{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "*This notebook contains material from [cbe67701-uncertainty-quantification](https://ndcbe.github.io/cbe67701-uncertainty-quantification);\n", "content is available [on Github](https://github.com/ndcbe/cbe67701-uncertainty-quantification.git).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [5.1 Ridge Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html) | [Contents](toc.html) | [5.3 Elastic Net Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.03-Contributed-Example.html)
"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 1,
"link": "[5.2 Lasso Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.02-Contributed-Example.html#5.2-Lasso-Regression)",
"section": "5.2 Lasso Regression"
}
},
"source": [
"# 5.2 Lasso Regression\n",
"\n",
"Created by Haimeng Wang (hwang22@nd.edu)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"nbpages": {
"level": 1,
"link": "[5.2 Lasso Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.02-Contributed-Example.html#5.2-Lasso-Regression)",
"section": "5.2 Lasso Regression"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.linear_model import Lasso\n",
"from sklearn.linear_model import LassoCV\n",
"from matplotlib.ticker import MultipleLocator, FormatStrFormatter"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 1,
"link": "[5.2 Lasso Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.02-Contributed-Example.html#5.2-Lasso-Regression)",
"section": "5.2 Lasso Regression"
}
},
"source": [
"This example was adapted from:\n",
"\n",
"McClarren, Ryan G (2018). Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers, Chapter 4: Local Sensitivity Analysis Based on Derivative Approximations, Springer, https://doi.org/10.1007/978-3-319-99525-0_4"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[5.2.1 Lasso Regression Basics](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.02-Contributed-Example.html#5.2.1-Lasso-Regression-Basics)",
"section": "5.2.1 Lasso Regression Basics"
}
},
"source": [
"## 5.2.1 Lasso Regression Basics\n",
"\n",
"Lasso stands for the Least Absolute Shrinkage and Selection Operator. Unlike the ridge regression, the lasso regression make the penealty to be *1-norm* ($L_1$) of the coefficient\n",
"\n",
"$$\\hat{\\beta}_{lasso} = \\min_{\\beta} \\sum^{I}_{i=1}(y_i-\\boldsymbol{\\beta} \\cdot \\boldsymbol{X}_i)^2 + \\lambda \\Vert \\boldsymbol{\\beta} \\Vert_1 $$\n",
"\n",
"Using the $L_1$ penalty tends to make some of the coefficients to be zero, which is also called a sparse model. In a sparse model, many of the coefficients are close to zero, and there are a few large non-zero coeffcients. In other words, this model does not include variables that are not important (variables with zero coeffcients)."
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[5.2.2 An example of the lasso regression ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.02-Contributed-Example.html#5.2.2-An-example-of-the-lasso-regression)",
"section": "5.2.2 An example of the lasso regression "
}
},
"source": [
"## 5.2.2 An example of the lasso regression ##\n",
"This is an example adapted from the example in Section 5.3 of the book. Let us assume that we have a simulation that has 200 input variables and only 120 simulations can be afforded. The *sklearn.linbear_model* is used to do the fit.\n",
"\n",
"Firstly, we used a model with 5 large non-zero ceofficients (between 5~30) and the rest coefficients are 0.1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"nbpages": {
"level": 2,
"link": "[5.2.2 An example of the lasso regression ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.02-Contributed-Example.html#5.2.2-An-example-of-the-lasso-regression)",
"section": "5.2.2 An example of the lasso regression "
},
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Residue of the fiting\n",
"0.9999789441481239\n",
"Weight\n",
"0.01873762187420794\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAIlCAYAAAD7ShEjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VNX9//H3ISSEBAJJoEFUgpbFBQQF6lYkICB1B9G6/OpC1dYNEeFLW1pBRSuFVkFt1fZbsbhvRQVXICwKylYUVKB8BRWFQEjYAiQk+fz+mMVMlslkMpPMwOv5eMxjknvPvedzh1HfHu49x5mZAAAAgHjQpLELAAAAAEJFeAUAAEDcILwCAAAgbhBeAQAAEDcIrwAAAIgbTRu7gHjinGNqBgAAgAZiZq7yNkZeAQAAEDcYeQ1DQ8+Nm5OTI0lasGBBg/Yby/hMAvF5BOLzqIrPJBCfRyA+j6r4TAI19OfhXJUBVz9GXgEAABA3CK8AAACIG4RXAAAAxA3CKwAAAOJGTIZX51ymc+5G59y/nXMbnXMHnHO7nXMfOud+6ZxrUql9R+ecBXm92FjXAgAAgMiJ1dkGLpf0N0lbJeVK+kZSlqRhkv4h6WfOucut6mP/n0qaVc351kaxVgAAADSQWA2vGyRdLGmOmZX7NjrnfidpmaTL5Amyr1U6brWZTWyoIgEAANCwYvK2ATObb2ZvVQyu3u3bJD3h/TWnwQsDAABAo4rVkddgDnnfS6vZ19459ytJmZJ2SlpqZp81WGUAAACIqrgKr865ppKu9f76bjVNBnlfFY9ZIOk6M/smUnX4VpmoK1bpAAAAR5JwM1MwMXnbQBAPSeom6W0ze6/C9v2S7pfUS1K699VPnoe9ciTNc86lNmypAAAAiLS4GXl1zo2UdLekdZJ+UXGfmW2XdE+lQxY55wZL+lDS6ZJulDQtErUwggoAAFC7cDOTc67GfXEx8uqcu02e4PmFpP5mVhDKcWZWKs/UWpJ0TpTKAwAAQANxVadKjS3OuVGSHpZnrtZzvaOsdTn+Ennmfn3PzIbUsxaTpFj/zAAAAOKZb+TVzKoMwcb0yKtzbpw8wXW1PCOudQquXmd437+KWGEAAABoFDEbXp1zf5DnAa2V8oy45gdpe7pzLqma7QMk3eX99dmoFAoAAIAGE5O3DTjnrpM0Q1KZpEcl7a6m2WYzm+Ftv0DSyZIWSNri3X+KpAHen/9gZpMiUBe3DQAAAERZsNsGYnW2geO87wmSRtXQZqE8AVeSZkoaKqmPpJ9JSpSUJ+llSY+Z2eKoVdpYinZK62ZL+/KkFlnSCRdKqZmNXRUAAEBUxeTIa6yKiZFXM2nxVGnhFKms+IftCc2kfmOlvmOkINNLAAAAxLp4HHlFTRZPleZXcwdEWfEP288Z27A1AQAANJCYfWAL1Sja6RlxDWbhFE87AAAOU2amxx57TD179lRKSoqcc3LOafPmzf42y5cv10UXXaQ2bdqoSZMmcs5p4sSJkjxLljrnNGPGjIjU07FjRznnWMSogRBe48m62YG3ClSnrFhaP6dh6gGAGHb99dfLOReVtdXRuB588EHdcccd+vTTT2VmysrKUlZWlhISEiRJ//3vf5WTk6PZs2ersLBQbdq0UVZWllq0aNHIlTeM1atXa+LEiREL57GG2wbiyb680Nrt3RbdOgAAaETTpnlWe//LX/6iUaNGVVlK9KmnntL+/fvVt29fvfnmm2rdunXA/g4dOqhr165q1apVROr58Y9/rOTkZKWkpETkfPW1evVq3XvvverXr5+uv/76xi4n4giv8aRFVmjtWraLbh0AADSS7du3a8eOHZKkm266qUpwlaTPP/9cknTFFVdUCa6S9K9//SuiNc2bNy+i50Nw3DYQRwo7DFaxJQZtU2yJKjx2UANVBABAwzpw4ID/55puA/C1OVJuEzjSEF7jyHubDml66dCgbaaXDtX7mw81UEUAcHgpKytTbm6u7rzzTvXq1UtZWVlKSkpS+/btNXToUM2fP7/GY8vLyzVjxgz1799fmZmZSkxMVNu2bXXyySdrxIgRevfdd6scs2nTJt1yyy3q0qWLmjdvrpSUFGVnZysnJ0d//OMflZ9f/eKSubm5GjZsmNq1a6ekpCS1a9eu1vpCcejQIT311FM699xz1bZtWzVr1kzZ2dkaPHiwnnrqKRUVFVU5pri4WH/5y190+umnq1WrVmrevLm6du2q0aNHa9u24LexlZSU6LHHHlPfvn2VkZHh72/EiBH68ssvA9ouWLBAzjl17NjRv833oJbvYazKD07dcMMN/v0Vj6vtgS0z00svvaQLLrhA7dq1U7NmzXT00UfrnHPO0cMPP6ydOwMfjK7tga26XKeP757tiRMnqqysTI888oh69OihlJQUZWRk6MILL9SKFSuqHOec0w033CBJWrhwYcBnVLnGvXv36v7771evXr3UsmVL/3e9d+/eGjt2rNauXVttbY3OzHiF+JJkno+scUybu8Gyx71lf/rdjXbwnkyzCWn+18F7Mu1Pv7vRsse9ZdPmbmi0GgEgVlx33XUmyfr16xfyMWvWrDHfv+slWbNmzSw1NTVg2wMPPFDtsVdffXVAu1atWllSUpL/99NPPz2g/cqVK61ly5b+/YmJida6deuAc7zzzjtV+hk/frx/v3POWrdubd55yE2S/eY3v6nT5+SzZcsW69mzp/88TZo0qXLu3NzcgGO2b99up556asDnVfGa0tPTbenSpdX29/3331uPHj0C+qt4bHJysr322mv+9h999JFlZWVZmzZt/G2ysrL8rylTpljv3r0tKyvLEhMTTZKlpaX59/fu3dt/rn79+pkke/rpp6vUtWvXLhs4cGCVz7hJkyb+bZWPy87OrvbzCec6fXzf3/Hjx9uQIUP835EWLVoEHLtkyZKA47KysiwtLc3fvuJnlJWVZR999JH/Ok866aSAutLT0wOuc9y4cdX+2TWECpmrah6rbiOv2AyvL3zytWWPm23Z42Zbz3HP29jf3W1TfzfCxv7ubus57nn/vheXfd1oNQI4vOzcV2wvfPK1TZu7wV745Gvbua+4sUsKWTjhdf369Xb55ZfbW2+9Zdu2bbPy8nIzM8vLy7P777/fEhISzDlnH3/8ccBxCxcu9AeAhx9+2Pbs2WNmZuXl5fb999/bjBkz7O677w44pn///v5Qu2rVKv/2oqIiW758uY0aNapKMHnhhRf8/1G//fbbbceOHWZmlp+fb3fccYd/38yZM0O+ZjOzgwcP2mmnnWaSrE2bNvbMM8/Yvn37zMxs//79/noqX7cvVKWnp9vLL79spaWlZma2fPly6969uz9g+ur0KSkpsT59+pgkO+ecc2zRokVWXOz5bm3bts3uvvtuk2QpKSm2cePGgGM3bdpktf33OFg4rW3/BRdcYJKsefPmNm3aNCssLDQzs+LiYluzZo3dc889NmvWrIBjagqv9blO3/e3devWlpGRYS+99JL/2E8//dS6detmkqxPnz5VruHpp5+u9bt/7733miRr27atzZ492w4dOuSvecOGDfbQQw/ZU089VePx0UZ4PUzC6859xdZ5/Nv+kFrdq/P4t+PqPy4AYlN5ebk9Om9DlX/ndB7/tj06b4M/1MWycMJrbe677z6TZNdff33A9smTJ5skGzJkSMjnat68uUmqEghrUl5ebp06dTJJduWVV1bb5qqrrjJJlp2dbWVlZSHX8vjjj/tHTj/99NOQjlm0aFHQEeJt27ZZenq6SbI//OEPAfv+/ve/+4PXwYMHqz3/LbfcYpLstttuC9gezfA6Z84c/2hrdddUk5rCa32u0/f9lWSLFy+uctyKFSv8+zdv3hywL5Tw+rOf/cwk2UMPPRTaRTawYOGVe17jSEZqkkYO6BS0zcgBnZSRmtRAFQE4XD2eu1FT39+gktLygO0lpeWa+v4GPZ67sZEqa1wXXXSRJOmjjz4K2J6WlibJ8yR8eXl5leOq4ztm69atIbVfvXq1Nm70fO6///3vq20zYcIESdLXX3+tZcuWhXRe6Yen72+44QadcsopIR3z6quvSpJ69+6tIUOGVNmflZWlX//615Kkl19+OWDfM888I0m67bbb1KxZs2rPf/XVV0uSPvjgg5DqiQTf53DeeedVe011FYnr7Nu3r376059W2d6rVy8dc8wxkn6YXaEu6vr9iyWE1zhzW/9OGjO4i5KaBv7RJTVtojGDu+i2/sHDLQDUpqCoRNPnBw+n0+dvVEFRSQNV1LAOHDighx9+WDk5OfrRj36kxMRE/8Mup556qiTp+++/Dzhm4MCBSkpK0qpVq5STk6Nnn322SpvKzj//fEnStddeq9/85jf6+OOPdehQzQ/crlq1SpL8D4FVp2vXrjr66KMD2tfm0KFDWrlyZUBNofCdv3///jW2GTBggCRpw4YN/oe9SktL/cF69OjRateuXbWvoUM9Dyh/++23IddUXx9//LGkun0ONYnUdfbp06fGPnx/1oWFhXWuz3eN06dP1y9+8Qu988472rt3b53P0xiY5zXOOOd0+4DOuvr0bH3wxTbl7SlWVlozDTqpHSOuACLi/c+3VRlxrayktFwffLFNP+/ToYGqahhbt25VTk6ONmzY4N+Wmpqq9PR0NWnSRGVlZcrPz6/y1H2nTp30t7/9TbfffrsWL16sxYsXS/I8hT5kyBDdfPPN/uDrM2XKFK1fv15LlizR5MmTNXnyZCUnJ+vMM8/U5Zdfruuvv17Nmzf3t/fNbeoLLDU55phj9N133/nb16agoEClpaWSPJP3hyqUenwjg2am/Px8paamqqCgQCUlJf6+a1Nxaqxoy8vzLAZUl8+hJpG6zpYtW9Z4THJysiQF/Z+emlx77bX66KOP9NRTT+nZZ5/Vs88+qyZNmuiUU07RRRddpFtuuUVHHXVUnc/bEBh5jVMZqUn6eZ8OGnluZ/28TweCK4CI2b63lmWovfL2hNYunowaNUobNmzQ8ccfr9dee00FBQXat2+ftm/frm3btvlH5qozYsQIbdq0SY888oguueQSZWZmavPmzXriiSfUq1cvPfjggwHtMzMz9eGHH+qDDz7QyJEjdeqpp6qkpES5ubm69dZb1a1bN23ZsqVKP8XFkf3cPbcXhq+u9VS8rcK3vGttr3gUD9f55JNPau3atbrnnnuUk5OjZs2aafXq1br//vvVuXPnBr1loy4IrwCAAD9qWf29eZVlpYXWLl6UlJTojTfekCQ999xzGjZsmNLT0wPa+EbmapKVlaU777xTs2bN0o4dO7Rs2TINHTpUZqY//OEP+uyzzwLaO+c0cOBATZs2TatWrVJ+fr6efPJJZWRk6KuvvtJdd93lb9u2bVtJ0jfffBO0Bl/g9bWvTWZmppo29fxF7Ndffx3SMRXPH+wYXy3OObVp08bfX0JCgiTpiy++CLm/hpCV5VnJsi6fQ01i+TorOvnkk3XvvfcqNzdXu3bt0ltvvaXu3burqKhI1113XVijutFGeAUABBh8crsq99VXltS0iQaddHgtRZ2fn+8fRaz8V/w+c+fODfl8zjn16dNHr7zyio455hiVl5frww8/DHpMenq6br75Zv8o7cKFC/37TjvtNElSUVFRjQ9jbdiwQd99911A+9okJiaqV69ekqS33347pGMqnn/hwoU1jhr6Fk3o0qWLUlNT/f317t1bkvT666+H3F9DOOOMMyTV7XOoSWNeZ5Mmnn9+6zqam5SUpAsvvFCvvPKKJM9tNP/9738jXl99EV4BAAGO1JlN0tLS5JyTJK1Zs6bK/q1bt+rRRx+t9ljfvY3VSUhIUGKiZ2lvXzguLy/332daHd+9rhX/Sr5nz57q1Mnz51L5FgSfiRMnSvLca/uTn/ykxvNXdu2110qSZsyYUWV0uCbDhw+X5HnS3TdiXVFeXp6eeOIJSdIVV1wRsO/666+XJL322mvKzc0N2k84DyOFy/c5vP/++9WuiFZXjXWdvpkEdu3aVWObYN/ZivdaR/o2lUggvAIAqjicZjY5dOiQ8vPzg74OHTqkFi1a+EfeRowYodWrV0vyBM158+apX79+NY5k/e53v9Pw4cM1a9asgIdz8vLyNHLkSG3atEnOOQ0aNEiStGfPHnXq1EkPPPCA1qxZo7KysoC+xo8fL8kzZZOPc06TJk2SJL3xxhu64447/MuU7ty5UyNHjtQLL7wgSZo0aZJ/9C0Uv/zlL9WzZ08VFxfr3HPP1cyZM7V//35JngeJli1bpptuukmffPKJ/5i+ffv6p5MaMWKEXn31Vf91rFy5UoMHD1ZhYaH/VorK/Z1xxhkqLy/XhRdeqGnTpgV8btu3b9cLL7ygnJwcTZs2LeTrqK+f/exn+tnPfiYz02WXXaZHH33UHwBLSkq0Zs0a3X333Zo1a1ZI52us6/TNRvHFF18E/JlVNHDgQI0cOVKLFi0KeFjs888/94fuo446St27d49YXRETyg3EvBpxkYJ9+WYrZpgtmOx535ffsP0DOKLt3FdsLy7zrLD14rL4XGErlJdvcvmPP/7Yv3iAJEtNTfX/npGRYbNmzap2gvw777wz4HxpaWkBS4BKgcvKFhYWBuxLTEy0jIwMS0hI8G87/vjj7dtvv61yXRWXh61uSc9wl4f95ptv/Ks2SbKEhARLT0+vdXnYikvKJicnV1ketvIqYT55eXl29tln+9s65yw9PT1g+VNJNnHixIDjor3CVmFhoX9/TZ9xXZaHDfc6fd/fCRMmhHWd55xzjv/cGRkZlp2dbdnZ2f7leisvWZuenm7Jycn+bSkpKTZ37twa+462Cn/GVfIYU2XFKjNp8VRp4RSprMKQ/dtjpX5jpb5jJO9fbwFAtPhmNjlSnH766Vq6dKkmTpyohQsXqqioSEcddZSGDBmi8ePH+0cWK7vrrrv04x//WPPmzdOXX36prVu3qri4WMcee6zOOuss3Xbbberbt6+/fVpammbPnq25c+dqyZIl2rJli3bs2KHU1FR17dpVl156qe64445qp0maNGmSBgwYoOnTp2vp0qUqLCxUZmamzjzzTI0cOVLnnntuWNd+7LHHasWKFXrqqaf08ssva+3atdq/f786dOigE044QcOHD69yK0Lbtm21dOlS/fWvf9ULL7yg9evXq6SkRJ07d9YFF1yg//mf/6lxuqUf/ehHWrhwoV566SU999xzWrlypQoKCpSUlKQTTjhBZ599ti677DINHDgwrOsJV+vWrTV//nw9++yzmjlzplavXq3du3frqKOOUqdOnTR06FBdfPHFIZ+vsa7z9ddf1z333KN33nlH3333nX/E9+DBg5Kkf/zjH3r77be1YMECbdq0Sdu2bZMknXDCCRo4cKBGjx6t4447LqI1RYqzOJ2CojF4/++zYaazWDRFmj+p5v0Dfi+dMzb6dQAAADQw3/3nZlZlpI7wWgcNFl6Ldsr+cqJcWc03SVtCM7nRX0qpmdGtBQAAoIEFC688sBWL1s0OGlwlefavn9NABQEAAMQGwmsM2l8QfD1sf7ud30W5EgAAgNhCeI1Ba/ckh9iuee2NAAAADiOE1xi0OvWnKrbEoG2KLVGrU89uoIoAAABiA+E1BqVlZGl66dCgbaaXDlWrzKwGqggAACA2MM9rDBp8cjud8eZQ6ZA0sum/1cwd8u8rtkRNLx2qv7uh+vgwW1ccAACgNkyVVQcNOc/rY/P/q6nvb1C69mhQwkplqVB5StcHZb1UqDSNGdxFtw/oHPU6AAAAGhrzvEZIQ4ZXM9PjuRs1ff5GlZSW+7cnNW2ikQM66bb+nfx/sAAAAIcTwmuENOgKW14FRSX64IttyttTrKy0Zhp0UjtlpCY1WP8AAAANjfAaIY0RXgEAAI40rLAFAACAwwLhFQAAAHGD8AoAAIC4QXgFAABA3CC8AgAAIG4QXgEAOELk5OTIOacZM2Y0dilRtXfvXo0ePVo//vGPlZSUJOecOnbsGNDmhRde0JlnnqmWLVvKOSfnnBYsWCBJ/t83b95c71o2b97sPx8ig+VhAQBHhFmzZmno0KGSpEGDBun999+PeB+7du3SI488IkmaOHFixM+P0AwbNkxz586VJKWlpSkjI0Nt27b173/++ed1zTXXSJISExOVlZUlSUpKOjLmUZ81a5ZWr16tnJwc5eTkNHY5dUZ4BQAcEZ555hn/z/PmzdOWLVt0zDHHRLSPXbt26d5775VEeG0sn3/+uebOnavExEQtWrRIZ5xxRpU2Dz/8sCTprrvu0p/+9Cc1bRoYh7p27SrJE2zrKzEx0X++WDFr1iz/Pw/xGF65bQAAcNjbuXOn5syZo5SUFF199dUqLy/Xs88+29hlIQo+//xzSdIpp5xSbXCt2GbEiBFVgqskrVu3TuvWrdPRRx9d73qOPvpo//kQGYRXAMBh7/nnn9ehQ4d0ySWX6Fe/+pWkwJFYHD4OHDggSWrRokW92iB2EV4BAIc9X1C95ppr1LdvX3Xo0EHr1q3TsmXLaj22qKhIU6dO1VlnnaWMjAwlJyfr+OOP18UXX6znnntOhw4dkuT569fjjjvOf5zvIR3fq+JtBB07dgx4QKg6NT00VFJSojlz5uimm25Sjx491KZNGyUnJys7O1vXXHONVq5cGfoHU0c7d+7UhAkT1KtXL7Vu3VopKSnq0qWLrrzySr3xxhvVHpOXl6e7775bJ5xwglJSUtSqVSv95Cc/0Z///GcVFxcH7W/Hjh367W9/q+7du6tFixZKTU1Vt27dNH78eBUUFAS0nThxopxzuv766yVJCxcuDPj8Z8yYUeXBqeOOO86/zXecVPsDW6F+J6TQHtiqy3X6VPwOFRQUaPTo0TruuOPUrFkzHX300brpppu0devWgGMWLFgg55z/n4d77723yve0ok2bNumWW25Rly5d1Lx5c6WkpCg7O1s5OTn64x//qPz8/BqvKarMjFeIL0nm+cgAAPFi7dq1JskyMzOtpKTEzMzGjRtnkuzWW28Neuznn39uHTt2NN+//5s2bWqtW7f2/y7JNm3aZGZmQ4cOtTZt2vi3Z2VlBbymTJniP292drZJstzc3Br7rnx+n7feeiug/5SUFEtOTg6o8V//+le15+zXr59JsqeffrrWz62yRYsWWWZmpr+fpKQkS0tLC6ilsk8++cQyMjL8+1u2bBlQa48ePSwvL6/a/hYvXhxwbFJSkjVv3tz/+7HHHmvr1q3zt58yZYplZWX5a0pMTAz4/BcsWOD/2XeONm3a+LeNHDmy1s/erG7fCTOzTZs21fj5hHOdPr7v0MyZM/0/p6SkWLNmzfzHduzY0QoKCvzHfPTRR5aVleX/M0hNTa3yPfVZuXKltWzZ0n+uxMTEKtf5zjvvVHtNkVDhM6uax6rbyIvwCgBmZrYv32zFDLMFkz3v+/Ibu6I6Gzt2rEmyW265xb/ts88+M0mWkZFhxcXF1R63c+dOO/bYY02SHXfccTZr1ix/2z179tjixYvthhtusG+//dZ/TG1Bxac+4TU3N9duuOEGmzdvnuXn//Dn8fXXX9uoUaNMkiUnJ9vXX39d5ZzhhteNGzf6Q2HPnj1t/vz5VlpaamZmBQUF9t5779mwYcMCjikoKLCjjjrKJFn37t1t2bJlZmZWWlpqr7zyiqWnp5skGzhwYJX+Nm/e7A9KN954o61bt87KysqsvLzc1q5da0OGDDFJdtJJJ/nr8Hn66adNkvXr16/G6wkWToPtj/R3oj7X6fsOtW7d2nr27GlLliwxM7NDhw7ZG2+84T/v2LFjq/R73XXXmSSbMGFCjZ9R//79TZKdfvrptmrVKv/2oqIiW758uY0aNcrfZzQQXgmvAFA35eVmC/9kdl9bswlpP7zua+vZXl7e2BWGpLS01B+gFi9eHLCve/fuJsleffXVao/1hd42bdrYli1bQuqvIcJrbUaMGGGSbOLEiVX2hRteL7/8cpNkXbp0sT179oR0zH333ecPV1u3bq2y/7333vNf47x58wL2XXPNNSYpYDS0ouLiYuvRo4dJsldeeSVgXzTDa6S/E/W5Tt93KCsrK+B/YnymTp3qD9mVhRJefaO/H3/8cS1XGB3Bwiv3vAIAqlo8VZo/SSqrdE9iWbFn++KpjVNXHb3//vvaunWrsrOzdfbZZwfs883zWdODWzNnzpQkjRkzJiJPnTeUiy66SJL00UcfReR8+/bt07///W9J0n333aeWLVuGdNyrr74qSbrxxhvVrl27KvsHDx6sM888U5L08ssv+7cfOHBAr7zyiiRp9OjR1Z47KSlJw4cPlyR98MEHIV5J/UXyOxGp67z55puVmZlZZfull14qyXPfalFRUZ3rS0tLk6Qq983GAuZ5BQAEKtopLZwSvM3CKVKvEVJq1f9oxhJfML3qqquqPIxy1VVX6be//a3eeecd7dixI2AS+82bN2vbtm2SpPPPP7/hCg5RQUGBHn/8cb3zzjtav369du/erbKysoA233//fUT6WrFihUpLS+Wc05AhQ0I6pqSkRGvXrpUk9e/fv8Z2AwYM0NKlS7Vq1aqA/kpKSiRJp59+eo3H+mYM+Pbbb0Oqqb4i/Z2I1HX26dOn2u0Vw/WuXbuUmppap/rOP/98Pf3007r22mt166236tJLL1WvXr0iMvdtfRFeAQCB1s2uOuJaWVmxtH6OdNq1DVNTGHbv3u1/Av7qq6+usr9Dhw7q27evFi1apOeff1533nmnf19eXl5Au1jyxRdfaMCAAQE1tmzZUs2bN5dzTiUlJSosLAxrtK06vn5atWqlVq1ahXRMQUGBysvLJSnoCKVvkYgdO3b4t1Uc6at4jTXZv39/SDXVV6S/E5G6zppGwpOTk/0/V5z9IFRTpkzR+vXrtWTJEk2ePFmTJ09WcnKyzjzzTF1++eW6/vrr1bx58zqfNxK4bQAAEGhf7f8hlSTt3RbdOurppZde0sGDByV5JqyvPCWQc06LFi2SVPXWAc8td7HphhtuUF5enk477TS9++672rt3r/bs2aO8vDxt27bN/1fRkbqG+p6ntumwKvOF3vT09JCeRwk23VgkRfo7EavX6ZOZmakPP/xQH3zwgUaOHKlSfEu0AAAgAElEQVRTTz1VJSUlys3N1a233qpu3bppy5YtDVqTD+EVABCoRVZo7VpWvY8xltRlEYL//Oc/WrNmjf/3ivdofv311xGtS5J/VSdfuK5s9+7d1W7/5ptvtGzZMiUkJOjNN9/UeeedV2Wi/VBG8erC91ns3r27xroqy8jIUJMmnogR7PPzhZ+Kt2xkZXm+f4WFhf6/po8Fkf5OxOp1VuSc08CBAzVt2jStWrVK+fn5evLJJ5WRkaGvvvpKd911V6PURXgFAAQ64UIpoVnwNgnNpK4XNEw9Ydi4caOWLFkiSVq9erUKCwtrfPkecKoYdjt27OgPK2+//XbI/foCmxR8pK5169aSVOPI1fLly6vdXjHs1fTX8XPnzg2p1lD17t1bTZs2lZnpnXfeCemYpKQkdevWTZKUm5tbY7v58+dLkk477bQq/UnS66+/Hm7ZERfud6ImjXmdvu9pXUeT09PTdfPNN+vBBx+U5FkIojEQXgEAgVIzpX5jg7fpNzamH9byBdEePXqoR48eat26dY2vyy+/XJL03HPPBTz09Itf/EKS9Oc//1nfffddSP36ntCWPA/J1KR79+6SVO2qVGamyZMnV3uc757TvLw8bd++vcr+NWvW6Pnnnw+p1lC1aNFCQ4cOlSRNmDBBe/fuDek431PyM2bMqPaJ9ffff19Lly6VJF1xxRX+7S1bttRll10mSZo0aVLQkeTS0lLt27cvtAuJgHC+EzVpzOv0fU9r+o6Wl5ertLS0xuN997rW9ZaQSCG8AgCq6jtGGvD7qiOwCc082/uOaZy6QmBm/imNhg0bVmv7iy66SImJidq2bZvee+89//Zx48bp6KOPVn5+vvr27as333zT/3T4vn37tGDBAl155ZUBo6etW7dW+/btJUlPP/10jX36wtqcOXM0efJk/8NVmzdv1lVXXaUVK1ZUe9yJJ56oY445Rmamn//859q4caMkzwM5r7/+ugYNGlTlNoJIePDBB9WyZUtt2LBB55xzjnJzc/33bO7atUtz5szRBRcEjsTffvvtOuqoo3TgwAENGTLEf01lZWV67bXXdOWVV0qSBg4cqAEDBgQc+9BDDykjI0Nbt27VWWedpX//+98BQWnjxo165JFHdOKJJ9b4WUVDON+JYBrrOk8++WRJ0rvvvlvt/1js2bNHnTp10gMPPKA1a9b4/6euvLxc8+bN0/jx4yVJ5513XsRqqpNQbhLmxSIFAI5Q+/LNVj7jWWFr5TNxscLW/Pnz/ROcr127NqRjzjvvPJNkV1xxRcD2zz77zI455pigS2RWnsj+nnvu8e9LTU217Oxsy87Otocffjig3bBhw/ztmjRp4j9vcnJywAT+lc//+uuvW5MmTfz7W7ZsaUlJSSbJOnToYDNnzjRJlp2dXeU667M87Pz58wOuvVmzZtaqVauAz6KyTz75xL+Slq/WisvDnnLKKTUuD7ts2TJr3769v23Tpk0tMzMzYPlTSbZgwYKA46K5SIFZ3b8TtS1cEe511mehix07dviXpG3SpIm1a9fO/z01MyssLAzoOzEx0TIyMiwhIcG/7fjjjw9YSSzSKnxmVfNYdRt5EV4BIF75Vg/q0qVLyMc89dRT/kBWWFgYsG/37t02adIk6927t6WlpVlycrIdf/zxdumll9oLL7xghw4dCmhfWlpqkydPtlNOOcVSUlL8/xGuvJpRcXGxPfDAA9a1a1dLSkqytm3b2mWXXWaffvqpmQUPUAsWLLBBgwb5w2Dnzp1tzJgxtnPnTsvNzY1KeDUzy8vLs3Hjxlm3bt0sNTXVUlNTrUuXLnbVVVfZm2++We0xW7dutbvuusu6dOliycnJ1qJFC+vdu7dNmTLFDhw4ELS/PXv22OTJk+2ss86y9PR0S0hIsNatW1vv3r1t3Lhxtnz58irHRDu8mtXtOxHKqmvhXGd9V2n79NNPbdiwYZaVlRUQSs3MysrKbPbs2TZq1Cj7yU9+Yu3bt7fExERLS0uzPn362AMPPBDySmvhChZenWc/QuGc8yRYPjMAAICo8S0qYmau8j7ueQUAAEDcILwCAAAgbhBeAQAAEDcIrwAAAIgbhFcAAADEDcIrAAAA4gbhFQAAAHGD8AoAAIC4QXgFAABA3CC8AgAAIG4QXgEAABA3CK8AAACIG4RXAAAAxA3CKwAAAOIG4RUAAABxIybDq3Mu0zl3o3Pu3865jc65A8653c65D51zv3TOVVu3c+4s59zbzrkC59x+59xnzrlRzrmEhr4GAAAARJ4zs8auoQrn3K8l/U3SVkm5kr6RlCVpmKRWkl6TdLlVKN45d4l3+0FJL0kqkHSRpK6SXjWzyyNQl0lSLH5mAAAAhwvnnCTJzFyVfbEYxJxzAySlSppjZuUVtreTtEzSsZKGm9lr3u1pkjbKE2zPNrMV3u3JkuZLOlPSVWb2Yj3rIrwCAABEWbDwGpO3DZjZfDN7q2Jw9W7fJukJ7685FXYNl9RW0ou+4Optf1DS772/3hK9igEAANAQYjK81uKQ9720wrYB3vd3q2m/SNJ+SWc555pFszAAAABEV9PGLqAunHNNJV3r/bViUO3qfd9Q+RgzK3XObZJ0sqTjJX1Z3zpycnLCOm7BggX17RoAACBuhJuZgom3kdeHJHWT9LaZvVdheyvv++4ajvNtbx2twgAAABB9MfnAVnWccyMlTZO0Tp6Hsgoq7NsgqbOkzma2sZpjl8jz0NaZZvZxPWrggS0AAIAoi7sHtipzzt0mT3D9QlL/isHVyzey2krVS6vUDgAAAHEo5sOrc26UpMckrZUnuG6rptl673uXao5vKuk4eR7w+ipadQIAACD6Yjq8OufGSXpY0mp5guv2GprO974PqWbfOZJSJC0xs+LIVwkAAICGErPh1Tn3B3ke0Fop6Vwzyw/S/FVJ+ZKudM71rnCOZEmTvL/+LVq1AgAAoGHE5ANbzrnrJM2QVCbpUVV/r+pmM5tR4ZhL5QmxByW9KM/ysBfLuzyspCusnhfLA1sAAADRF4/Lw06UNKGWZgvNLKfScWdLGi/PzALJ8iwZ+09J082sLAJ1EV4BAACiLO7Ca6wivAIAAERf3E+VBQAAAEiEVwAAAMQRwisAAADiBuEVAAAAcYPwCgAAgLhBeAUAAEDcILwCAAAgbhBeAQAAEDcIrwAAAIgbhFcAAADEDcIrAAAA4gbhFQAAAHGD8AoAAIC4QXgFAABA3CC8AgAAIG4QXgEAABA3CK8AAACIG4RXAAAAxA3CKwAAAOIG4RUAAABxg/AKAACAuEF4BQAAQNwgvAIAACBuEF4BAAAQNwivAAAAiBuEVwAAAMQNwisAAADiBuEVAAAAcYPwCgAAgLhBeAUAAEDcILwCAAAgbhBeAQAAEDcIrwAAAIgbhFcAAADEDcIrAAAA4gbhFQAAAHGD8AoAAIC4QXgFAABA3CC8AgAAIG4QXgEAABA3CK8AAACIG4RXAAAAxA3CKwAAAOIG4RUAAABxg/AKAACAuEF4BQAAQNwgvAIAACBuEF4BAAAQNwivAAAAiBuEVwAAAMQNwisAAADiRtPGLgARVLRTWjdb2pcntciSTrhQSs1s7KoAAAAixplZY9cQN5xzJkkx95mZSYunyhZOkSsr/mFzQjO5fmOlvmMk5xqxQAAAgNA5b24xsyoBhpHXw4AtmiqXO0mV/3RdWbE0f5LM5AmxAAAAcY6R1zqIyZHXop0qnXqCmlpJjU1KXZKajlnHLQQAACAuBBt55YGtOFf02aygwVWSmlqJ9n32RgNVBAAAED2E1zj31Vf/F1K7TZs2RrkSAACA6CO8xrntSg+pXZ6F1g4AACCWEV7j3O7swSq2xKBtii1RezsObqCKAAAAoofwGudyTj1Rj5cPC9rm8fJh6tfzxAaqCAAAIHoIr3EuIzVJSTljNOXQFVVGYIstUVMOXaGknDHKSE1qpAoBAAAiJ6ypspxzrSWdImmvmf2n0r6jJD0qaZCkMklzJN1tZtvrX27jismpsuSp5/HcjZo5f5X62XJlqVB5StdC10e/GHCabuvfyT/lBAAAQKwLNlVWuOH1bkl/kvRXM7ujwvamkv4j6STJP2e+SfpCUi+zWuZ0inGxGl59CopK9MEX25S3p1hZac006KR2jLgCAIC4E43w+p6kgZL6mtmSCtuvkTRT0gFJf/G+j5WUJulOM3ssjPpjRqyHVwAAgMNBNJaH7eR9X1Np+xXyjLROMLOp3s43SnpR0nBJcR1eAQAA0LjCHXndLUlm1qrS9kJ5RlmPMbOt3m1J8ozAFphZ23pX3IgYeQUAAIi+aCwPm1z5WOdcV0mtJP3XF1y9nZZI8oVaAAAAIGzhhtftklKcc+0qbBvofV9STfvmknaH2RcAAAAgKfzwutz7PlqSnHMpkn4tz/2u8yo2dM4dLU943SoAAACgHsINr0/KMxXW3c65LyVtkHSypB2SXq/Utr/3vfLDXQAAAECdhBVezew9SRPlGWntKqm9pHxJ15jZgUrNr/a+54ZZIwAAACApzNkG/Ac710HS6ZJ2SVpmZrsr7U+SNE6ekPykmW2rR62NjtkGAAAAoi/iixQcqQivAAAA0RfxqbKcc/c450bXof1I59w9dexjuHPuUefcYufcHuecOeeeraFtR+/+ml4v1qVvAAAAxKZwFykol7TNzNqH2H6TpA5mllCHPlZL6iFpn6Qtkk6Q9JyZ/b9q2naUtEnSp5JmVXO6tWb2aqh9B6mJkVcAAIAoi8bysA3hLnlC60ZJ/RTaA1+rzWxiNIsCAABA42mo8Joh6WBdDjAzf1j1pW8AAAAc2aIeXp1zl0tqKWl9tPuS1N459ytJmZJ2SlpqZp81QL8AAABoACGFV+fcnZLurLS5rXPuq2CHSWotKU2e+WDnhFVh3Qzyvn4owrkFkq4zs28i1UlOTk5Yxy1YsCBSJQAAAMS8cDNTMKGOvLaW1LHStoRqttVknqT7Qmwbjv2S7pfnYS1foD5FnoUU+kua55zraWZFUawBAAAAURbSbAPOuR6Sevp+lfRPSbsljQpyWLmkPfI86f9/9SrSuRx5HtiqdraBIMc1lfShPAspjDKzafWsg9kGAAAAoqzesw2Y2afyTEPlO+E/JR0ws2ciVGNUmFmpc+4f8oTXcyTVK7wCAACgcYX1wJaZhbW4QSPZ4X1PbdQqAAAAUG/xFELDdYb3PdjDZQAAAIgD9Z4qyznXRFJneeZyTQzW1swW1be/Gmo4XdJ/zKyk0vYB8ix2IEnVLi0LAACA+BF2eHXOHSXpj5KGS2oewiFWl/6cc5dKutT7azvv+5nOuRnen/PNbIz358mSTvZOi7XFu+0USQO8P//BzJaE2jcAAABiU0izDVQ5yLn2kj6R1F6e2QdCUpd7ZZ1zEyVNCNLkazPr6G37S0lDJXWT1EaeEeA8SUslPWZmi0Ptt5aamG0AAAAgyoLNNhBueH1K0o2S9koaL+kNSd+bWVm9Ko1xhFcAAIDoi0Z4/VaeUdefm9mr9S0wXhBeAQAAoi8a4fWgPLcLpJpZaX0LjBeEVwAAgOgLFl7DnSpruzyLFBwxwRUAAACNL9zwOldSS+dc50gWAwAAAAQTbnh9UFKRPFNUAQAAAA0irPBqZhslXSypn3PuA+dcf+ccy68CAAAgqsJ9YCucKbHMzOq9oldj4oEtAACA6Av2wFa4YTLkhQkAAACASAk3vPaPaBUAAABACMK6beBIxW0DAAAA0ReNeV4BAACABheR8Oo82jjnOkTifAAAAEB16hVenXOnOedel7RbUp6kryrtT3fOPemce8I5l1SfvgAAAICww6tz7heSlkq6VFILeWYgCLgvwcwKJR0n6SZJg8IvEwAAAAgzvDrnTpT0d0mJkqZL6i0pv4bm/5In1F4STl8AAACAT7hTZY2WlCTpcTMbJQVduGC+9/3MMPsCAAAAJIW/wtb/SeooKdvMtni3bZX0IzNLqKb9PkllZtaqfuU2LqbKAgAAiL5oTJXVXlKRL7iG4ICk5mH2BQAAAEgKP7wWS0pyvlgchHOuuaTW8sxIAAAAAIQt3PC6WZ6HtTqH0PZ8SQmSvgizLwAAAEBS+OH1XXlmELgzWCPnXKakP0kySXPC7AsAAACQFH54fVjSPkm/ds5NcM61rLjTOdfcOXe1pBXyzPO6U9IT9aoUAAAAR7ywZhuQJOfchZJelef2gUPyBOEESeskHS/PVFpOnvtjLzSzeZEouDEx2wAAAED0RWO2AZnZbEnnSFopT1BtKk9YPVFSM+/P/5F0zuEQXAEAAND4wh55DTiJc6dI+qk8U2glSNom6SMzW1Hvk8cQRl4BAACiL9jIa0TC65GC8AoAABB9UbltAAAAAGhohFcAAADEjaa1NXDO/dP741YzG19pW12Ymf0yjOMAAAAASSHc8+qcK5dnkYH1ZnZSpW21Lg9boZ2ZWUL9ym1c3PMKAAAQfcHuea115FXSv+QJoFur2QYAAAA0GGYbqANGXgEAAKKP2QYAAABwWCC8AgAAIG6Ecs9rFc65H0m6UtIOM3uhlrbXSMqU9LyZ5YfTH7yKdkrrZkv78qQWWdIJF0qpmY1dFQAAQIMJK7xK+n+SpkiaGELbHpLu9v48Pcz+jmxm0uKp0sIpUlnxD9vfHiv1Gyv1HSO5UCZ+AAAAiG/h3jZwsff9tRDazpRnqqxLwuwLi6dK8ycFBlfJ8/v8SZ79AAAAR4CwZhtwzn0r6ShJzc3sUC1tkyQdkPStmXUMp8hY0SizDRTtlP3lRLnKwbUCS2gmN/pLbiEAAACHhWjMNtBW0q7agqu30xJJuyRlhdnXkW3d7KDBVZJn//o5DVQQAABA4wk3vO6V1Mo5l1xbQ2+bNEn7w+zriLa/4PvQ2u38LsqVAAAANL5ww+vn3mMvDKHtRZISJK0Ls68j2to9tf7/gbdd8yhXAgAA0PjCDa9vyvMQ1lTnXPuaGjnnjpY0VZ6lZGeF2dcRbXXqT1VsiUHbFFuiVqee3UAVAQAANJ5ww+sTkrZIOlbSaufcXc65zs65JO+rs3NutKT/eNt8J+mvkSn5yJKWkaXppUODtpleOlStMrmlGAAAHP7CmufVzPY75y6V9K6kNvKMrlY3X5OTlC/pYjMrCrvKI9jgk9vpjDeHSoekkU3/rWbuh2fkii1R00uH6u9uqD4+qV0jVgkAANAwwpoqy3+wc8dI+qOkKyRV/rvtEkkvShpvZofF00SNMlWWpMfm/1dT39+gdO3RoISVylKh8pSuD8p6qVBpGjO4i24f0LlBawIAAIiWYFNl1Su8VuggRVJvSb7hv62SVpjZgXqfPIY0Vng1Mz2eu1HT529USWm5f3tS0yYaOaCTbuvfyf+HDAAAEO+iHl6PFI0VXn0Kikr0wRfblLenWFlpzTTopHbKSE1qlFoAAACihfAaIY0dXgEAAI4E0VhhCwAAAGhwtc424Jz7yvvjRjMbXGlbXZiZ/TiM4wAAAABJoU2V1dH7frCabXXB37UDAACgXkIJrzd433dXsw0AAABoMDywVQc8sAUAABB99Xpgyzn3unPuH5W2dXDOHR2xCgEAAIAQ1Dry6pwrl7TNzNpX2rbVzI6oAMvIKwAAQPTVd6qsckkJ1Z23fmUBAAAAdRNKeC2QlOmcaxXtYgAAAIBgQpltYLmkIZLecs69KGmfd3tz59y1denMzP5Vx/oAAAAAv1Duee0raZ48QdfX2Knu87aamYUSlmMW97wCAABEX7B7XkOaKss5d4akOyV1l5QizyIFZZK21KUQMzuuLu1jDeEVAAAg+uodXqs5YZUZCI4EhFcAAIDoq+9sAwAAAEBMqPUeVOfcKkk7zOy8Cpv7SyqOWlUAAABANVikoA64bQAAACD66nvbQJmkxOrOW7+yAAAAgLoJJbzukJThnDsq2sUAAAAAwYQy7+qHkoZLWuCce0M/LFLQwjl3T106M7P76lgfAAAA4BfKPa/dJH0kqaXqt0iBzCyhrsfEEu55BQAAiL5g97zWOvJqZmudcz0k/Uo/LFKQI+mQpKWRLBQAAAAIhkUK6oCRVwAAgOir18hrDb6RlFePmgAAAIA6C2vk9UjFyCsAAED0RX15WOfRxjnXIULnG+6ce9Q5t9g5t8c5Z865Z2s55izn3NvOuQLn3H7n3GfOuVHOubh+SAwAAAA/qFd4dc6d5px7XdJueW4j+KrS/nTn3JPOuSecc0l1OPXvJd0uqaek70Ko4xJJiySdI+nfkh6XlCTpYUkv1qFfAAAAxLCww6tz7hfyzDZwqaQW8kyfFTC0a2aFko6TdJOkQXU4/V2SukhKk3RLLXWkSfq7PCuB5ZjZL81srDzBd6mk4c65K+vQNwAAAGJUWOHVOXeiPIExUdJ0Sb0l5dfQ/F/yhNpLQj2/meWa2X8ttJtLh0tqK+lFM1tR4RwH5RnBlWoJwAAAAIgP4c42MFqev5Z/3MxGSZJzrqyGtvO972eG2VdtBnjf361m3yJJ+yWd5ZxrZmbFUaoBAAAADSDc8DpAnhW2JtfW0My+d87tlxSRh7mq0dX7vqGavkudc5sknSzpeElfRqLDnJycsI5bsGBBJLoHAACIC+FmpmDCvee1vaQiM9sSYvsDkpqH2VdtWnnfd9ew37e9dZT6BwAAQAMJd+S1WFKyc87Vdl+qc665PMFxV5h91ZfvIbKITc7KCCoAAEDtws1MvnleqxPuyOtmeR7W6hxC2/MlJUj6Isy+auMbWW1Vw/60Su0AAAAQp8INr+/KM6J5Z7BGzrlMSX+SZ9RzTph91Wa9971LNf03lWeqrlJVmoMWAAAA8Sfc8PqwpH2Sfu2cm+Cca1lxp3OuuXPuakkr5AmPOyU9Ua9Ka+abzWBINfvOkZQiaQkzDQAAAMS/sMKrmeVJulrSIUn3SNohKVOSnHOfSyqQNFNStjz3x15lZnsiUXA1XpVnjtkrnXO9fRudc8mSJnl//VuU+gYAAEADcqGtA1DDwc79RNJj8ixSUJ3/SPq1mS2v43kvlWflLklqJ+k8ef7af7F3W76ZjanU/lVJB+VZDrZA0sXyTKP1qqQrQlzwoLa6TJIicCoAAADUwPfAlplVeXKrXuG1QgenSPqpPFNoJUjaJumjiite1fF8EyVNCNLkazPrWOmYsyWNl2cxhGRJGyX9U9J0M6tpAYW61kV4BQAAiLKoh9cjBeEVAAAg+oKF13Af2AIAAAAaXLiLFPg555IkDZLnvtcfyTMt1g5JyyXNNbOS+vYBAAAASPUMr865myXdL6lNDU3ynXO/N7O/16cfAAAAQKrHPa/OucmSxuiH5Ve/k7TF+/Mxko72/mySppjZb+pRZ0zgnlcAAIDoi/gDW865fpJyvb++JukPZrauUpuu8ozKDpcnwOaY2WLFMcIrAABA9EXjga3bvO//a2aXVw6u3s7Wm9kVkv5XntHZ28PsCwAAAJAU/sjrFnkWD2hvZttraZsl6XtJW83smLCqjBGMvAIAAERfNG4bOCipyMwyQ2y/U1KqmSXXubMYQngFAACIvmjcNrBXUkvnXK1h1DnXXFJLSfvC7AsAAACQFH54/UyeZWBHhNB2hDxTcn0aZl8AAACApPDD63PyPIT1Z+fcL2tq5Jy7UdKf5ZltYGaYfQEAAACSwr/ntYmkeZL6yRNMt8gzddZ33t+PldRfnrlenaQFks61OL9ZlHteAQAAoi/iD2x5T5om6Z+Shnk3VT6Rr7PXJP3SzPaE1VEMIbwCAABEX1TCa4WT95F0paTekn7k3bxd0gpJL5rZ8np1EEMIrwAAANEX1fB6JCG8AgAARF+w8No0zBMmSTpBUkl1q2tVanuCpCRJX5rZoXD6AwAAAKTwZxv4uaT/SBoVQtvx3rbDw+wLAAAAkBR+eL3M+x7K9Ff/K8/DW4RXAAAA1Eu44bWb9z2UhQdWet+7h9kXAAAAICn8eV73SzpoZhkhti+QlGhmLevcWQzhgS0AAIDoC/bAVrgjryWSmofYufO2JfEBAACgXsINr5skJTnnzgyh7VmSmkn6Osy+AAAAAEnhh9cP5HkI6yHnXI3TbXn3/VGeUdf3w+wLAAAAkBR+eJ0u6aCkn0qa65w7tXID59xpkuZ52xRLmhZukQAAAIBUjxW2nHO/kDSjwqZt8twaYJKOk5Qlz+isSbrOzJ6tV6UxgAe2AAAAoi9qy8M6586X9JikjjU0+UrS7Wb2btidxBDCKwAAQPRFLbx6T54gqb88D2a1827eKmmJpFwzK69XBzGE8AoAABB9UQ2vRxLCKwAAQPRFY55XAAAAoMERXgEAABA3CK8AAACIG4RXAAAAxA3CKwAAAOIG4RUAAABxg/AKAACAuEF4BQAAQNwgvAIAACBuEF4BAAAQNwivAAAAiBuEVwAAAMQNwisAAADiBuEVAAAAcYPwCgAAgLhBeAUAAEDcILwCAAAgbhBeAQAAEDcIrwAAAIgbhFcAAADEDcIrAAAA4gbhFQAAAHGD8AoAAIC4QXgFAABA3CC8AgAAIG4QXgEAABA3CK8AAACIG00buwDUU9FOad1saV+e1CJLOuFCKTWzsasCAACICmdmjV1D3HDOmSTFxGdmJi2eKls4Ra6s+IfNCc3k+o2V+o6RnGvEAgEAAMLjvBnGzKqEGUZe45QtmiqXO0mV/0RdWbE0f5LM5AmxAAAAhxFGXusgZkZei3aqdOoJamolNTYpdUlqOmYdtxAAAIC4E2zklQe24lDRZ7OCBldJamol2vfZGw1UEQAAQMMgvMahr776v5Dabdq0McqVAAAANCzCaxzarvSQ2uVZaO0AAADiBeE1Du3OHqxiSwzaptgStbfj4AaqCAAAoGEQXuNQzqkn6vHyYUHbPF4+TP16nthAFQEAADQMwmscykhNUlLOGE05dEWVEdhiS9SUQ1coKWeMMlKTGqlCAACA6GCqrDqImamyvDU8nqK5VykAACAASURBVLtRM+evUj9briwVKk/pWuj+f3v3HmZXVR98/PubSTIkkyu5EIRggCQgggqi3ASSKGBfKNXWC+0DVaut9KFaWy+9PPV9tbbvYx9t66u0Sq2VV2yV1r6FilBAIAG8C1JECCSQcM09k8tMSIbMrPePvU/mzJlzzpyZzG2ffD/PM8+Zs69rr7P23r+zztprvY6rVp7BNSuWHOxmQpIkqUjqdZVl8DoEEyl4LdnR1c2dj25i8+79HDWzjYtOWWiNqyRJKjSD1xEyEYNXSZKkZuMgBZIkSWoKBq+SJEkqDINXSZIkFYbBqyRJkgqjqYLXiNgQEanG36bxTp8kSZIOzaTxTsAo2AV8rsr0zrFOiCRJkkZWU3WVFREbAFJKi0dp+3aVJUmSNMrsKkuSJElNoRmbDbRFxJXAcUAX8DBwb0qpZ3yTJUmSpEPVjMHrQuCGimnrI+I9KaXVI7GD5cuXD2u9VatWjcTuJUmSCmG4MVM9zdZs4KvAG8kC2HbgNOA6YDFwW0S8evySJkmSpEPVVA9s1RIRnwU+DNyUUnrrIWzHB7YkSZJGWb0Htg6X4HUJsBbYkVKaewjbMXiVJEkaZfY2AFvy1/ZxTYUkSZIOyeESvJ6Tvz41rqmQJEnSIWma4DUiXhkRR1aZ/nLg2vzt18c2VZIkSRpJzdRV1tuBP46Ie4D1wB7gROBS4AjgVuCz45c8SZIkHapmCl7vAU4CTidrJtAO7ATuJ+v39Ybkk1aSJEmFdlj0NjBS7G1AkiRp9NnbgCRJkpqCwaskSZIKw+BVkiRJhWHwKkmSpMIweJUkSVJhGLxKkiSpMAxeJUmSVBgGr5IkSSoMg1dJkiQVhsGrJEmSCsPgVZIkSYVh8CpJkqTCMHiVJElSYRi8SpIkqTAMXiVJklQYBq+SJEkqDINXSZIkFYbBqyRJkgrD4FWSJEmFYfAqSZKkwjB4lSRJUmEYvEqSJKkwDF4lSZJUGAavkiRJKgyDV0mSJBWGwaskSZIKw+BVkiRJhWHwKkmSpMIweJUkSVJhGLxKkiSpMAxeJUmSVBgGr5IkSSoMg1dJkiQVhsGrJEmSCsPgVZIkSYVh8CpJkqTCMHiVJElSYRi8SpIkqTAMXiVJklQYBq+SJEkqDINXSZIkFYbBqyRJkgrD4FWSJEmFYfAqSZKkwjB4lSRJUmEYvEqSJKkwDF4lSZJUGAavkiRJKgyDV0mSJBWGwaskSZIKw+BVkiRJhWHwKkmSpMIweJUkSVJhGLxKkiSpMAxeJUmSVBgGr5IkSSoMg1dJkiQVhsGrJEmSCsPgVZIkSYVh8CpJkqTCMHiVJElSYRi8SpIkqTAMXiVJklQYBq+SJEkqDINXSZIkFYbBqyRJkgrD4FWSJEmFYfAqSZKkwjB4lSRJUmEYvEqSJKkwJo13AqSRtqOrmzt+sYkte/azYEYbF79yIUe2TxnvZEmSpBEQKaXxTkNhREQCMM/GV63gNKXE392zjs/fvY7uA70Hl58yqYUPrlzCNSuWEBHjmPLhMRjvz/wononwmU2ENEgTSfk50T6lFQK69vdMmPOjdL9OKQ24cTdV8BoRxwJ/DrwZmAtsBG4CPplS6hiB7Rc7eO3aDmtugc7NMP0oOPkyaJ/bf/rkdoiAzi2wZyPMOJquKXN4fFMn+/fuhsntREDq7qJ15kKWXnAFc+YfXXcfHXu7WXvvN+nZvYm2aTM4aeFM2tnXt6/uzr70QNU0dmzdyBOrv8EzT6/n8Y5Eb0q0s48tzGFVvI7fPv8Ejt+2ioceXUMnUwmy+aX/57GLFcf08oqly6B9/sH9dtGWHdvOTUzq2syB9qNonXfCwOMCOrZuPHgcVY+9kbyuNr9Gnq/ZuIennt988HjnsYsFsZPtMYdTli7hDUvnEd1d1fOx1r6qfe471h/cb3neNJzu7s6hpSFfdm/HRjY/v55tMZd90xfx9IIV7Egza144S19Obrj7QZann7CADjqZyqQWeOMJ7Zx10nHZxa5GGkqfX3SsZ17awcJjjmfqUUuqnwdVyuPBsrJ3d//Pfzif9WBlvsZ5MNj5VZ6u8hvTsW17uaT1p7R3b2+8jJSnodpnXVZea5Wb1LWNe276Kk+seZh5qYMtaTZbmd33mb3qFKIyLSOhrGynPRt5oOMIbt/QS09vb7/rxlUrz+Cas+YQa77TWP4P8pl2TZnL7T1n8tz+aQfzPDo2HCznac7i+tfMWudU6Zzp3MUju4/gofY3MG/6lKqf6ZCuU43mYyP5MJz5jey3Wnk78vihn2cjka7hprHatbba/KGWtyr3r7bZR/XdY2tsK625hR89/Ch3PbX34DlRft8sv6++d96jxKHk0yE4LILXiDgR+D6wALgZWAO8HlgBPA6cl1Lafoj7KE7wWl7YJ02D9atJT95FpJ6DiyRaiTmLYNdz0HtgWLt5KbWyru0VtM1dzKLW7Ux+4Sf9ttVLQIKWaCTPWiASlOVvopVdRyyk/cVNTI6eqmv15OW6taF9NOal1MrGOWew6PVvAeDZH9/E0R0P9kvDgdTCs0eezeLXXUq8tDe7qACsvZ309PeIsnxI0UqcuBJOWA5r74CnvzfsPB9UTIJFr4dZi2DXs/Dcjyv21QpzFpF2PtuvPNTc1uLzYMnFsH41PHUX9A6yDkC0whCP96XUyo96T+au3tOZ1BL9A9LOLTz2xOPs3vQkZ7Ssq1kWqqUhHX8hz/7kZo7ueIDJ0TtgsdrnwcDy2D+9LeyYtID5vVtpKc/HimOvLAsViSRFEKkvXYkWYsB+s8+sMo3Vzq+XUiuPH3EaN+89jZ7eXla2PMRZLWv651m0sn/xcn4x5XTmbV7Nsbse7H8Mgxz74LL09nQ8QysD87x/FuRlbOkl9YPiQQLorilzeHzjHuZtWsWxOx+gZZD9vpRaeD7NY1Hrdlr7HfvAz6QnWnl+5hlsW3ghp3b/jClPr6p5HpS2e0xsq1reDl5bXvcrxPp7Gz+nylS75tW6Vh5ILWyYfTa7jj6P7hf39KuAOFiZ0L2jf54DrL194Hk7SNlOMYmod+2p81n3+/wGlMcqKq5Nlfe3ast2HbeSXY9+l4Vbv08LZffCmESUp6vel7RaeVNV/Wtt6dqTdj03tHwcgt5o5bmysjt5w6rBr/vUuK+2tsGFH4XzP5LlzSg7XILX24GLgQ+mlL5QNv1vgD8ArkspXX2I+5j4wWtKcN9nYfVnoGf/eKdGkiQ1k5V/Bhd8dNR30/TBa0ScADwJbABOTKnvK3NEzCBrPhDAgpRS1yHsZ+IHr/d+Bu7+i/FOhSRJakatbfCHj416E4J6wWuzdJW1Mn+9ozxwBUgp7QG+B0wDzh7rhI2pru1ZjaskSdJo6NkPj39nXJPQLF1lnZS/PlFj/lqyJgXLgLsOdWfLly8f1nqrVq061F3Xt+YWmwpIkqTRtWdTw4sON2aqp1lqXmflr7tqzC9Nnz0GaRk/nZvHOwWSJKnZzVg4rrtvlprXwZTaS4xIY9VRr0EdrulHjXcKJElSM2ttg5MubXjx4cZM9fplb5aa11LN6qwa82dWLNecTr4sK1SSJEmj4cKPjml/r9U0S/D6eP66rMb8pflrrTaxzaF9blaoJEmSRlJrW9ZN1vkfGe+UNE1XWScC66jfVVYLML/pu8pqoJ/Xqh1cxySenXU6X9v+Cnp6E/PZyfzYyY6Yw4knnMicaZPp3rsbpkyHlJj+zF2cvP/hIXX63kMrm+afw+xXXkJ77Du4reodPkfWCXJZ5xHlnS3P2vx9Xt7xQyaV7b/Uyf13e89gUsDJRwZrOhhwPK9YuoTzl84nujvp5Aie2LyH/R2baO3azMLezRzb9QgtqXqH0L0EAUQDLVB6UrZsrQEaSuldxWv5gzcty0bKyUcy6ZxyZJaurt20TZtBx94DrH3qSeamDram2WxhNpNagjedMC3ryB+yfNxwP1TtgLp6J/cvpVYe6F3Cs2lBX94smUcM0gn3gdTC6p7TuD+9ium8yOuWLeKC1l/U7XC9ehnr4LjYxmtb1zKJxjtqr9zWdF5kD0dwQcsjXNDycL9yUa43Wnlh+ml0z1jEopZtAwbVqJVPWaf+K3ik7TVMeeq7nLz/5/06gu9JQUvULhd9ZfN0Lmx9hAtbft6vk/S+ju23D9gu9D9Xh7JsvzyrOvhBeRpb6Jp6NLO6N/cfVKHUMf2JK7PO26dMz6Z3bukbEWj6Au59Yist624fMCBCqYzNPHoJpyxdBtMX1DnvR87QyvbAQRlq5XM/BzvtX1FjcJJJvPSyM3kuzWdK53O8bM/Pa15bemjl3t7TuLfntLw8Ty27jiXO5ecDynata+1QrlODG3ywjnqDMtQ8pwbRN1DMWw8OVMKeTbDz6bqd9peuTT+I0/jNuY+zaPfPag4ScsgD3FQddKF6GvvK43yOi60DBlsZLB+rX/Om0hpw6qx9HDNpDz3TFtA2eyHLFkxnx39/e8DAOtXz6VW86YR2zlq2iKg2EE3pGE/9NUfYGg0OUlCha3vWlcWeTQdvNtnQglN5qP085s+YwkUtDzC9e1vW8PqkS6F9Lju6urnz0U1s3r2fo2a2cdEptcc3zoYhvJHoeIq5qYOjj1nM1IVLD26rXxrK9jFoekvLQt31S/vv2b2RA9MW8Mz8FWxPM/qleyjHUy/v6O6snq7y+WX/d06Zx529r2Xrnm6OePI2tr7wNHuYSgDTeZHNzOHOntfSwUw+cvEyfm/l0gHJqNTQsZTSvv2pvsBi7glVP5NSGp/dN6369sqWTZPbuW/ddh5c+wwv9M4+mPYpk1r44MolXLNiSXahGSzvapUx9tTP0/JAqex4yre1YMYUntnxIv9+/39zYfoJR9GRBQClIL/aUKS1yuggZbe87LXOPJqlF7yTOdOmVD2Gqvlcdrzl8xcdsZeLWh6gpXMzf3HvDm576QwALmp9gKPo6FdujprUyV2XdjG9extp+lF8ZdspfPm+p+ofe1nZPfjFrWt33zGUhrtt9LwtUz58bykNm5nD6tIwrKUyUq28ludZRVA8oCzUKBflX/hqXQ/qfu7leVP2mcyN3Ry3dTWT9m6mbdrMfOjNF6vnzWB5N8j5sYMZVc/xUjnftX0zr+n6HqfOfJFpc4+pX15rfNZMmU4Aqbuz73jKvjj3y/NBrnnVyu70zmcGvfYM9vn1K4/VDHJ/mzX3qL7PvPyal+dD1+6dvNAzm81Hv5FFc6f23QsHu/ZUy5sG7mmlfHpidxtb9uxjwYwjWDZz/8H9DiUfh3OP7tm98eBnHd2d1fOp0TI8hg6X4LVyeNjHgLPIhod9Ajj3sBoeVhNG6ab++bvX0X2g7xv1gMCvAIb1ZWCMFSGNjbj27rV89o7aLZ2qfemZCMc+EdIgqfgOi+AVICIWAX8OvBmYS9Zc4CbgkymlHSOwfYNXDZs3dQ1FM33pkaShOmyC19Fm8CpprPmlR9LhyOB1hBi8SpIkjb56wWuzdJXV1JYvXz4qw6sVmXnSn/nRn/kxkHnSn/nRn/kxkHnS30TKD4NXSZIkFYbBqyRJkgrD4FWSJEmFYfAqSZKkwjB4lSRJUmEYvEqSJKkwDF4lSZJUGAavkiRJKgyDV0mSJBWGwaskSZIKw+BVkiRJhWHwKkmSpMIweJUkSVJhREppvNNQGBFhZkmSJI2RlFJUTrPmVZIkSYVhzaskSZIKw5pXSZIkFYbBqyRJkgrD4FWSJEmFYfAqSZKkwjB4lSRJUmEYvEqSJKkwDF4lSZJUGAavkiRJKgyDV0mSJBWGwaskSZIKw+BVkiRJhWHwKkmSpMIweJUkSVJhGLxKkiSpMAxeJ7CIODYi/ikiXoiI/RGxISI+FxFzxjttoyEi5kbE+yLiPyJiXUS8GBG7IuL+iHhvRLRULL84IlKdv2+O17GMpPxzr3WMm2qsc25E3BoROyJib0Q8HBEfiojWsU7/SIqIdw/ymaeI6ClbvmnKSES8LSK+EBH3RcTuPP1fH2SdIZeDiLgsIlbl515nRPwoIt418kd0aIaSHxGxNCL+KCLujohnI6I7IjZHxM0RsaLGOoOVtatH9wiHZoj5MezzIiLeFRE/zsvGrrysXDZ6RzZ8Q8yT6xu4ttxVsU5hykgM8f5att6EvIZMGsmNaeRExInA94EFwM3AGuD1wO8Db46I81JK28cxiaPh7cAXgY3APcAzwFHArwL/CPxSRLw9pZQq1vtv4KYq23tkFNM61nYBn6syvbNyQkT8CvDvwD7gRmAH8MvA3wLnkeVzUT0EfLLGvPOBlcBtVeY1Qxn5M+DVZJ/5c8DJ9RYeTjmIiN8DvgBsB74OdANvA66PiNNSSh8ZqYMZAUPJj08B7wQeBW4ly4uTgMuByyPi91NKn6+x7s1k5a7ST4eZ7tEypPKRG9J5ERGfBT6cb//LwBTgCuDbEfGBlNK1w0j3aBpKntwEbKgx7yrgBKpfW6AYZWTI99cJfQ1JKfk3Af+A24EEfKBi+t/k07803mkchWNemZ8YLRXTF+YnWgJ+rWz64nza9eOd9lHOlw3AhgaXnQlsAfYDZ5ZNP4Lsy1ACrhjvYxqlfPpBfnyXN2MZAVYAS4EAlufH9fWRKgd5Xu0ju+ksLps+B1iXr3POeOfDMPPj3cDpVaZfSHZz3Q8cXWWdBLx7vI91FPJjyOcFcG6+zjpgTsW2tudlZ/GhHMN45kmdbcwG9uZlZF5RywhDv79O6GuIzQYmoIg4AbiYLGj5u4rZ/wvoAq6KiPYxTtqoSindnVL6dkqpt2L6JuBL+dvlY56wYnkbMB/4Zkrp4Lf+lNI+sloIgN8dj4SNpog4FTgbeB74zjgnZ1SklO5JKa1N+d1gEMMpB78FtAHXppQ2lK3TAfzv/O2E+Rl0KPmRUro+pfSzKtNXA6vIahDPHflUjp0hlo/hKH32f5mXidJ+N5Ddp9qA94zSvodlhPLkKmAq8P9SSttGKGljbhj31wl9DbHZwMS0Mn+9o0pB2xMR3yMLbs8G7qpcuUm9lL8eqDLvZRHxfmAu2Te+H6SUHh6zlI2Ntoi4EjiO7MvLw8C9KaWeiuVKZee/qmzjXrIahHMjoi2ltH/UUjv23p+/fqVKnsDhUUbKDacc1Fvntoplmkm9awvAayLiQ2Q1Ts8D96SUnhuTlI2+oZwXg5WPj+fL/K8RT+X4+u389R/qLFP0MlLtHJjQ1xCD14nppPz1iRrz15IFr8s4DILXiJgE/Gb+ttpJcVH+V77OKuBdKaVnRjd1Y2YhcEPFtPUR8Z689qikZtlJKR2IiPXAK8nabz02KikdYxExFbgS6CVru1XN4VBGyg2nHNRbZ2NEdAHHRsS0lNLeUUjzmIuIlwNvJLsR31tjsd+veN8TEf8IfCivhSqyhs6L/Fe+Y4DOlNLGKttZm78uG6V0jouIOAc4DXgipXRPnUULW0bq3F8n9DXEZgMT06z8dVeN+aXps8cgLRPBp4FTgVtTSreXTd9L9iDGa8na1Mwha8N2D9nPH3c1SdOKr5LdYBcC7WQX0+vI2hfdFhGvLlv2cCw77yA7nttSSs9WzDtcykil4ZSDRteZVWN+oUREG/DPZD9zfqL8p/DceuADZDfkduBlZGVtA1lN/z+NWWJH3lDPi8PxugLwO/nrl2vMb4YyUuv+OqGvIQavxRT562i1bZowIuKDZE+3riFre3RQSmlLSul/ppQeTCntzP/uJauV/hGwBHjfmCd6hKWUPpm3V9qcUtqbUnokpXQ12cN7U4FPDGFzzVh2SjeY6ypnHC5lZBiGUw6apuzk3fzcQPbE9I3AZyuXSSmtTildm1J6Ij/vNqaU/o3sIaAO4NcrvjgWxiieF4UvGyURMYssEO0Grq+2TNHLSL37ayOr56/jcg0xeJ2YBvt2MrNiuaYUEdcA/4ese5sVKaUdjayXUjpA38/HF4xS8iaCUiP78mM8rMpORJxC9qDNc2RdIDXkMCgjwykHja6z+xDSNe7ywPXrZN38/Ctw5VAe6Mlr90tlranKTp3zYrCyMViNWxFdCUxjGA9qFaGMNHB/ndDXEIPXienx/LVW+6Gl+WutNrGFlzd+v5asv8EV+RORQ7E1f23Gn4RLtuSv5cdYs+zkbZuOJ2uU/9ToJm3MDPagVj3NXEaGUw7qrXM0WT49V+T2rvmxf4Osb9J/AX4jD9iGqpnLzoBjSyl1kT2IND0vC5Wa8Z5UelBrwC86DZqwZaTB++uEvoYYvE5MpYbhF1eOehERM8h+6noR+OFYJ2wsRMQfkXWC/BDZibVlkFWqOTt/bZYgrZpz8tfyY7w7f31zleUvIKtJ+H4z9DQQEUeQ/dTVC3xlGJto5jIynHJQb51fqlimcCJiCvAtshrXrwFXDeMLT8lZ+Wszlp1a50VTl49yEXEW2eAGT6SUVg1zMxOyjAzh/jqxryFpAnSe61/VDoUPu0EK8uP7eH58PwWOHGTZs4ApVaavJOsoOQHnjvcxHWJ+vLJaPgAvJ3vCNwF/WjZ9Jtk3/qYfpIAscE3Atw+3MkJjgxQMqRyQ1aQUZpCCIeZHG1n/v4nsZ/GWBrZ5fpVpAfxJvp2twMzxPvZh5seQzwsKOEjBUPKkYtmv5Mt+uJnKyBDvrxP6GhL5hjXBVBke9jGyC84Ksp9mzk1NNjxsPvbx9UAP2fBy1dpPbUgpXZ8vv4osuFtF1uYR4FX09SP38ZTSX4xagsdARHwC+GOy2vj1wB7gROBSsovIrcBbU0rdZeu8hayGaR/wTbIh/S4neyL2W8A7UhOc+BFxH/AGshG1vl1jmVU0SRnJP9e35G8XApeQ1ercl0/blsqGXhxOOYiIDwCfJ7v53Ejf0I7HAn+dJtDwsEPJj4j4KtloSNuAv6f6AyOrUlktW0QksmvtT8h+Mp9F9qvXqWRP6781pXTHiB7UIRhifqxiGOdFRPw18If5Ot8iG9zhnWT9xE644WGHes7k68wEXgAmA8ekOu1di1RGhnp/zdeZuNeQ8f4m4F/dbz6LyLpJ2pgXgKfJGljX/cZU1D+yp+bTIH+rypZ/L3ALWbcknWTfEJ/JT5gB34iL+EfWfc03yJ4G3UnWmfRW4E6yvvmixnrnkQW2HWRNTH4O/AHQOt7HNEL58oq8PDxb75iaqYw0cH5sGIlyQDaE5GqyL0pdZDfmd4338R9KfpAFaYNdWz5Rsf3P5PnwAtnNe29+Hl4LnDDex3+I+THs8wJ4V14muvIyshq4bLyP/1DzpGyd383nfaOB7RemjDSQF/3ur2XrTchriDWvkiRJKgwf2JIkSVJhGLxKkiSpMAxeJUmSVBgGr5IkSSoMg1dJkiQVhsGrJEmSCsPgVZIkSYVh8CpJBRARyyMi5aP6jOR2F5e2GxGLx3p9SRoqg1dJkiQVxqTxToAkqSF7gcfHOxGSNN4MXiWpAFJKPwZOHu90SNJ4s9mAJEmSCsPgVdJhLyIWRMRL+UNHlw+y7Kfy5daVTTsuIq6JiO9ExBMR0RURnRHxaER8LiKOq7O9Vfn2PhERkyPiwxHx04jYmU9fni9X84GtiGiJiPMi4tMR8cOIeC4iuiNie0SsjoirI2Jyg3mxNCKuz7exPyKeiYgvRcQxjaxfZ7tviYibIuKFPG0dEXHvYGmLiHdExG0RsTn/jHZGxNqI+M88z484lHRJKp5IaUQfXJWkQoqIW4BLgW+llN5eY5kAngSOBz6RUvpkPn0VcGHZoruAGfRVEOwCLksp3V9lm6V1/wo4HzgXOADsAeYAK1JKq/Ig9h6AlFJUbGMxsL5s0gGyNrIzy6bdB1ySUnqxzrpXAF/O094JtAJT83k7gItSSg/WWf/4lNKGivnTgW8Al5VN3p3vo3QcPwAuTSl1VKz7FeC3yiZ1kuXptLJpA/YpqblZ8ypJma/lr78cEbNrLHMeWeAKcEPZ9EeAPwZOAaallGYDbcBZwH8Bs4AbI2IqtV0DvAp4DzAzpXQkMA94uIG0HwBuBt4JHAO0pZRmkQWI7wFeIAuM/3KQ7VxHFoielVKaAbQDlwDPAEcC/xERMxpIT7kbyALXdcBvkB3bLLIA9FeAp4BzgH8qXyki3kAWuPYCfwTMTSnNSCm1k+XLJcD/BbqHmB5JBWfNqyQB+c/Pm8gCzfenlP6hyjLXAb8D3J9SOr/B7bYCD5IFplellL5eMX8VfbW2l6eUvl1jO8upUfPaQBrOBH4CdAHzUkr7yuYtpq/mdDtwSkppS8X6rwAeAqYAH0spfabG+v1qQSPiUuAWsnw9M6X0fJW0HQusIQuUT08pPZRP/xhZbfQdKaVLhnK8kpqbNa+SBOQB3b/lb6+qnB8RbcA78rc3VM6vs90estpXgDfUWfQXtQLXQ5VS+imwhSxAfE2dRb9UGbjm6z8GfCt/e8UQdv2+/PWGaoFrvu3nyINystrUkp356/z8C4AkAQavklSu1HTgvIg4vmLeZcBsYD/wr5UrRsT5+YNOa/KHtUqjTiXgY/lix9bZ9/cOJeERMSV/+OmO/KGofRVpWNBAGu5uYN6rGn34i75g/XciYlOtP+BN+XIvL1v3u8A+4HTgvoh4b5XPRNJhyH5eJanP/WQ/gR8PXAl8qmxeqTb2P1NKO8tXioi/oi9ABegBOuhrjzmdrNazvc6+B9R4NioiFpAFe6eVTd4HbMvTAjCfrMKiXhqq1o5WzJtE1v518yBpmkzWNhWyphiz6i2fO/ggVkrpqYh4H/Alsjax5+Tb3UpWU/svZJ+Fbd+kw4w1r5KUywOhUpvUg00HImIu8D/yt18rXyciLqIvcP17sgCyLaV0ZEppYUppIfC3pcXr7L6nzrzB/G2+3+1kDzkdnVKamlKaX5aGFxpIw0gGguU/9V+RUooG/t7dLzEp/TNZbezVwI3As2RB+DuAm4DVEVHeo4Kkw4DBqyT1VwpOl0bE2fn/7wQmA1vpa79aUmoDentK6ZqU0iN5wDQo6AAAAwNJREFUO9dyC0cnqQdrOH81f/t7KaWvppQ2VSzTSl8taD31mhSU+nk9QNZtVl15G+Jd+dvT6i07yHZ2pJSuSyldkVI6DlgCfJos0D4f+MRwty2pmAxeJalMSmkdWb+j0Ff7Wnr9RkrpQMUqi/LXn1XbXt437MoRTWR/84FSR/1V00DW9rSRzvxXNDDv4ZTSSw2mrdSO9+0RMSL3m5TSkymlPyFrNgBw0UhsV1JxGLxK0kCl2td3RsQpwNkV08uVahdfXWNbVwMnjGDaKu2m7+f+AWmIiEkM3r9rydURMaCGNiJOAt6Wv71xCGkrdTe2DPhovQUjoj0ippS9bxtk26XBFg6luYWkAjJ4laSBbiR72GouWUf4AI+llB6osmypGcEvRcTHI6IdICJmR8SfAl8ga4s6KlJKnfTVcP5NRKws1XJGxKnArcCZZH28DmYycGdEvC5fPyLiTcDtZIMuPEv2AFWjabsZ+I/87acj4osRsaw0P+8h4az8gben6esRAeDaiPjXiPi1/IG00jrTI+Jq4DfzSbc2mh5JzcHgVZIq5MOU3pK/PTN/rVbrWpp+X/7/nwN7ImIHWcD6l2TB7RdHKaklHyILTo8B7gL2RsRu4OdkP/f/NlnPA4N5P3Ai8OOI2EM2HOudZA9N7QR+NaW0e4hpuxL4Zv7/1cDjeVdiO8hqT39I9sDbXPo/MDYZeDtZ/7KbI2JPRHSQDZv7RbIBE+6n8VplSU3C4FWSqisPVnvp64Wgn7z958XAJ4EngJfInuj/MfC7wOWM8k/beY3w68n6n91Gdm3fk78/N6XU6KAKPyIL1r9G1hxiElkXWV8GTssHOxhq2vamlH6dLIi+gWw42Bay7sO2kPUf+zFgacVABp8CPkhWc7uG7EGx0jp3kvWqsDyl1EiNsqQm4vCwkiRJKgxrXiVJklQYBq+SJEkqDINXSZIkFYbBqyRJkgrD4FWSJEmFYfAqSZKkwjB4lSRJUmEYvEqSJKkwDF4lSZJUGAavkiRJKgyDV0mSJBXG/weKp2icsQcBlgAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}