3T9gkGcYoqUdcw1d0C6Fj6sEdkiOloxzmWbfuRXmMBsSbeh+67DQwk0Qafo17wWFQoGtW7dGU/09z4vC+JMnT7K4uMjg4GCkQNsRCes/JBf4KhOX/HngrwPfFkK8Gl72U8DdAEqpfwN8nqCk6BRBWdHfaLVoXxOmUoqjR4+ysLDAk08+2fG4s0bIgjC12SSl5L777ut5NFwvClOH4GNjY1y4cIH3f+h2GH7HIbjlBGrSVyoizogUHSskQB9LhvlKgyyjcNzIZ4IOxbXBEyhSncO0Ew55bP74IpVj1YqziSvu+6YSXd41jw2eYEK7FD6+r4cLNya2JNHGBBqpTFL7nQPbxzZ29T61A8uyGB0dZXR0FAje24WFhWjP+Lm5ORYXFzl9+nREomnHfA33JM8EQVlRJi75n9FilnPojv9YJ+v2NWEKIdixYwcjIyOZtRD2QphKKc6ePcvVq1fZv38/U1NTmTymbhWmUgrP81BKsWnTJt73UzdCknSwHAvLsZBWrCxNsvS8IAwXgrCOMjR6PEWhIMO1wXZistQKU8/ClAmCDPKYmjRNp1wjMna8lCvuQfzZTtVd6l0bo4sb1GWGj6XB1ZHa1C2UlvBwies0G4Xqmkh1CN5IXa4GhBAMDg4yODjIjh078H2fQ4cOMTQ0xK1btzh79iy+70d7kjuOk4nCfO9738tLL73E2NgYhw8fzujZtI+8l7wHbNq0KdNhGd0S5vz8PIcPH44ms0spmZ2dXZOtdk1jR9/++/+PcZxiAcuxsRwL27Gx7NDgUQqnEKhMaQU1lk4xIMggNxmoT4kwVKVWm0R5S/1fGqSpi9W1EaQJMnbIA9cc4j3K9X9LxnlNDbNgPR2apwval6jL8LxSIshLhpuoWaKxeq8rO3bGtcokSaQmWa6kumwHnufhOA5jY2NRF5vneczMzDA9Pc2HP/xhvvjFL3Lr1i3e/OY38853vjNy7TvBe97zHn78x3+cd7/73Vk/hdZQeWtkX6FTwjT3+3nkkUcSJUxSSur13veh7oQwTVUphOCt7z+GUyxQGgrmaGqDR7c6Bm2OscGj/LBzx5IoRWjoJENwrTBBIGSsHj0v6OjxfBCJHGbQ7WNbIpHHhKT5Y5YXWdIkT4NUm4TmUqoloXvweoCXynk1IkjTJJLCD8hSxGSZONYgTq0yd42t/UT+RiVFlmWxceNGNm7cyG/8xm/wtre9jQ9+8IOcOnWKSqW7CfBvfOMbOXv2bAaPuDvkCrOP0Elov7CwwOHDhxkZGWlYGJ/lVrutcphpVanJMgi/A5IMwu6wtdGxE0XpUsbE6CuifnG9lp5OZCpMETnMmghDFWnrSUYiymEuqcW0SKhHL3qZmuQTl1yfJEHTNTevtyKDxwi9Q+PH863YCJKN3yfXt1G6BCllBjUK19cSrWowIYiEDh48yHd/93ev0qPKGiJXmL1gLQahmu2W+/fvj5LwabQ7fKMVWhGvSZaa3L7vfUfjENyyIrK0w7ylmbNUvsIXKhyuQaQwE6F3SKYAIuwblx7xZaFLbobnutvHzGEGr8tS8wdiFSlErCrNfKZlcGSr0Dx4XYIteW0ZbA8GXpQAACAASURBVG8RXd+ohMjXBKviYnWzXjOVpwzC9eCyPXclp+Cv1UTzdghTF8ivVyjIyiVfEfQ9Ya429N7kw8PDLdstWw3faBfLEabv+9F9mGRpFexIWdqOja/8oFwodNydgp0oI4qNH5k4rZRC6VIiBVKTngxUpa9UVMCtSdMJyTLaCC18CYQIZ196S8PyuPOnATl6rUNzaZQcuaHabBZ6a3GqyTEOvbXjHr/Wul4zMniEj6/sJWF6+j1Ziz1z2iFMpdS63s8HGjZu9Q1ywgyhlOLChQtcvHiRffv2sXFj6wR/ViF5o7KiZqrSKthYBTsydaQt8ZWP7djB4AwnDLOlSJQRxXnKsLzIlpE7HrjmfjAH04+VppRBOK5U7FI7Zlhu1lLaAtdVEJKoLnE0v9++D24Uci8lTs8X0eXNQnMTnhJBZ0+KUCFJppHrjTZywsesjZ3UfxNpdRk8j/4kzJXeNXS10M8hed//FK3UB8AkqMXFRQ4dOhTlf9ohS8guJE+XFWljxyTLv/rewxFR2o4dlAuFLY5WWDqk85YyMndkRJbSkiG5hmTp6SlDPp7nxxPWdTgefjJ0KVFAmukcZpx7dN1Ycer6y+D2cVG7NNxynZPUxe3aNYekytRqMsphGsXrkWI0uoNcXyb+NNKkqMnSVRJPWYm/IA9qJXaiNNGvhAnZkOYP//AP8/rXv57jx4+za9cuPvGJT/S0XidQ4fCNdv7WAq9JhamdcsuyuHjxIhcuXGhrNFwaWYfkaVWpv5R/9b2HsRwnylVakRNugcWSvKUmy8Q0IgG+6wd5zLD1UStM/QXTReum8QN6zx7iLh8jHJchmVpWbP6Y5ChlXFpkFrFH+Ubj+69JM8pv+skBHRCSop4opIvZtXLUhGsUuQP4Ks6LWZpMjLA9eB5Lf/ge2FZs+H71K2G2Q6jt4NOf/nTPa/SCflaYr1nC1D3gAwMDPPvss23txJdGliG553mJciGtKgGssGvHCp1wy7IiV1wXpysj/AYS04iCfm2iVsg45A7KhkzDx7JEYAzJkBgdrRp1v3fcA65JU39H9SAOnf/UL2lchxnnM6NSoVQdpkbaNddtk81IUSHCkD4m0uj1FckwPR7MoQwzKM5hesrioR3NPw9rSZh3+ixMVDx1vx/R94SZdUiulKJWq/Gtb32L/fv3s3nz5q7XyoIwNUFOTk5SKBTYuHEjjuPwve/5Nk4x3OLVMhVkoC49z4vymFHIbbQ/RmpTKXwl4pZHx4rqLwGUT9ThExBqQJZKBUrT93S+01SNcS2mCfO77PkKXN1I3vi5x6VCsdpsFppDqBS9eDxccGFIeHJpC2VwPnbQ3eg24WufItJ2y4jWkjD1/M1GuCM2QCOvw+wbVCoVjhw5guu6PP74403LhdpFrzlMHYJv2bIFy7K4ffs2Z8+e5Wd/rRwqSD+qs1QqOK1NHp23VL6/pP1R+WEu0vOxbSvu/44uiw0f/Tj0lKJgULAyesbjENwkWq0uwejqifYlj5113Qlk7lduqsp0aK5U0jUPoNVfUjlqojNv4ysR7IEeKcfka542eoKcZdIMemTn8mTYryH5eu8j18hD8jWGuTnaQw89xLVr1zJZt9scZroI3bKsaGrN977n24GpEzKItCWWbQFWWB4UXh7lJ20sI/xWvgrCcWOwhr4suK+4w8fz/SgU91O5S99PkqMmQbMWM7rezEMapBl0B8Uhe1yHaeY149DcPEbDMnOgmgy9sK0ydMmbwRINSpJ0LpM4BDf/t4N+Jcw7IiQn+AHsV/Q9YfYaklerVY4cOUKhUODgwYPYts2NGzdWvH6yGRqVCwF873u+DYThd8hAepCG7/uxyUNAlgCWbWHZsbGjR7Up3wzRSYTjpsI0i9c1tEvuhErT3M8H4lrM5CSjmOjifGZ8uakwoXHOUhNnuqDdXDutMCHOd1khkUoZpiCEisgxDTMET+cwH93Z+nPRr4Q5Ozu7zke7AYhMphWtFPqeMLuFUoorV65w5swZ9u7dG80chOxmYnazDXDa2AF487u/iR1O27YKJjFa0eR07ZBHZo4e2ebHJGkWqgdueFxbKe241hKIWiXNPXyUiqsfNSnqHKZZi6mVpRTBdhXhq5F4rmlvwjPqMs1CdlNlQnJQBwTEqUvApA7zpUrmOpuoTF2nGfei64ns8eNP316bb0BUqZAmx34lzDtBYSrykHzVUa1WOXr0KLZtN9xyN8up6+2gWbkQJMlS2nHIbZmK0ihO10pRCJEwdkzDR0oRkWVaYZp5SCFEqErj3KYuK9LwfcKtKSDKJcrE2ag7KF1ipM2htPpMlhLFpBm+WonFIzMnZQBZ4Y6TYGxYZoTeXotw3XTOXSWxhc+TeyS+X0i8X2b1giZP13UzKd/pFK+F/XwgHhjdj+h7wuxUxV29epWJiYklqtJEVvWT7WA5VQmERk5IkkadpRWWCllOfJ1lSXyhovZHkyxNIo1D9JgsTYWpVWmwrkg45c3ymEG5UZzH1FPXzU3RguP0ayyWkKY5lAOWhubSqLmMbhMqSZ350J1COs8VheupKUZg9I+HilQKnff0owlHKrzdk3u08tavS7hNr1Efq9/Lubk5CoUCrutG7+lqKM7XBGGqoBqiX9H3hNkuarUaR48eRUrZUFWasG17xQmz0cxKDU2WQWujQYiOHV2eJEIj/LaTpo8ZjotoIpEVKUXTBIqc8LCH3JIyIsvgMYionzxh8jgi0VNuTl33IwMpSYqaLNPQL7sezJEwdYzQvBFMTtIKMu2ku9EUo1iJNl8vvq5erzf8zJgE6vs+x44dw3Vd9uzZAxC9v/rzJKVcMQJthzC7mX/ZT8hD8gzQavyZVpUPPvhgNFh1OWQ1x7IZmqlKgDe9+Cp2IXjZg9rKuFxIlw5B8Jz1lyMiwrDUyOzqgcD5Np3xOEQ3u3eMSURaQSq9wZmK3HNz+IZZi7mERO0keYJZbB69EsHzTIXm6YJ2/T+4fRxeN1KZjXgorTKDgvSkEk2bQTp8B9iqTvDqq7fxPI+RkRE2btzI6OgopVIpuo9KpcK3v/1txsbGuPvuuxPvqQ7d9Y8kEJ23LCtTAl0u4pqfn1//CpPsXHIhxG8DbwEmlVKPNrj+BeA/A2fCi/5AKfWR5dZcF4TZDLVajfHxcQCeeeYZCoVCW7ezbZv5+fnMHocmxkYzK/UH/E0vBvswmWRpOw6+8qOSH9PkMfOWQFRz2SgcF1IkCFTnN02FqR304PkH4bnpkvvG8TGJhuQVhu1agYKZ1yR8fJpo9fngf6PQ3A2HWqZbtZcQX4pjXE8go1A8DK8luH7goPtRTjM8JtVr3givv98HHgifUzC9/Pbt21y6dIl6vc7w8DCFQoHJyUn27dvXsH02bQyZu3eupgK9I0JystnTJ8S/Az4GfGqZY/6nUuot7S64bglzcnKSkydPcv/997Nt27aObpul6WOq30blQhCTpbSDjh19WhegB2VARo2lHYeBukSoWTguRTpHaU4rSipMFW5WpskSiAdxpHKY+r9+jiYSoXH6Nm2G5mZk6XpxQbuUxMRnkqMnYpd+GQK0DAfdS3X2yPAyKfRkJOPK8PXW08uD5xZs7Xz16lUGBgY4fvw4Q0NDjI6OsnHjRgYHBxsqvkYEav6Ypkf2NXLiu8Gd4JJDdgpTKfWnQog92awWYF0QpklK9Xqd8fFxfN/vSFWayKoHHIIvWb1ejz7wjchyialTsI3cZHidHZs8ul88XUYExFtNKBWNcEt0+YSqM7i/pQrT3JZClxRJK/mlV0biPWHy6FIjIzQ2TaHg+PZC80YF7YnXNTX2zTR+TAc9XdQeE2G4zjIq8w0Puksui+7T86L63eeffz4awTc3N8fU1BSnT59mfn6ecrkckezQ0FBD4lvOSGrmxJu3axd3gsJUSix5D5fBFiHEIeP8x5VSH+/wLl8vhPgmcBn4SaXUkeUOXheEqaFV5X333dfTZvW2beO6zb8s7UJ/wC9dusSWLVsYGBhYEoKbZKnPW5aFEirMTcZ5y3gsm9UwHJeWFdVPmiPcdO1l0gRq0OHjx1OKIJh8DqCrbxrlMYPLm5NmWo3GZKbXDP6bKnMpoRLdJlrXb0ykaZWZntIOcRG7JYlrLjVph42Q5q6VaegN73bv3s2OHTuiy4UQDA8PMzw8zO7du1FKsbi4yO3bt7lw4QKzs7PRPIDR0VFGRkY6JlCd/4aAtPUPcDtj2+bm5nre8rkf0IHCvKGUOtDDXb0C3KOUmhNCvBn4Q+DB5W6wLgizXq9z9OhRXNflwIEDyw4gaAdZDc3wPI+9e/dy/fp1Tpw4QaVSYXh4mH/wL1yU8rF0MbplLVGZjfKWsRr0I7MAQGj1GuYDTWcc4slE5uzLRuF4GmYe0zJC9UYmT1pJBq9B8r8liUlZEW3Dq0Pz4LVvTKhx/hLSb03a+BEi3n43LmoPj21Qe6nVpSS+rpm6vH79OhMTEzzyyCMt1ZoQgoGBAQYGBti5cycQmEO3b9/m6tWrHD9+HNu2oxC+0T7iweNbSqBANBPV933m5+cjs7JZHvROUJiwesM3lFIzxunPCyF+TQixRSl1o9lt1gVhnjt3js2bN7N9+/ZMphf1uje5mavU+0bv2bMHpRRvevEbSMtCYEXkkFaZ2qSJyoiM3KXZ/hiRoOGM675xs1A9WCNZZqTd8AB+fIwRgpu1mKAHGTc2f6I8rRGqm7eNCM/sAtJ3b3T5NKrNbIRYSTZ/L8xcZkSyMlaZejixzonqtb5rX23JWkopJiYmmJ2d5emnn162LG05lEoltm/fHkVAtVqNqakpbty4wcTEBEBEoKOjo8uWMun/N2/e5MSJEzz88MOJH/u0E7+wsLDuc5iK1avDFEJsA64ppZQQ4lmC+Ss3l7vNuiDMBx98MNO6yW4Jc7lyoe/5kVcAEjlJfV75fsLk0ZdLQzkCSCETectIQUZr6vPpMDtZjB493iZOeTqPma7FNP9D7Ig3KzFKF7EHB6faDxuE5ibSE400AZrqVfeKo2LVGVzXWmUuZxTV63W+/e1vs2HDBp544olMRwoWCoXEPuKu6zI1NcXU1BRnz57F931GRkYiEjWjJ71tyuTkJE8//XQiX5924qemprhw4UJmj3stkWFZ0aeBFwhynReBDwNOcB/q3wDvAP62EMIFFoF3qRY73K0Lwswa3exN3qxcCJYnyyU5zCXHJMMxM+doHt8oHNdK0vd8pBW45Pq2ZotjFP5rR92K12pUiwlJkjT/N8tvBoiVXDTV3QjNw1czWKdJ26QJ/RKny400zDrNQEmG92Co06A/Pm6j/CuPVhNrzMzMcPToUe6///6mnWFZwrZttmzZEhWYe57H9PQ0U1NTiVKm0dFRbty4gW3bPPXUU0vCb9McOn78OO9973v5uZ/7ua4GYfcTlKIT06fFWuqHW1z/MYKyo7axLl7drIcIN9p0rBmaTRfS+J4feaUhUUIDw8c4rlneMl1GlHS9jVymoUB1Ybs+ZrnC9UbhuJnDjNcgIjw9QV0aROil4qZmoXnymKXlRmkDSKtMITCUpL52aVH7kvtoUsMJS8ny8uXLXLhwgccff3zNtqa1LItNmzZF9Z2+73Pz5k2OHTsWkd+RI0ealjL9/+2de3hU1d3vP2sSAgmBxKCIEMLFIISAQCKKN0ispRTLvfV6DBSBijdOrS8+9i1YaSvoiwf1oLTWCmIreGlV5AmXJJiDooKAEJJwCQIBQgBhEiAh5DJ7nT8me8+emT2XkMnMhOzv88wDe++11/rtycx3fveVm5vLvHnzWLFiBcOGDQvJMwQaZnu3VoimaJV20lOj1I5j9/QgxTnI4xTtjnAzxz35LsFBeIAW0HEvlzQ2x+0t2hwBHz3ciNXiML9VM1l9G4QFn6a5UQDIFa5aptHvo0qcep+kPk9T7aakbVPhFAxybsShKAr79+/XgoihaKThCVVVVRw8eJDU1FQSEhIMU5mioqLIzs6mrq6Obdu2sWHDhibnIoczTMJsZfClVf7sgR2AM1mCc+qQ87Gzea1quK7muBoMMtIwPZnjKoy1UIeGqXZb15vdmlaq82Oqmp8vTVJoZq+zyW4nYN+mubcAkGaKR+jNbue/kaOs0iAqLvRkaYeqXaoljtdeey09e/YMq21pT548SWlpKUOGDNE0XqNUptOnT1NUVERJSQnt27fnmWee4Z///GeIpQ8czOYbzUQwP9TeAjt6ogTjHEtwBHFcK3mkS7WO/l71HtW89hUdV/2R9nXd04rscwunufVaqRB6wlKcktj1kXL1fldN0lOppL+mORgHgPR/alc3s9o+zmJgpgshURorhtQKH/WLN35oDQBWq5X9+/czYMAAv7dSDgbUCH1VVRXp6ele/ZBnz55l+vTpjBkzhk8//RSLxYLVag2itC0Ls/lGGEOfDOytZyV4JktLY/K5PhoO7n5LjUQ9+C71YxxaosVQw1R9mOpY10i5Pq1IT3zqbopa6o+WE+lshuvhiOA73i+jOnKHqe8wzRvfZW0em3TWJF0DQHpCdMyNtr59rO5a4/+FQVRcT7z19fWcOHGCH3/8kWHDhjk11Qg1GhoaKCwsJDY2liFDhnhVDoqLi5kxYwYLFixg/Pjx2vmmbg8d1pCmSR6WUPPZVF+iJ60SvJOl4Xmn9CDFEexxIUZX36V9jIMs7XO7m9raM+jqyPUapmvzDbtsDs3UWZN0jpSDY+MzfT6mel6Fa/Tck99RL7N6bFRvLgQ4eFgldPsYi0V/Dcc1jWSdg0Eq8QKkdNzFli3lCCHo1q0b58+fJyIi4rLzLAOJixcvsmfPHnr16uXTB7lu3Tr+9Kc/8d577zF48OAgSRh8SDxXgoUDWgVhtoRJHhERoZVHGvWsBHeiBNXPqLjkWToHecDhtxSN5Oka8TY22y2amewt4AN2stSvoxGqcCYyVz+mUS4m6H2LwkmT1KcNOYIy7qWSKkG5aplq9Q+AzUPZpNPfxeIgS/dreLxmVCv+0/5nKCyspH///lxzzTVUVlZSUVFBaWkpiqI4JZBfTk+C5sBqtXLgwAEGDhzotZxRURRef/11Nm7cyMaNG/1qX9jaYWqYYYiIiAjq6uq0MjNPWqXQmdzgSB0SjVEP16CPq99SncPVFAe7JuqYwzlZ3ZM5rs2na7rhRLS6lCK7TMZ+TH1iuivJuh4bXbNY8EC2DtJsnN1+rZE4hUEqkXOQx/k+oYuuq/c5qo3QzHy1t6WqqUZYJHv27HEqcXTNf1QJ9OjRozQ0NGgEetVVV7UYgarJ6KdOnWLYsGFey3wvXbrEnDlziIqKYsOGDc0uCW4tMIM+YQTVVxkfH8/u3bvp2LGjlgcXHR2NEMKJLME92VwlS09BHv09DqJyKYt001rd27hppnWkxclcdmrXFukww42I1dm0di+bNNIo1bVUU1evNer7ZKryqPOoY1W4BoD07gSH/1Edq7vP4j6XYz3n+42uAfQSXzPIS4ljREQEXbp0oUuXLoAjgVxtpNHQ0KA1E3atwLlcqB3bpZSkp6d77UZ06tQpsrKymDx5MnPmzAnJpmshgenDbD4CZZLrAztJSUkkJSVRVVVFRUUF+/fv59lFdhNdJULQE5+q6emJzz3Io13z4rt0Pbav06j56cjSfmzRGlcYJa6rBOggOVdidU4rAojAEeTRa6ZqepF9DZzSkJy1RhrlcSZb9Zx9ffcAkJCOMZq5rkXZ1TntWqYQQtsPTfV3Gn0MLMLRR1Mdn95lD337Nq3E0SiBXCVQtQKnc+fOGoE2NXBUV1dHQUEBXbt29ZnOVFBQwG9+8xsWLlzI2LFjm7ROa4fEvflKOKFVECY498S8HKidX9S51A+smuM2479OATqtUTgHX8Cd6IyCPA55Pfsu9Zqoek6fSuRqjtvXdvZ9GgWBPPkxjca4Rsr10HIstfkc19yDPUZmu/Oxp3Pu19wuuWmi+nFGZemZfUq55prr3S80ERaLxamZsKIoWjf24uJi6urq6NSpkzYmOjra41wXLlygqKiIfv36aRqtEaSUfP7557z00kusWrWKgQMHNvs5WiNMwgwhfCWhA4y+7zvAnSxdo+F6rVFYLE6mtcOsdiZCve9Sb467E6zwaI6rz+FqjqvzAR79mBahqwTyEClXn1HNx5SKQ8MEZ5J1JKB7DgQZ5Wa6aqmqlqmWQOqh+kf1pZP6tCKbQc24+iVrqXpwi8VCfHw88fHx9OnTB0VRuHDhAhUVFezdu5fa2lo6depEQkKCpoEKITh16hRHjhxh8ODBdOzY0eP8iqKwePFivvrqK3Jzc70S65UMKU0fZsjgK13IlSjBM1kaaZyu2qKrKW6/3+JRw9T7Gn1pmM5EaJy47urHVKt9wHOk3P5sOKUY2edulN+g+kedUyVOT6a5EUmq69ls0k7mONZRU4Jc8zQdgRzn8kzXDkf3j7jo8bMQaFgsFuLi4oiLi6N3795OBLpv3z4uXbqkjR04cKDXWvWamhoee+wxunTpwrp168Ii5SmUaI4l2dJoNYTZFJPcVxI6OMhS1RS9pQ55CvKAQaWOzhR3kt0lOq4nO3WMkYapzq0RZ4Qjpcj1frs87s/qq+LH033ezHZH2zb3a94CQIZ+SJdWcPbxeBxvdC6YZGkEPYEmJiZSWFhIZGQknTp14vDhw9TU1BAbG6uZ8Gp3/vLych5++GEeeughHnvssbAq1QwVwpgvWw9h+gt/tUrQJ4e7lifaz3sL8rimBIFeC7Wb4mrKEuCWSuRqjoN7wEcvk57QXKt8nDRUL0EfRz6kc1citRmHes6b2e5eG24cbbfLbpdXLal0JVB1DqMemqr26JTf6SEYFEa9M6ipqaGgoICkpCStiXCvXr20JhoVFRUcPHiQvLw8Nm7cSGlpKfPmzeORRx4xybIR4ezDvGJyFVSibGho8EmWwmJx2vZBSsWNLCMiIty1x0ZtVL/dgxFZqvc7tpho1DB1Y/TzqP462fhJkVLan0FL4tZFwRvv05vkUnGY44puTnAQmtN6rvdLtSRR31m98V+b1AhNnVt/zv6s7gEg1+YcekQYaJRGWqY2l8E5vUL80G2h1S5VWK1Wdu3axYABA9z2nFKbaCQlJXHjjTfSs2dPFEVh2rRpbNy4kZdffjkgMhw7dozMzExSUlJITU3ltddecxsjpeSpp54iOTmZG2+8kZ07dwZk7UBA/Sz68woFWo2G6e3XtymBHT1RqtAHcsC5Plxb32XfFX15o6vvUt9v09V36c0c15OmRRcocu2mrvohXUsj9XMZJqh7jbC7k57j/XE3zY20TH0kXAscqVF+i7tPU+pKJhWDc66pRHaNs1GLbdRCfj0qPMjy2LFjnDx5krS0NK85m4qisHDhQnbs2MHnn38e8CYgkZGRvPLKK6SlpWnbbfz0pz91irivW7eOkpISSkpK2Lp1K7Nnz2br1q0BlaM5COfSyFatYeq1Sk9kOfq+7zySpRAWzeeoJ0twLYd0Jj19ZyFX36XrdrvOWp3F6T5XDVNdSw36GPocVflcTH11TfUZ1PsVXdRRH/RRpHTSOjUSa9RuwVnLBJw0WO2cfn6dVmuzSaSCFjyyKfaelYqi7gzpIEbXZzNsDGxgdocDWSqKwt69ezl37pxPsqyurmbq1KlUV1ezdu3aFumYdN1115GWlgbYU+ZSUlIoKytzGvPZZ5+RlZWFEIIRI0ZQWVlJeXl5wGW5XKifS18vXxBCvCOEOC2EKPRwXQghXhdCHBRCFAgh0nzN2WoJ0yiw44+/Uk9wYA/kGEXEVRJ1vc8iHH5DbW4X36Uqn570VLJVpOPn06g7kWPORu2xkfz0JjnYyczItAe1mYXzNfXzpTQoKA2KNod+TpXo1LksRtqm9oOi0zaFQ2YVrn0znedwkK9NcWgUmhyN5xTpuGaz2V920g2PqEBdXR3ff/89MTExpKamOuXWuqKsrIxx48YxZswYlixZEpStJI4cOcL333/PLbfc4iZLz549tePExEQ3Ug0V1LQif15+YAUwxsv1n2PfVrcfMAtY5mvCVmmS+wrsqNj4wXCvc6p7h4NxJFhbW0eW4KrVuRCqjvRcG20YB4qMzXH1PvWa+tzqnHofpEqcrsEfIYRubcfz6Pf40csHzqa5SqhGASDH89s3hTTqdmSxgLSp74XDjaA69VXi1OdbqtVAkZFGZO34/4CoPIqKOvuVON4SUJPRk5OTtfp0T9i2bRtPPfUUr7/+OhkZGUGRr6qqiilTpvDqq6+6NfcwyjYJp4BToPyTUsrNQojeXoZMAFY2bnz2rRAiXghxnZTSo7rdaggT/EsXagrW/XNogCRzx0NzPf9iu6YCOV0zKJt0XHMmOv04I/Md9GY4jded8zEBLAY5l04+UV3U3H2cs4xefaD6dCit85BeU9fJ6BQdd87PnHV3DYpyi1vieOfOnZ0Sx1sKp0+f5tChQz6T0aWUfPDBByxbtoxPPvmE669vfgWSP6ivr2fKlCk89NBDTJ482e16YmKi0w6Tx48fp3v37kGRzR80wYK4WgixXXf8lpTyrSYs1QM4pjs+3niu9RPmsWPHiI+PJzIy0qtWGQ44efIkT04+xoABA4iPjw/o3I+9fEH7vxGpatcM3h+jUknNF2pYsmhAdAYBIH3duHPwCW3jNLsAjjUd2+g6J7qDw5+qT2xXg0GzR9c0ru+eOO5auqjWfickJASkeYaUkkOHDnH+/Hmfe5fbbDYWLFjAvn37yM3NJS4urtnr+yvjI488QkpKCk8//bThmPHjx7N06VLuv/9+tm7dSlxcnFtUP1SQNEnDPCOlvKkZyxl9gbyu3moI8/3332fVqlX07t2bjIwMMjMzueGGG8Kqi4vNZmPfvn3YbDafX6jLxZtzOxmer6mpoaKiAqvVyoULF4iJidGaSahJ0lVVVRQVFdGzZ09DjeK/31G8uiaMSdV9nL4FnOu9TtqxHrb1pgAAFsBJREFUTqN0PacXw9sPgza/Qeni+fPnsVqtFBYWUl9fr3UfSkhIaHL7NpvNRmFhIdHR0T73Lr9w4QIzZ86kf//+fPrpp159m4HGli1btCbDQ4faLagXX3yRo0ePAvDoo48yduxYsrOzSU5OJiYmhuXLlwdNPp+Q0m0fqRbEcaCn7jgROOHtBuGjeiY8vOuNUBSFAwcOkJOTQ15eHgcPHmTo0KFkZGRw1113ce2114ZM81T3t1bJKJQasJSSixcvYrVasVqtXLx4kYiICGpraxk4cGDQ65T/5z/t/CJM/VumBZJ0ZKlql5cDtfuQ1WqloqKiSf0va2pq2LNnD4mJiT5N19LSUrKysnj88ceZOnVqWFtCLYBmP2yPvunyN3/yL8Xp+f/VbocvDbPRh7lWSjnI4No9wBPAWOAW4HUp5c1e52tNhOmKhoYGtm/frhHo+fPnufXWW8nMzOSOO+7w2sk6UJBScvToUU6dOkVqaqpXn1YoYLPZ2Lt3r6ZhnTt3zs3fF8rGtDU1NRQWFtKtWzcSExODRjD6/pcVFRXYbDbi4uK090S1DtTa8IEDB/o0q7/++mt++9vfsmzZMu64445gPEa4odl/vO590+VvFnzr19g/PhzllTCFEKuADOBq4BTwPNAOQEr5V2H/sC3FHkm/CPxaSrndeLbGOVszYbqiqqqKr776ipycHL788kuioqIYOXIkmZmZDB8+POBdtOvq6igqKiImJoZ+/fqFlXsA0ExwVTNSyUhvrqralhFZtDTOnj3LgQMHSElJCbivt6nQd2CvqKhAURQiIyOpra3lxhtvJDY21uO9Ukree+89li9fzocffkivXr2CKHlYofmE2SddznzBP8JcMNU7YbYErijC1ENKyY8//kheXh55eXls27aNHj16aOZ7SkpKswhO/bL369fPZ1pJKFBeXk5paanTFg2eoGpbKoFKKTVfX3x8fMB9cFJKjhw5wtmzZxk8eHDYbb2gdka/ePEinTt35ty5c0gpnUx4NY+yoaGB+fPnc/ToUVauXOmVWNsAAkKYM/74jV9j/zStvUmYLQUpJQcPHiQ3N5e8vDz27dvHoEGDNALt0aOHX+agoigcPHiQqqoqUlNTw+7LbrPZ2L9/PzabjZSUlMtKkG5oaNACSJWVlURERGgEGhcX16wfmoaGBoqKiujQoUNYauV1dXXs2bOHLl260KtXL+0z0dDQQGVlpfaeHD58mC+++IJDhw5x6623smjRoqAGd8IUzSbM63qny+nzv/Zr7IuPdDAJM1iw2Wx8//33mv/zzJkz3HLLLWRmZjJy5Eji4uLcCLS6upqioiK6du3q9GUKF1RXV1NYWEiPHj38/gHwB3V1dRqBnjt3jqioKM1879y5s9/rVFVVUVhYSO/evX1uKxsKqPJdf/31PhsRFxQUMHfuXGJjYzl79izp6em8+eabAZFj+vTprF27lq5du1JY6F7Vl5+fz4QJE+jTpw8AkydPZv78+QFZu5kICGH+ep5/hLlwhkmYIUNNTQ1btmwhJyeHzZs3A3DnnXdy1113MXz4cNavX0+3bt1ITU0NSjCpqTh58iRHjhzxuW1rIHDp0iUtAn/hwgWio6O1FKaOHTsaEuipU6c4fPgwgwYNCkuzVU1G90e+zZs3M3fuXP7+979rZYcNDQ0BK3fcvHkzsbGxZGVleSTMxYsXs3bt2oCsF0AEhDCn/vcWv8a+NCs66ITZavIwWxrR0dHcfffd3H333UgpsVqtbNq0iQ8//JCsrCwSExOZMmUKMTExDBo0KGzML5vNxoEDB6ivr+emm24KSo1yhw4d6N69O927d0dKSU1NDVarlUOHDlFdXa01yk1ISKBDhw4cPHiQixcvtlhuanOg+lMrKip8yielZPny5bz//vtkZ2eTmJioXQvk+z5y5EiOHDkSsPlaE/R9E8IRJmEaQAhBly5d+NWvfsXnn3/OkiVLuO2228jNzeXVV1+lqKiIlJQUMjMzycjICJl5fvHiRQoLC7nuuuuCmpKjhxCCmJgYYmJiSExM1BrlWq1W9u3bR2VlJTExMSQlJWmNScIFNpuNoqIi2rdvz9ChQ736U+vr63nuuec4e/Ysubm5XrecCAa++eYbhgwZQvfu3Vm8eDGpqakhlSeQkOH1MXGCSZg+8O6772pENHPmTGbOnImiKBQUFJCTk8PTTz9NeXk5N998MxkZGYwaNYqrrrqqxclLNXGDYYI3BWqjXEVROHHiBIMHDyYqKsqp4kaNNickJIRM47x06RIFBQWav9cbKioqmDZtGnfeeSdLly4NeaAqLS2N0tJSYmNjyc7OZuLEiZSUlIRUpkBCCWMN0/RhBgC1tbV888035OTk8MUXX2Cz2bjzzjvJzMxkxIgRAe2ko1Y7qVU74Wbigr2Zg0qWrs+uKIoWbVZTmOLj47UUpmC4FCorK9m7d69f+Z8HDhxg+vTpPPfcc/zyl78MmhZ/5MgRfvGLXxj6MF3Ru3dvtm/fHg7pbc1+c65NSpMPzt3s19hXn+xk+jBbI9q3b09GRgYZGRlIKTl37hz5+flkZ2czb9484uPjyczMJDMzkyFDhly2/1M1wbt160b//v3DLkqv1tIDpKenGz6nxWLRAkTgnK5z6NAhhBBOOaCB1ubKysooKytj2LBhPjsa5eXl8Yc//IF33nmH9PT0gMrRHJw8eVIrA962bRuKolxR2/KGsYJpEmagIYQgPj6eiRMnMnHiRKSUlJWVkZOTw1//+ld2795Nv379tAYiffv29Yv41ChuSkpK0DrfNAVqvXVT/amRkZFcffXVmnZUX1+P1Wrl9OnTHDhwgHbt2mkE26lTp8smUEVRKCkpoba21iOZq5BS8tZbb/Gf//yH9evXB72TzwMPPEB+fj5nzpwhMTGRF154gfr6esDePOPjjz9m2bJlREZGEh0dzerVq8Pux7M58KebeqhgmuRBhqIoFBcXa/mfR48eJT09XdNQr776aqcPv/pFr6mpITU1NSxN8JYscaytrdVSmM6fP0+HDh00Ao2NjfWLKOrr69mzZw9XXXUVvXv39npPXV0dzzzzDJcuXeLtt99u0b6aVyCazdpdew6T9/3u//k1dulv48w8zLaGuro6tm7dSm5uLps2beLSpUvcfvvtZGZmcs011/DVV18xbtw4kpKSwk6LUFNyrFYrgwYNCkrVk9qFqaKigqqqKjp27KgRaHR0tNt7pCaj9+3bl65du3qd++zZs0ydOpXRo0czd+7ckAd3WiECQpj3/jbfr7Fv/C7eJMy2jvPnz7N582b+9re/sWXLFtLS0jQCTUtLC0pQxB+EQ4mjlJLq6mpNA62pqaFTp04agV64cIEffvjBr2T04uJiZsyYwR//+EcmTpwYpCe44hAQwvzVnC/8Gvvmf11lBn3aOjp37szw4cNZuXIlJSUl1NXVkZuby/Lly3nyySfp06eP5v8MFVGFS4mjEILY2FhiY2NJSkpCSql1YdqxYwe1tbV07dqV6upqoqKiPHar2rBhAy+88ALvvvsuQ4YMCfJTmNBDSkfH/XCEqWG2Irg2UP7hhx+0BsqZmZlBaaAc7iWONpuN4uJi2rVrR3JyMhcuXNBMeJvNpqUwde7cmXbt2vHGG2+wbt06PvzwQ58muwmfaPaH75rEoXLyE5v8GvvWc11MDdOEZ1gsFgYMGMCAAQN48sknnRooP/LII5w7d47bbrtNa6Dsq61bU6B2aQrXEkewJ6PrI/WA1o4NHD0vrVYrc+bMoaCggE6dOrFo0aKAJv/7ap4hpWTOnDlkZ2cTExPDihUrtL3E2zzCaBtlI5iE2YoRGRnJiBEjGDFiBPPmzXNqoPzSSy8RFRXFqFGjyMzM5KabbrrsBspqy7OEhASGDBkSdsEngHPnzlFcXMyAAQM0gnRFREQEXbp0wWazUVFRwfTp00lNTWX9+vXEx8dz6623BkSWadOm8cQTT5CVlWV4fd26dZSUlFBSUsLWrVuZPXs2W7f6ty1DW4BZS24iKIiNjWXMmDGMGTNGa6Ccm5vLqlWrePrpp0lMTNT6fw4YMMAv/6daFXPDDTeEbXL0iRMnOH78OEOHDvVZVVVYWMisWbP4y1/+wj333APApEmTAiqPr+YZn332GVlZWQghGDFiBJWVlZSXl4fNzo2hhCS88zBNwrxCIYSga9euPPjggzz44INaA+WcnBwWLlzI/v37GTx4sEagrhu3SSk5fvw45eXlfhFRKCClpKSkhEuXLvlMRgdYu3YtCxcu5F//+ldIm1WUlZXRs6djs8LExETKyspMwgT7rpG2wHTfEEKMAV7DvsHz21LKRS7XpwH/A5Q1nloqpXzb25wmYbYRCCHo168f/fr147HHHsNms7Fz505ycnJ49NFHsVqtWgPl9PR0PvjgA0aPHu0XEYUCajJ6fHw8gwcP9uomUBSFJUuWkJ+fT05OTshrro1MznB0c4QKgdAwhRARwBvAT7Fvp/udEGKNlLLYZegHUson/J23TWbmrl+/nv79+5OcnMyiRYvcrq9YsYJrrrmGoUOHMnToUN5+2+uPTqtEREQEw4cP5/e//z15eXl8/fXXTJkyhU2bNnHzzTezYcMGPv74Y7Zs2UJtbW2oxXVCdXU1O3bsIDEx0WdpaU1NDbNmzaKsrIx169aFnCzBrlEeO3ZMOz5+/LjP7XvbCiSOnpi+Xj5wM3BQSnlISlkHrAYmNFe+NkeYNpuNxx9/nHXr1lFcXMyqVasoLnb90YH77ruPXbt2sWvXLmbMmBECSYMLtYGy1WolOzubTz75hPT0dD755BMyMzOZNGkSr732Gnv27AlpX8szZ86wZ88eUlNTfaYBnTx5kgkTJjBixAiWLVsW8F1DLxfjx49n5cqVSCn59ttviYuLM81xFY1Rcn9ewNVCiO261yzdTD2AY7rj443nXDFFCFEghPhYCNHT4LoT2pxJvm3bNpKTk+nbty8A999/P5999hkDBw4MsWShhxCCjz76SDu+9957uffee5FScvjwYXJzc3nllVcoLi5m4MCBWgemnj17trhJKaWktLSUs2fPkpaW5pP8du3axaOPPsrixYsZPXp0i8rmCl/NM8aOHUt2djbJycnExMSwfPnyoMoX7miCSX7GSx6m0QfSdeLPgVVSylohxKPAu8Bd3hZsc4Rp5HA3Sun497//zebNm7nhhhtYsmSJ0z1tDUII+vbty6xZs5g1axY2m01roDxnzhxOnTrFzTffzKhRo1qkgbLNZmPv3r1EREQwbNgwr9F9KSWffvopr7zyCh999BH9+/cPmBz+YtWqVV6vCyF44403giRNa0PAtqg4Dui/tInACaeVpDyrO/w78JKvSducSe6Pw33cuHEcOXKEgoIC7r77bqZOnRos8VoFVOKaO3cuGzZsYOvWrTzwwAMUFRVx77338pOf/ITnn3+e/Px8ampqmrVWbW0tO3fuJC4uzude8oqisGjRIlauXElubm5IyLKlkJ+fz8MPPxxqMVocUoKtwebXywe+A/oJIfoIIaKA+4E1+gFCCL0fZDyw19ekbU7D9Mfhrs83nDlzJs8++2zQ5GuNaN++vWaeSymprKwkPz+ftWvX8oc//IGEhAStfPPGG2/0O+quJqP3799fazjsCRcvXmT27Nlcd911rF27NiwrkZqDXbt2MWzYsFCLERQEQsOUUjYIIZ4ANmBPK3pHSlkkhFgAbJdSrgGeEkKMBxoAKzDN17xtjjCHDx9OSUkJhw8fpkePHqxevZr333/faYw+iXjNmjWkpKSEQtRWCbVj+qRJk5g0aRJSSo4dO0Zubi5vvvkmu3fvpn///hqB9unTx9B8Ly8v5+jRo37lgJ44cYKHH36YadOmMWvWrCsyRWf37t0kJCRwyy238OOPP/LOO++QkZERarECDykDlrgupcwGsl3Ozdf9/znguabM2eYIMzIykqVLl/Kzn/0Mm82mlcfNnz+fm266ifHjx/P666+zZs0aIiMjSUhIYMWKFaEWu9VCCEFSUhLTp09n+vTpKIpCUVEROTk5PPvssxw/fpz09HQyMzMZOXIk8fHxbNq0iW7dupGenu6znd327dt54oknePXVV7nrLq/++laNXbt2MWHCBLZu3crGjRuZN28eX375ZajFCjjCvdLH7FYUJJgNGYxRV1fHt99+S25uLjk5ORw7doxhw4YxY8YMbr/9do/b2Uop+eijj1i6dCmrV68mOTk5yJIHDw0NDfTt25eDBw8SFRXF6dOnGTVqFHv3+nS5BRvNVu2vunawzLzvE7/GfvJ/+wW9W1GbC/qECtOmTWP9+vUer+sbMrz11lvMnj07iNKFDlFRUYwcOZLnn3+eiIgIXnzxRWbNmkVeXh5jxozhnnvu4eWXX+a7776joaEBsEfNFyxYwEcffURubm7AyTLcChuKi4tJTk7WUql27tx55fbtlHYN059XKNDmTPJQwWzI4B0RERFkZ2drbdbGjRuHlJLy8nJyc3P5xz/+wffff0+vXr04efIkGRkZfPbZZwHvQK8WNuTk5JCYmMjw4cMZP368W57ufffdx9KlSwO6tifs3r2bw4cPU1tbS319PS+88AJLliwJytrBhkSiBKiWvCVgEmaYwGzIgFtPSiEE3bt3Jysri6ysLG0DuTVr1vDcc8+1SHAnHAsbdu/ezUMPPcRtt91GTU0N8+bNY8SIESGTp0UhCWklmS+YhBkmMBsy+IbFYmHQoEEMGjSoxdYIx8KGxYsXA/DnP/+5xdYIJ4Rz0Mf0YYYJzIYM4QGzsCG0kEikVPx6hQImYYYJzIYM4QF/CxvULYVnzpzJjh07girjFQ0z6GMCzIYMrQVmYUOoIbHZfJY9hgwmYQYJoWrI4Cv/Mz8/nwkTJtCnTx8AJk+ezPz5893GtRWYhQ2hhZTh7cM0E9evcGzevJnY2FiysrI8EubixYtZu3ZtCKQzcYWh2VHKzl0GylvGvOfX2Nz3bzIT100EFiNHjvTZuMKEibBBmPswTcI0wTfffMOQIUP4+c9/TlFRUajFMdGmEd5RctOH2caRlpZGaWkpsbGxZGdnM3HiREpKSkItlok2Cgnq9hNhCVPDbOPo3LkzsbGxAIwdO5b6+nrOnDkTYqlMtFlIidJg8+sVCpiE2cZx8uRJLVl727ZtKIri1EDZhIlgwzTJTYQMvvI/P/74Y5YtW0ZkZCTR0dGsXr3aLMk0ETq08rQiEwGAEOKXwDNANHABmCSl/DG0UpkwEX4QQqwH/N08/oyUckxLyuMKkzCDACFEF3WHOiHE89j/0Ff0toGNezyvBLoBCvCWlPI1lzECeA0YC1wEpkkpdwZbVhMm/IXpwwwOpgkhtgkhdgOPAZdCLVAQ0AD8TkqZAowAHhdCuPZI+znQr/E1C1gWXBFNmGgaTMJsYQghsoCbgbuklEOA/cAVn+wopSxXtUUp5QXsW5j2cBk2AVgp7fgWiHfZ+tSEibCCSZgtj8HA11LKKiHEFOA2YE+IZQoqhBC9gWGAa2PJHsAx3fFx3EnVhImwgUmYLY93se9//CVwA3BISlkdYpmCBiFELPBv4H9LKc+7Xja4xXSqmwhbmGlFLQwpZSFwve7UwlDJEmwIIdphJ8t/SSn/YzDkOKBvVZ4InAiGbCZMXA5MDdNEi6AxAv4PYK+U8v94GLYGyBJ2jADOSSnLgyakCRNNhJlWZKJFIIS4A/gSu79WLcv4PZAEIKX8ayOpLgXGYE8r+rWUcnsIxDVhwi+YhGnChAkTfsI0yU2YMGHCT/x//V/eQLaJrxUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "dqoida=lambda a,b:1/b*(np.exp(b*te)-1)\n", "dqoidb=lambda a,b:a/b*te*np.exp(b*te)-a/b**2*(np.exp(b*te)-1)\n", "\n", "\"\"\"plot the QOI\"\"\"\n", "A,B=np.meshgrid(np.linspace(0.1,2,100),np.linspace(0.1,2,100))\n", "QOI=np.reshape(qoi(A.flatten(),B.flatten()),A.shape)\n", "DQOIDA=np.reshape(dqoida(A.flatten(),B.flatten()),A.shape)\n", "DQOIDB=np.reshape(dqoidb(A.flatten(),B.flatten()),A.shape)\n", "\n", "\n", "fig = plt.figure()\n", "ax = fig.gca(projection='3d')\n", "surf = ax.plot_surface(A, B, QOI, cmap=cm.coolwarm,linewidth=0, antialiased=False)\n", "ax.set_xlabel(r'$a$')\n", "ax.set_ylabel(r'$b$')\n", "ax.set_zlabel(r'$QOI$')\n", "fig.colorbar(surf)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca(projection='3d')\n", "surf = ax.plot_surface(A, B, DQOIDA, cmap=cm.coolwarm,linewidth=0, antialiased=False)\n", "ax.set_xlabel(r'$a$')\n", "ax.set_ylabel(r'$b$')\n", "ax.set_zlabel(r'$\\frac{\\partial QOI}{\\partial a}$')\n", "fig.colorbar(surf)\n", "\n", "fig = plt.figure()\n", "ax = fig.gca(projection='3d')\n", "surf = ax.plot_surface(A, B, DQOIDB, cmap=cm.coolwarm,linewidth=0, antialiased=False)\n", "ax.set_xlabel(r'$a$')\n", "ax.set_ylabel(r'$b$')\n", "ax.set_zlabel(r'$\\frac{\\partial QOI}{\\partial b}$')\n", "fig.colorbar(surf)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "nbpages": { "level": 1, "link": "[6.2 A Simple Example of Adjoint Sensitivity Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.02-Contributed-Example.html#6.2-A-Simple-Example-of-Adjoint-Sensitivity-Analysis)", "section": "6.2 A Simple Example of Adjoint Sensitivity Analysis" } }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [6.1 Nonlinear Diffusion-Reaction Equation](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.01-Contributed-Example.html) | [Contents](toc.html) | [6.3 Sensitivity Analysis with Adjoint Operators](https://ndcbe.github.io/cbe67701-uncertainty-quantification/06.03-Sensitivity-Analysis-with-Adjoint-Operators.html)

\"Open

\"Download\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }