{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "*This notebook contains material from [cbe67701-uncertainty-quantification](https://ndcbe.github.io/cbe67701-uncertainty-quantification);\n", "content is available [on Github](https://github.com/ndcbe/cbe67701-uncertainty-quantification.git).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [5.0 Regression Approximations to Estimate Sensitivities](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.00-Regression-Approximations-to-Estimate-Sensitivities.html) | [Contents](toc.html) | [5.2 Lasso Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.02-Contributed-Example.html)

\"Open

\"Download\"" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "wkbLGIXiXDLA", "nbpages": { "level": 1, "link": "[5.1 Ridge Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1-Ridge-Regression)", "section": "5.1 Ridge Regression" } }, "source": [ "# 5.1 Ridge Regression" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "im3dFZNuXDLI", "nbpages": { "level": 1, "link": "[5.1 Ridge Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1-Ridge-Regression)", "section": "5.1 Ridge Regression" } }, "source": [ "Created by Ben Whewell (bwhewell@nd.edu)" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[5.1 Ridge Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1-Ridge-Regression)", "section": "5.1 Ridge Regression" } }, "source": [ "This example was adapted from:\n", "\n", "McClarren, Ryan G (2018). Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers, Chapter 4: Local Sensitivity Analysis Based on Derivative Approximations, Springer, https://doi.org/10.1007/978-3-319-99525-0_4" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": {}, "colab_type": "code", "id": "YCh0H5_wXDLM", "nbpages": { "level": 1, "link": "[5.1 Ridge Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1-Ridge-Regression)", "section": "5.1 Ridge Regression" } }, "outputs": [], "source": [ "## import all needed Python libraries here\n", "import numpy as np\n", "from sklearn.datasets import load_boston\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.linear_model import RidgeCV" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": {}, "colab_type": "code", "id": "lGFZ3g_eXSJt", "nbpages": { "level": 1, "link": "[5.1 Ridge Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1-Ridge-Regression)", "section": "5.1 Ridge Regression" } }, "outputs": [], "source": [ "# Functions to be used Later\n", "np.random.seed(47)\n", "# Train/Test Split\n", "def tt_split(x,y,size):\n", " inds = np.arange(len(x))\n", " np.random.shuffle(inds) \n", " split = int(np.ceil(len(x)*size))\n", " # x_train, x_test, y_train, y_test\n", " return x[inds[split:]],x[inds[:split]],y[inds[split:]],y[inds[:split]]\n", "\n", "# Mean Squared Error\n", "def mse(y,y_hat):\n", " return np.mean((y-y_hat)**2)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "oJKTEmM1XrJj", "nbpages": { "level": 2, "link": "[5.1.1 Sensitivities with Least-Squares Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.1-Sensitivities-with-Least-Squares-Regression)", "section": "5.1.1 Sensitivities with Least-Squares Regression" } }, "source": [ "## 5.1.1 Sensitivities with Least-Squares Regression\n", "QoI $Q(x)$ where $\\mathbf{x} = (x_1, ..., x_J)^T$ of $J$ parameters. \n", "$I$ Equations that relate the known values of $Q_i$ and $\\mathbf{x}_i$ to the unknown sensitivities.\n", "\n", "$X_{ij} = (x_{ij} - \\bar{x}_j) \\quad$ \n", "$\\mathbf{y} = \\begin{pmatrix} Q_1 - Q(\\mathbf{\\bar{x}}) \\\\ Q_2 - Q(\\mathbf{\\bar{x}})\\\\ ... \\\\ Q_I - Q(\\mathbf{\\bar{x}}) \\end{pmatrix} \\quad $ $\\beta = \\begin{pmatrix} \\left.\\frac{\\partial Q}{\\partial x_1}\\right|_\\mathbf{\\bar{x}} \\\\ \\left.\\frac{\\partial Q}{\\partial x_2}\\right|_\\mathbf{\\bar{x}} \\\\ ... \\\\ \\left.\\frac{\\partial Q}{\\partial x_J}\\right|_\\mathbf{\\bar{x}} \\end{pmatrix}$\n", "\n", "This can be rearranged into $\\mathbf{X\\beta} = \\mathbf{y}$, which is similar to a Least Squares problem when $I > J$ and where $\\hat{\\beta}_{LS} = \\left(\\mathbf{X}^T\\mathbf{X} \\right)^{-1}\\mathbf{X}^T\\mathbf{y}$.\n" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "jns-MNPKbqAi", "nbpages": { "level": 2, "link": "[5.1.2 Ridge Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.2-Ridge-Regression)", "section": "5.1.2 Ridge Regression" } }, "source": [ "## 5.1.2 Ridge Regression\n", "#### Normalize the Data\n", "\n", "$X_{ij} = \\frac{(x_{ij} - \\bar{x}_j)}{\\bar{x}_j} \\quad$ \n", "$\\beta = \\begin{pmatrix} \\left.\\bar{x}_1\\frac{\\partial Q}{\\partial x_1}\\right|_\\mathbf{\\bar{x}} \\\\ \\left.\\bar{x}_2\\frac{\\partial Q}{\\partial x_2}\\right|_\\mathbf{\\bar{x}} \\\\ ... \\\\ \\left.\\bar{x}_J\\frac{\\partial Q}{\\partial x_J}\\right|_\\mathbf{\\bar{x}} \\end{pmatrix}$\n", "\n", "Ridge regression adds the $\\ell_2$ penalty to the $\\beta$ minimization problem. This tries to minimize the resulting $\\beta$ vector.\n", "\\begin{equation}\n", "\\hat{\\beta}_{\\text{ridge}} = \\min_{\\beta} \\sum_{i =1}^{I} (y_i - \\beta \\cdot \\mathbf{x}_i)^2 + \\lambda \\beta||_2 \\quad \\\\ ||\\beta||_2 = \\left(\\sum_{i=1}^{I}|\\beta_i|^2\\right)^{1/2} \n", "\\end{equation}\n", "\n", "\\begin{equation}\n", "\\hat{\\beta}_{\\text{ridge}} = \\left(\\mathbf{X}^T\\mathbf{X} +\\lambda \\mathbf{I} \\right)^{-1}\\mathbf{X}^T\\mathbf{y}\n", "\\end{equation}\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": {}, "colab_type": "code", "id": "4Ovq_zuSXeJ9", "nbpages": { "level": 2, "link": "[5.1.2 Ridge Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.2-Ridge-Regression)", "section": "5.1.2 Ridge Regression" } }, "outputs": [], "source": [ "# Ridge Regression\n", "def ridge_model(x_train,y_train,Lambda,x_test,coef_=False):\n", " beta = np.linalg.inv(x_train.T @ x_train + Lambda *np.eye(x_train.shape[1])) @ x_train.T @ y_train\n", " if coef_:\n", " return beta\n", " return x_test @ beta" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "hVi-ygDMd2_X", "nbpages": { "level": 2, "link": "[5.1.3 Cross Validation](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.3-Cross-Validation)", "section": "5.1.3 Cross Validation" } }, "source": [ "## 5.1.3 Cross Validation\n", "$\\lambda$ is a hyperparameter that needs to be optimized through cross validation. \n", "\n", "#### Process for CV\n", "1. Select number of folds ($K$-folds)\n", "2. Select $\\lambda = (\\lambda_1, ... ,\\lambda_L)$ values\n", "3. $\\texttt{For k in folds:}$ \\\\\n", " $\\qquad \\texttt{Randomly sample data leaving $1/k$ of data as testing}$ \\\\\n", " $ \\qquad \\texttt{for jj in $\\lambda$:}$ \\\\\n", " $ \\qquad \\qquad \\texttt{Calculate $\\hat{y}$ of Ridge Regression} $ \\\\\n", " $ \\qquad \\qquad \\texttt{Calculate MSE between $\\hat{y}$ and $y$} $\n", "4. A matrix of size $k$-folds $\\times$ $\\lambda$ averages the $\\lambda$ across the folds\n", "5. The largest $\\lambda$ value is chosen that is still within one standard error of the smallest mean MSE.\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": {}, "colab_type": "code", "id": "jEC1-FRPeB4_", "nbpages": { "level": 2, "link": "[5.1.3 Cross Validation](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.3-Cross-Validation)", "section": "5.1.3 Cross Validation" } }, "outputs": [], "source": [ "# Cross Validation\n", "def cross_validation(x,y,Lambda,k_folds):\n", " # Error matrix\n", " error = np.zeros((k_folds,len(Lambda)))\n", " for ii in range(k_folds):\n", " # Resample the training and testing data\n", " x_train,x_test,y_train,y_test = tt_split(x,y,1/k_folds)\n", " for jj in range(len(Lambda)):\n", " # Fit Model to Different Lambda values\n", " y_hat = ridge_model(x_train,y_train,Lambda[jj],x_test)\n", " # Calculate MSE \n", " error[ii,jj] = mse(y_test,y_hat)\n", " return best_lambda(error,Lambda)\n", " \n", "# Calculating Optimal lambda for Ridge Regression\n", "def best_lambda(error,Lambda):\n", " # Maximum lambda within 1 standard error of minimum of mean MSE\n", " bound = np.min(np.mean(error,axis=0))+np.std(error)/np.sqrt(k_folds*len(Lambda)) \n", " means = np.mean(error,axis=0)\n", " best = Lambda[0] # initialize \n", " for ii in range(len(Lambda)):\n", " if (bound - means[ii]) > 0 and Lambda[ii] > best:\n", " best = Lambda[ii]\n", " # return Lambda[np.argmin(means)] # minimum MSE\n", " return best\n" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "tmNSYKVIjXze", "nbpages": { "level": 2, "link": "[5.1.4 Example Problem](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.4-Example-Problem)", "section": "5.1.4 Example Problem" } }, "source": [ "## 5.1.4 Example Problem\n", "#### I > J " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": {}, "colab_type": "code", "id": "Jo8K9xb5jWid", "nbpages": { "level": 2, "link": "[5.1.4 Example Problem](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.4-Example-Problem)", "section": "5.1.4 Example Problem" } }, "outputs": [], "source": [ "np.random.seed(47)\n", "# I > J (Least Squares Problem, I = 506, J = 13)\n", "X,Y = load_boston(return_X_y=True)\n", "# Normalize Data - Dimensionless\n", "Y = Y - np.mean(Y)\n", "X = (X - np.mean(X,axis=0))/np.mean(X,axis=0)\n", "# Search different lambdas\n", "Lambdas = [0.01,0.1,0.15,0.2,0.5,1,10,20]\n", "k_folds = len(X) # Leave one out validation\n", "# Calculating Optimal Lambda\n", "param_ = cross_validation(X,Y,Lambdas,k_folds=k_folds)\n", "# Train/Test split (20% Testing)\n", "x_train,x_test,y_train,y_test = tt_split(X,Y,0.2)\n", "# Calculate coefficients in Ridge Regression\n", "beta_1 = ridge_model(x_train,y_train,param_,x_test,coef_=True)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "s6jwdTIVjlX1", "nbpages": { "level": 4, "link": "[5.1.4.1 I < J ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.4.1-I-<-J)", "section": "5.1.4.1 I < J " } }, "source": [ "#### 5.1.4.1 I < J " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": {}, "colab_type": "code", "id": "6CPcK3lMjxcF", "nbpages": { "level": 4, "link": "[5.1.4.1 I < J ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.4.1-I-<-J)", "section": "5.1.4.1 I < J " } }, "outputs": [], "source": [ "np.random.seed(47)\n", "# I < J (Estimating Local Sensitivities, I = 10, J = 13)\n", "X,Y = load_boston(return_X_y=True)\n", "# Randomly Chose 10 simulations\n", "inds = np.random.choice(range(0,len(X)),10)\n", "x = X[inds]; y = Y[inds]\n", "# Normalize Data - Dimensionless\n", "y = y-np.mean(y)\n", "x = (x - np.mean(x,axis=0))/np.mean(x,axis=0)\n", "# Search different lambdas\n", "Lambdas = [0.01,0.1,0.15,0.2,0.5,1,10,20]\n", "k_folds = len(x) # Leave one out validation\n", "# Calculating Optimal Lambda\n", "param_ = cross_validation(X,Y,Lambdas,k_folds=k_folds)\n", "# Train/Test split (20% Testing)\n", "x_train,x_test,y_train,y_test = tt_split(x,y,0.2)\n", "# Calculate coefficients in Ridge Regression\n", "beta_2 = ridge_model(x_train,y_train,param_,x_test,coef_=True)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 511 }, "colab_type": "code", "id": "FeDy20S9jyP1", "nbpages": { "level": 4, "link": "[5.1.4.1 I < J ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.4.1-I-<-J)", "section": "5.1.4.1 I < J " }, "outputId": "67ed148e-a88f-4b8b-e7b3-c7cc168ae7b4" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn8AAAHxCAYAAAAcHNrOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8VfX9x/HXNxOSsEIgbMKSpQgIAqJsQYY40GprVVQcqK1Sf9ZVZdTR1i1CrVLFVquoiBSluBlaxNFWZCgrDJERCJAQEiDJ9/fHyV3Z497ce3Pfz8fjPnLOueee87nfrM/9TmOtRUREREQiQ1SwAxARERGR2qPkT0RERCSCKPkTERERiSBK/kREREQiiJI/ERERkQii5E9EREQkgij5ExEREYkgSv5EREREIoiSPxEREZEIEhPsAEJZSkqKTUtLC+g9cnJySExMDOg9Io3K1L9Unv6nMvUvlaf/qUz9rzbK9JtvvjlgrW1W0XlK/sqRlpbG119/HdB7LF++nGHDhgX0HpFGZepfKk//U5n6l8rT/1Sm/lcbZWqM2VGZ89TsKyIiIhJBlPyJiIiIRBAlfyIiIiIRRMmfiIiISARR8iciIiISQZT8iYiIiEQQTfUiIlKGvLw8MjIyyMvLIz8/32/XbdSoERs3bvTb9SKdytP/VKb+V5MyjY2NpXnz5jRs2NAvsSj5ExEpxZEjR9i3bx/NmjWjRYsWxMTEYIzxy7Wzs7Np0KCBX64lKs9AUJn6X3XL1FpLbm4uu3fvBvBLAqhmXxGRUhw4cIA2bdrQpEkTYmNj/Zb4iYhUhTGGhIQEWrduzf79+/1yTSV/IiKlOHHiBPXr1w92GCIiANSvX5+TJ0/65VpK/kREyqDaPhEJFf78e6TkT0RERCSCKPkTERERiSBK/kREREQiiJI/EZEIMX/+fIwx7kdcXBydOnXi3nvvJS8vz6/3GjZsGMOGDfPrNf1l8uTJpKWlVXjevn37+PWvf80pp5xC/fr1SUlJ4YwzzuC2227j+PHj7vPS0tKYPHly4AIuw4wZM6rVD2z79u3MmDGDbdu2lXguWO+lMnbv3k1iYiJff/21+9jkyZNp06ZNrcZx7733Mnr0aJo2bYoxhvnz55d57gsvvEC3bt2Ij4+nb9++PPfccz7PW2vp06cPjz76aICj9qV5/kREIsybb75JmzZtyM7OZtGiRTzyyCNkZ2cze/bsYIcWMrKyshgwYABRUVHceeeddOvWjczMTP73v//x6quvMnPmTOLj4wFYtGiR3ybfrQ3bt29n5syZnH322XTs2NHnuVB+L/fffz/Dhw+nX79+QY1j9uzZ9O7dmwkTJvC3v/2tzPNeeOEFbrzxRu655x5GjRrF0qVLufnmm7HWMnXqVMAZxPHAAw9w7bXXct1115GcnFwr70HJn4iEv++/h/nzoX9/mDQp2NGEvN69e9O5c2cAzj33XDZv3sxf//pXnn76aaKi1CAE8NZbb7Fjxw7+97//cfrpp7uPT5o0iVmzZvmc26dPn9oOL2Bc7yU7OzvIkfjat28fr7zyCosWLQp2KBw5coSoqCi2bNlSZvKXn5/Pfffdx5VXXslDDz0EQL9+/Th48CD3338/U6ZMITY2FoCJEydSr1495s2bx29/+9taeQ/6LReR8DdnDqxZA88+Cz/+GOxowk7fvn3Jzc3lwIEDPsfT09O54ooraNasGfHx8fTu3bvUf76vv/66u2mrZ8+epZ7janLevn27z/HSmi7z8/P54x//SI8ePahXrx7NmjXjvPPO4/vvv3efc+DAAaZOnUrr1q1JSUmhW7duPP/88yXu+/HHH9O3b1/q1atHp06d+Mtf/lKpMsnMzASgRYsWJZ5zNZu7FG8qdb3Xf//73/zsZz+jQYMGpKam8sgjjwCwbNky+vTpQ2JiIv379+ebb77xuX5ZTa/GGGbMmFFu3M8++yyDBg0iOTmZxo0bM3DgQN577z3388uXL2f48OGAk/i73svy5cvLvPeXX37JqFGjSEpKIjExkZEjR/Lll1/6nONqfv3vf//LOeecQ0JCAl26dCnRzLl3716uvvpqWrVqRXx8PC1btmTChAkVTl48f/58GjRowJgxY8o9rzZU5gPS6tWrycjI4Je//KXP8SuvvJKDBw/y2WefuY9FR0dz6aWXMm/ePL/HWhbV/IlIeLMWvPsubdwIAewDVPR/s0YKCuoTHV3z63z6ac2vAU4zYKNGjWjatKn72K5duxgwYADNmzfnySefpFmzZixYsIBJkybxzjvvMHHiRAA++ugjfvGLXzB+/Hgef/xxMjIyuO222zh58iRdu3atVjyXX34577zzDrfffjujRo0iLy+PlStXsmfPHrp160ZWVhaDBw8mNzeXGTNmkJqayqpVq5g6dSrHjx/nV7/6FQAbN25k3Lhx9OvXj9dff53jx48zY8YMjh49SnQF34AzzzzTHcvdd9/N2WefTWJiYpXex9VXX81VV13FDTfcwJtvvsm9997L4cOHWbp0Kffddx9JSUn89re/5cILL2Tr1q3ExcVVq7y8bd++nSlTppCWlkZ+fj5LlixhwoQJLF26lLFjx9K3b1/mzJnDLbfcwjPPPEP//v0B6NGjR6nXW7t2LUOHDqVHjx7upPYPf/gDQ4cO5YsvvvCpFc3KyuIXv/gFt99+Ow888AAvvfQSU6dOpWvXru6E88orr2THjh08+uijtG3bln379vHxxx9z7Nixct/XsmXLGDRoEDEx1UtbCgsLKSwsrPC86Ohov8ynt379egBOPfVUn+M9e/YEYMOGDe4yARgyZAizZ89m27ZtJZriA0HJn4iEt6ws8P7HsXkznHtu8OIJAwUFBeTn57v7/C1cuJCnnnrKJyGaMWMG1lpWrFjhTgrHjBnDrl27eOCBB9zJ3/Tp0+nWrRuLFy9214h0796dgQMHViv5++STT1i4cCFPP/00v/71r93HL7zwQvf2008/zY4dO/juu+/o0qUL2dnZTJw4kcOHDzNz5kymTp1KTEwMDz74IA0aNOCDDz5wJ25nnXUWnTp1olWrVuXGMWTIEGbOnMmDDz7IeeedR3R0tLuf1+23307jxo0rfC9XXnkl999/P+AMgFm0aBFPPPEEmzZtokOHDoCTlFxwwQWsXr2aoUOHVrm8invsscfc24WFhYwcOZJNmzbx3HPPMXbsWBo2bOhO9Fzfp/LMmjWL+Ph4Pv74Y/d7Pvfcc0lLS2PmzJm8/fbb7nOzs7OZO3euO6kZMmQIH3zwAa+99pr72OrVq3n44Ye54oor3K+79NJLy43BWsuaNWuYNm1aFUrC17XXXsvLL79c4XkvvfSSXwa8uGqOmzRp4nPc1afP9byLq7n9iy++UPInIlKhPXt89zdvDk4cYaRbt24++zfffDO33nqrz7Fly5Yxbtw4GjVqRH5+vvv4mDFjuPPOO8nKyiIxMZGvvvqKu+++26cpbMCAAZUaTVuaDz74AGMM119/fZnnLFu2jAEDBtChQwfy8/PdjzFjxjBv3jw2bNhAr169WL16NePGjfOpsWvbti2DBw8mPT29wlgeeOABbrjhBt577z0+++wzli9fzsyZM5k3bx7ffPMNqamp5b5+7Nix7u2YmBg6d+7MkSNH3IkfeL4Xu3btqjCeyvjmm2+YPn06X331FRkZGVhrAapdC7ty5UomTJjgk+w2bNiQiRMnsmTJEp9zExISfGqz4uPj6dKlCzt37nQf69+/P48++ijWWkaMGMGpp55aYU3b4cOHyc3NpVmzZtV6D+B8mCn+M14a7+9NTbjKvbK1iK739tNPP/nl/hVR8ici4a205M9aCNDSbP5oas3OzqVBgwY1v1A1LVq0iDZt2pCRkcETTzzB3LlzGTBgAFdddZX7nP379/O3v/2tzA7tBw8eJDc3l5MnT5aaBFWUGJXl4MGDJCcnl7uu8v79+9myZYu7w3xp1wDYs2dPmbFVJvkDp8/fddddx3XXXQfAnDlzuPXWW3n00Ud9atlKU7zWJy4urtRjgF+m2tm1axcjR46kR48ezJ49m3bt2hETE8P999/Pxo0bq3XNzMxMWrZsWeJ4ixYtOHTokM+x4u8NnATQ+70tWLCAmTNn8qc//Ynbb7+dli1bctNNN/G73/2uzL50rte7RldXR7t27So1JUxF3QEqy7uGz7v8XDV+xUf1un7ec3Nz/XL/iij5E5HwVvyTck4O7N0LpfzDEsepp57qHu07YsQIevXqxZ133smkSZPctWRNmzblnHPO4a677ir1Gq1atSImJobY2Fj27dtX4vl9+/bRvn179369evUAOHHihM95rkTNJSUlhczMTHJzc8tMAJs2bUrz5s15+umnAcjJyfGp3XPVcrVs2bLM2Krrlltu4f7772fDhg3VvkZF6tWrV6KcijcTlmbZsmUcOXKEN954wyfRqag/XXmSk5PZu3dvieN79+6t1rQkzZs3Z86cOcyZM4cffviBl19+menTp9OsWTP39CfFubodFE82q6K2m31dffvWr1/vk/y5fm6K97F0fX9TUlJqfO/KCMvRvsaYS4wxC40xO4wxucaYH4wxjxhjGhQ7r4kxZp4x5oAxJscY85Ex5rRgxS0iAVC85g/U9FsF8fHxPProo+zfv5+5c+e6j5933nmsXbuWnj170q9fvxKP+Ph4oqOj6d+/P2+99ZZPZ/o1a9aUGNXrSgTXrVvnPpafn88HH3zgc97o0aOx1pY78tE18rddu3b069ePvn37+sTmqlUdNGgQS5cuJScnx/3aXbt28fnnn1dYLnv37vVp7nbZs2cPR44cKbU2zF/at2/vU04A7777boWvcyV53jWimzZtKvF+XTVolallGjp0KO+9957P1C/Z2dksWbKkxn0Uu3btysMPP0yTJk1KvF9vcXFxdOjQodRJqStrxowZfPXVVxU+zj///Grfw9ugQYNISUnh1Vdf9Tn+yiuvkJyczODBg32Ou2qiq9s8X1XhWvP3f8BO4F7gR6APMAMYbow5y1pbaJyG9n8CHYBfAYeAe4BPjTG9rbWaD0KkLiitj8ymTTBkSO3HEqYmTpxI//79eeyxx7j11lupX78+s2bN4swzz2TIkCHceuutpKWlcejQIdatW8e2bdt48cUXAZg5cyajR4/mwgsv5MYbbyQjI4Pp06eXmCKlf//+dOrUiTvvvJPCwkLi4+OZO3euz0oZAMOHD2fSpEn85je/YdeuXYwYMYKTJ0+ycuVKxo8fz7Bhw5g2bRoLFizgnHPOYdq0abRt2xZrLd9//z2rVq1i8eLFAPzud7/jzTffZPTo0dx5552cOHGC6dOnV6pJ+pVXXuGZZ57hmmuuYeDAgSQkJLBp0yYef/xx4uLiuOWWW/xU+iVdfvnlXHvttUybNo0JEybw7bfflruKhMuoUaOIiYnhqquu4o477mDPnj1Mnz6ddu3a+STnp5xyCjExMbz44oskJycTHx9P165dS+2KcP/99/Puu+8ycuRI7rrrLowx/PGPf+TYsWM88MADVXpfR44cYdSoUVxxxRV069aN2NhYFi9ezKFDhxg9enS5rx0yZEiJ6WWqIi0trdr9UItbsWIFGRkZ7hrRr7/+mqSkJAAuueQSwEnAf//733PzzTfTunVrRo0axb/+9S9efPFFZs+eXWJk95o1a4iNja1wAI7fWGvD7gE0K+XYVYAFRhTtX1C0P9zrnEZAJvBMZe5zxhln2ED79NNPA36PSKMy9a+QL8/LL7d22DDfx1131fiyGzZs8ENwpcvKygrYtcvz0ksvWcBu3ry5xHPvv/++BewTTzzhPrZr1y573XXX2VatWtnY2FjbokULO2rUKPv3v//d57X/+Mc/7CmnnGLj4uJsjx497Ntvv22HDh1qhw4d6nPeunXr7NChQ21iYqJt27atffzxx+306dOt86/I4+TJk/bBBx+0Xbp0sbGxsTYlJcWOHTvWfv/99+5zMjMz7e23327T0tJsbGysbdasmT377LPtk08+6XOtDz/80Pbu3dvGxcXZDh062Oeee85effXVtn379uWW1YYNG+ztt99ue/fubZOTk21MTIxt0aKFnTRpkv3mm298zm3fvr29+uqrKyznoUOH2sGDB/scS09Pt4B94YUX3McKCgrszJkzbbt27Wz9+vXt6NGj7ZYtWyxgp0+f7j6vtLJbsGCB7dq1q42Pj7c9evSwr732Wqnv97nnnrMdOnSw0dHRFnD/nrvei/fP6BdffGFHjhxpExMTbUJCgh0xYoRds2aNz/Wuvvpq27p16xLl6P1zkJeXZ2+44Qbbo0cPm5iYaBs0aGD79etnX3311RKvK27p0qXWGGPT09Mrdd9AGjp0qC3KL0o8invuuedsly5dbFxcnO3YsaOdM2dOqdccNWqUnTRpUoX3rujvEvC1rUR+Y2zRiJRwZ4zpDmwArrLW/t0Y81fgPGtt62LnvQwMs9a2L+063vr162e91xAMhOXLl4fs+pfhSmXqXyFdnvn5MHq0M8DDW5Mm4DUFRXVs3LiR7t271+gaZcnOzg7qgI+6RuXpf6FWpoWFhXTp0oVrrrmG3/3ud8EOp1rKKtOffvqJdu3a8f777zNy5Mhyr1HR3yVjzDfW2grXvwvLPn9lcHU+cA1p6gmU1olgPdDOGJNUK1GJSODs3+9J/Jo2BdcAgUOHoNhAAhEJX1FRUcyaNYvZs2fXaABLKHr00UcZMmRIhYmfP4Vrnz8fxpjWwCzgI2utq6ouGdheyumuIVNNgKOlXOsG4AZwpgNwLXkTKEePHg34PSKNytS/Qrk8G/zwAx0PHwYgJzkZ6tUjsWgASPqCBWSVsWpBZTRq1Chg65sWFBSE3Nqp4Uzl6X+hWKbnn38+27ZtY/369SXmqgwHZZVpcnIyf/rTnypV3nl5eX75exz2yV9RDd5iIB+4xvspnDb4Ei8p73rW2ueB58Fp9g10c1dIN6mFKZWpf4V0eWZnQ9Hks03694eEBKfWD2jSoAHUIO6NGzcGrNkr1JrUwp3K0/9CtUxdK6aEo7LKtCrvqV69eu7VQGoirJM/Y0w9nBG9HYGh1ncEbyZO7V9xrlkoqz9hkIiEBu+Rvq1agfcKAJruRUSkVGHb588YEwssBM4Exllrvyt2ynqcfn/F9QB2WmtLNPmKSJjxnuOvZUvo0sWzr+RPRKRUYZn8GWOigFeBkcAF1tovSjntn0BrY8xQr9c1BM4vek5Ewl3xmr+0NIgpatDYu9dpFhYRER9hmfwBc4BLgceAHGPMQK+Ha02bfwKrgVeMMZcbY8YUHTPAn4IStYj4l/eyUy1bOomf98LsW7bUfkwiIiEuXJO/sUVf78NJ8LwfUwCstYXABOBDYC6wCCjAmfR5V20HLCJ+lp3tqdmLj3fm9gM45RTPOWr6FREpISwHfFhr0yp5XiZwbdFDROqS4rV+pmggv3e/v02bajcmEZEwEK41fyIS6Yr393PxTv7U7CsiUoKSPxEJT8VH+rp06uSpBdy5E/LyajeuEDZ//nyMMaU+PvrooypfzxjDjBkz3PszZszAmHKnUgUgKyuL6dOn06NHDxITE2nSpAmnnXYaN954I/v373efN2zYsKDMMekqp+3bt1fpdYcPH2bGjBn85z//KfFcsN5LZeTk5NCyZUsWLlzoPvbwww9jjCE/P7/W4khLSyv1Z/Odd94pce4LL7xAt27diI+Pp2vXrjz33HOlXjM3N5cZM2bQpUsX4uPjSU1NZcKECZw4ccJ9zgUXXMAtt9wSsPcVisKy2VdEpMyav/h4aNcOduxwln7buhV6ljbrU+R68803adOmjc+xHjVYDaUqCgoKGDVqFNu3b+euu+6id+/e5OTksG7dOl577TV++uknmjdvDsDcuXNrJSZ/OXz4MDNnzqRNmzb07dvX57lQfi+PP/44KSkpXHzxxcEOhTFjxvh8oADo2rWrz/4LL7zAjTfeyD333MOoUaP4+OOPufnmm7HWMnXqVPd5J0+eZOzYsaSnp3PPPffQo0cPMjIy+PDDDykoKHCfN2PGDAYMGMBtt93GKd59huswJX8iEp68a/5atPB9rksXJ/kDp+lXyZ+P3r1707lz56Dce8WKFXz11Ve88847XHDBBe7jEydO5N5776WwsNB9rLYS0toQqu/lxIkTzJ49u9K1toGWkpLCwIEDy3w+Pz+f++67jyuvvJKHHnoIgOHDh/PTTz9x//33M2XKFGJjYwEnqf3Pf/7D+vXradu2rfsakyZN8rlmnz596N27N0899VRIJ+n+pGZfEQlPZdX8gQZ91EBZTZ7+Sg4yM53l1VsUT9iLREV5/i0Vbypdvny5uxnwxhtvJDk5mSZNmnD33XdTUFDAV199xdlnn01iYiI9e/bk/fff97l2WU2vaWlpTJ48udy4X3/9dUaMGEGzZs1ISkqiT58+vPzyy+7nt2/fToeiaYauv/56d5Pl/Pnzy7z3Dz/8wEUXXUTjxo2pX78+AwcOZNmyZT7nuMp98+bNjB8/nqSkJNq3b8+sWbN8EuWjR4/yq1/9inbt2rmbN0eNGsX3339f7vtatGgRmZmZXHbZZeWeFypWr15NRkYGv/zlL32OX3nllRw8eJDPPvvMfWzu3LlceumlPolfWS6//HJeffVVcnNz/R5zKFLNn4iEn4IC2LfPs+/d5w8Cu9LH8OE1vkT9ggKIjq55LJ9+Wq2XFRQU+PTlMsYQ7Y94KqFv377ExMRw4403Mn36dIYNG0YT1zQ9lXT77bdz8cUXs2DBAlauXMmDDz5IVFQUH330EXfeeSetW7fmwQcf5OKLL2bHjh2kpKTUOO5t27ZxySWXcPfddxMVFcXKlSuZMmUKubm53HTTTbRs2ZK3336biy++mHvuuYeJEycC0KlTp1Kv99NPP3H22WfToEEDnn32WRo1asScOXMYP3487777LmPHjvU5/6KLLuKaa65h2rRpLFmyhOnTp9O2bVuuucZZ0n7atGn885//5OGHH6ZLly4cPHiQzz//nMOHD5f7vpYtW0b37t2rXUaFhYU+SWhZoqKifBL7sixZsoSEhAQKCgro06cPd999NxdeeKH7+fXr1wNw6qmn+ryuZ1Ht/oYNGxg+fDg7d+5k165ddOzYkeuvv54FCxZw4sQJBg8ezOOPP07v3r19Xj9kyBCysrJYvXo1I0aMqDDOcKfkT0TCT0aGkwACJCc7/fy8eTdppqdDfr5n5Q+hW7duPvuDBw/2qTEJpI4dO/LnP//ZncAZY+jevTvjxo1j2rRptCpei1uKESNG8MQTTwBw7rnnsmTJEp599llWrVrF2WefDUDLli05/fTTee+997j66qtrHPe9997r3i4sLGTYsGHs2bOHP//5z9x0003Ex8fTp08f93ssr+kS4IknnuDQoUOsXr3a3QQ/btw4evTowX333Vci+bvjjjvcid6oUaP45JNPeO2119zHVq9ezRVXXMF1113nfs1FF11U4fv64osvSvRPrIpZs2Yxc+bMCs+bPn16ib58xZ1//vn079+fDh06sG/fPp599lkuuugi/v73v7tr+lw1x8U/MCQnJ/s8/1NRy8Af//hH+vfvz+uvv87x48fdHzjWrl1Lu3bt3K8//fTTiYqK4osvvlDyJyISksoa6evSoIFzfM8eJ/Hbvt03IYxwixYt8hnw0aBBg1q9/5QpU5g0aRJLly5l1apVrFixgscee4x58+bx2WefuWtxylI8MerSpQtbtmxxJ37gSXB37fLPnP6bN2/mgQceYOXKlezdu9dd2xVf/INHJa1cuZKBAwf69L2Mjo7m5z//ObNmzSIrK4uGDRu6nxs/frzP60899VT++9//uvf79+/P/PnzSUlJYfTo0fTp06dStbk//fQTY8aMqdZ7ALjhhhuYMGFChedVJqmfPXu2z/5FF13EwIEDueeee9zJn7UWoMIuCK7vT0JCgrs2EaBfv3507tyZOXPm8Mc//tF9fmxsLI0aNXInjXWdkj8RCT/eyV9Z/1Q6d/act3mz/5K/aja1esvNzq71hMvbqaeeGrQBHy5NmjThiiuu4IorrgBg8eLFXHzxxUyfPp233nqrwtd6i4uLo3HjxiWOAeT5Yaqfo0ePcu6555KQkMAf/vAHOnXqRFxcHH/+85958cUXq3XNzMxMd02htxYtWmCt5dChQz7Jn6tmyyU+Pt7nvc2ePZsWLVrw4osvct9995GcnMxVV13FQw895E58SpOXl1ftBNYVr2t0dnkq0+RbXHR0NJdeeil33XUXe/bsoWXLlj41fC29Pvi5avxczzdt2hRwarW933/btm3p1q2bT+LsUr9+/Yjp86cBHyISfrw/nZdW8wda5q2a6tWrB+AzDxrAwYMHA3rfCy64gNNPP50NGzYE7B716tUr8b7AkziUZfXq1ezYsYPnn3+eK6+8krPOOot+/frVaA685ORk9nqvUlNk7969GGNKJHsVSUpK4pFHHmHLli1s376de++9l2effbbCJtmmTZty6NChKt3L26xZs4iNja3wMWvWrGpdv3hNn6tW2NX3z8X1c+MaVd2xY0fq169fag2htbbUZDQzM9Mv/UPDgWr+RCT8VKbmTyN+q6V9+/YArFu3zj3nWX5+Ph988IFfrn/gwAGSkpLcSaZLTk4Ou3btolevXn65T2nat2/PwoULOXHihLtmcOXKlWS71oguw7FjxwDcU4gAHDp0iMWLF/uc56pBq0zt0dChQ3nqqafYvn07aWlpgDMQZ8GCBfTp06dGNcPt27fnjjvu4NVXX2XdunXlntutWze2bdtW7Xv5s9m3uPz8fN58803atWvnHh0+aNAgUlJSePXVVxk1apT73FdeeYXk5GQGDx4MON+r8ePHs3LlSnJyckhMTARg586d/PDDDz7TDIGTdOfl5ZWYU7CuUvInIuGnMjV/3s2aW7dCYSFUo+kp0vTv359OnTpx5513UlhYSHx8PHPnzuX48eN+uf7y5cuZOnUqkydP5pxzzqFx48bs2LGD2bNnk5mZyW9+8xu/3Kc0l19+Oc8//zzXXnstkydPJj09nSeeeIJGjRqV+7qzzjqLhg0bcssttzBz5kxycnJ48MEHSUlzpq3uAAAgAElEQVRJ4ciRI+7zUlNTadq0Ka+//jq9evUiMTGRDh06uJsgvU2bNo358+dz7rnnMnPmTBo2bMjcuXPZtGkT7733XpXf26BBg5g4cSKnnXYaSUlJrFixgm+//bbCwS5DhgzhqaeeorCwsFpNs61atapWYlfca6+9xuLFixk3bhxt27Zl3759zJkzh2+++YbXXnvNfV5sbCy///3vufnmm2ndurV78MuLL77I7Nmz3Uk9wMyZMznzzDMZP348d9xxB3l5ecycOZPGjRtz6623+tx/zZo1gFMekUB/CUUk/FSm5q9pU2ckMDhLvO3eHfi46oCYmBgWL15M27ZtmTx5MrfccgvnnntuhfPgVdbAgQOZMmWKe6qUkSNH8pvf/IaUlBQ+/PDDEgMb/Gn48OE899xzrFmzhvPPP5+XXnqJV155pUR/weKaNWvGokWLKCgo4JJLLuGee+5hypQpJeaai4qKYt68eRw6dIhRo0bRv39/lixZUuo1W7Vq5R7cMnXqVC655BIyMzN57733OO+886r83oYMGcIbb7zBFVdcwfjx43nrrbd48sknue2228p93WWXXcaRI0dYtWpVle/pTx06dGD//v3ceeedjB49mhtvvJH4+HiWLVvG5Zdf7nPuTTfdxJ///GfeeOMNxowZw2uvvcazzz5bYom2Hj168Mknn2CM4bLLLmPKlCl07tyZzz//nNTUVJ9z3333Xc4444yg94WtLcbVni4l9evXz3799dcBvcfy5ctDdr3HcKUy9a+QK89jx8CVIMTGwvvve9byLe7uu6HoEz2/+x2MHFnp22zcuJHu3bvXMNjSZQd5wEddo/KsmWHDhtG5c2fmzZvnPhZJZZqXl0fLli157LHHfKbK8Td/lGlFf5eMMd9Ya/tVdB3V/IlIeCk+zUt5Uz549/vbsiVwMYmEsYceeohXX32V3RFaO/6Xv/yF5s2b+2U+yHCh5E9Ewktl+vu5aNCHSIUGDx7Mk08+yQ7XetgRJj4+nvnz5xMTQRPBR847FZG6oaIJnr0VX+bN2vJrCkUi1E033RTsEIImEt+7av5EJLx41/xVNMqwRQtISnK2s7Nh//7AxSUiEiaU/IlIeKlKzZ8xJWv/qkAD4kQkVPjz75GSPxEJL5WZ5sWb99QNVUj+4uLiImapJxEJfbm5uT4TjdeEkj8RCR/W+iZ/RbP+l6uaNX8pKSn8+OOPZGZmcvLkSdUCikhQWGs5duwYu3fvrtQ6ypWhAR8iEj4OHADXeqqNG0M5C9a7VXON30aNGhEfH09GRgYHDx6s0TquxeXl5ZVY3kyqT+XpfypT/6tJmcbGxpKamkrDhg39EouSPxEJH1Xp7+fSti3Ex8Px407yePiwkzhWQr169Wjbtm01Ai3f8uXL6dOnj9+vG6lUnv6nMvW/UCpTNfuKSPioykhfl6go6NTJs1/FQR8iInWNkj8RCR/VqfkDTfYsIuJFyZ+IhI/q1PyBlnkTEfGi5E9EwkdVR/q6qOZPRMRNyZ+IhI/q1vx16ADR0Z5r5OT4Ny4RkTCi5E9EwkNeHhw65GxHR0OzZpV/bWwspKV59tX0KyIRTMmfiISH4k2+UVX881WDZd5EROoSJX8iEh6qO9LXRcmfiAig5E9EwkVV1/QtTsmfiAig5E9EwoX3YI/q1Px16gTGONs7djgrfoiIRCAlfyISHmpa85eQAK1bO9uFhZCe7p+4RETCjJI/EQkPNa35AzjlFM+2mn5FJEIp+ROR0GdtzWv+QJM9i4ig5E9EwkFmJpw44Ww3aACJidW7TufOnm3N9SciEUrJn4iEPn/U+oFvzd/WrZCfX/1riYiEKSV/IhL6/NHfD6BRI2je3Nk+eRJ27qxZXCIiYUjJn4iEvppO8OzNu/ZPTb8iEoGU/IlI6POu+atJsy9o0IeIRLywTP6MMW2MMbONMauNMceMMdYYk1bKebaMR+/aj1pEqi1QNX+a7kVEIlBMsAOops7Az4BvgFXA6HLOnQ/8pdgxfdwXCSf+GvABJZt9rfWs/CEiEgHCNflbaa1NBTDGTKH85G+3tfaL2glLRPzuxAk4cMDZjoqCZs1qdr2UFGjcGA4fhmPHnCZl18ofIiIRICybfa21hcGOQURqyd69nu3UVIip4WdWY3zn+1PTr4hEmLBM/qpoqjHmeFHfwE+MMecEOyARqQJ/9vdzUb8/EYlg4drsW1mvAO8CPwHtgTuBT4wx51prl5f2AmPMDcANAKmpqSxfXuppfnP06NGA3yPSqEz9K9jlmbJqFa0PHwbgYG4uP/ohlsbHjtG+6JrZH3/MNu9ksBYEu0zrGpWn/6lM/S+UyrROJ3/W2iu9dlcZYxYD64AHgbPLeM3zwPMA/fr1s8OGDQtojMuXLyfQ94g0KlP/Cnp5btjg9NEDmpx9Np39EUvnzrB4sXPN48dpN3RorQ76CHqZ1jEqT/9TmfpfKJVpJDT7ullrs4H3gP7BjkVEKsmfc/y5tG4NCQnO9uHDcPCgf64rIhIGIir5K2IAG+wgRKSSvPv8tWjhn2sWH/ShyZ5FJIJEVPJnjGkIjAfWBDsWEakEawNT8wda5k1EIlbY9vkzxlxStHlG0dexxpgMIMNau8IY839AV+BTPAM+/g9oAVxR2/GKSDUcOQJ5ec52QgI0aOC/a2uZNxGJUGGb/AFvFtufW/R1BTAM+AG4qOjRCMgCPgeus9Z+WUsxikhNFK/18+egDE33IiIRKmyTP2ttuf8FrLVLgCW1FI6IBEIg5vhzadcOYmPh5EnYvx+ysqBhQ//eQ0QkBEVUnz8RCTP+XNO3uJgY6NjRs6/aPxGJEEr+RCR0eTf7+rvmD9T0KyIRScmfiISuQNb8gZI/EYlISv5EJHQFuubvlFM82xrxKyIRQsmfiISm/HzIyHC2jfHfBM/eOnSAqKI/g7t3Q26u/+8hIhJilPyJSGjau9eZ5BmgWTNngIa/xcdD+/bOtrWwdav/7yEiEmKU/IlIaAp0fz8XTfYsIhFGyZ+IhKZA9/dz8V7jV8u8iUgEUPInIqEpkBM8e9OgDxGJMEr+RCQ0FV/aLVC8a/62b3dW/BARqcOU/IlIaKqtmr/ERE9yWVAA6emBu5eISAhQ8iciocfa2qv5A032LCIRRcmfiISeo0fh2DFnu149aNQosPdT8iciEUTJn4iEnuK1fsYE9n5K/kQkgij5E5HQU1v9/Vy8k7+tW6GwMPD3FBEJEiV/IhJ6arO/H0CTJtC0qbN9/Djs2hX4e4qIBImSPxEJPbVd8wdq+hWRiKHkT0RCT23X/IEmexaRiKHkT0RCTzBq/rTMm4hECCV/IhJa8vNh3z7PfosWtXNf75q/zZuduQZFROogJX8iEloyMjyjbZs2hbi42rlv8+bQoIGzffQo7N1bO/cVEallSv5EJLQEo78fOHMJatCHiEQAJX8iElqC0d/PRcmfiEQAJX8iElq8k7/arPkDJX8iEhGU/IlIaPFu9lXNn4iI3yn5E5HQEsyavzZtID7e2c7MhIMHa/f+IiK1QMmfiISWYNb8RUVpvj8RqfOU/IlI6Dh6FLKzne24OEhOrv0Y1PQrInWckj8RCR3FR/oaU/sxaJk3EanjlPyJSOgIZn8/FzX7ikgdp+RPREJHMPv7uXToADExzvaePZ5maBGROkLJn4iEjmBO8OwSE+MkgC6q/ROROkbJn4iEjmAt7Vac96APJX8iUsco+ROR0BEKNX/gm/xp0IeI1DFK/kQkNBQWwr59nv1QSf403YuI1DFK/kQkNBw4APn5znaTJlCvXvBi6dTJM83Mzp1w/HjwYhER8TMlfyISGkKlvx84iWfbts62tbB1a3DjERHxIyV/IhIaQqW/n4uafkWkjlLyJyKhIZRq/kDJn4jUWUr+RCQ0hFrNn5Z5E5E6KiyTP2NMG2PMbGPMamPMMWOMNcaklXJePWPMo8aYPcaY3KLzh9R+xCJSoVCr+fNe5i093TMYRUQkzIVl8gd0Bn4GHAJWlXPeX4HrgQeACcAe4H1jTO+ARygiVRNqNX8NGkBqqrOdnw87dgQ3HhERPwnX5G+ltTbVWjsOeLO0E4wxpwO/AKZZa1+w1n6MkzDuBGbVXqgiUqFjx+DwYWc7JgZSUoIbj4uafkWkDgrL5M9aW1iJ0yYCJ4EFXq/LB14Hxhhj4gMUnohU1d69nu0WLTxz7AWbd9OvlnkTkToiLJO/SuoJpFtrjxU7vh6Iw2k6FpFQEGr9/VxU8ycidVBMsAMIoGScPoHFZXo9X4Ix5gbgBoDU1FSWL18ekOBcjh49GvB7RBqVqX/VRnk2W76cVkXNvgdzcvgxRL5/MUeO0LMorsIvv+S7Tz/1S62kfkb9S+XpfypT/wulMq3LyZ8BbBnHy2StfR54HqBfv3522LBh/o/My/Llywn0PSKNytS/aqU8166Fxo0BaDJkCJ1D5ftnLbz8MhxyPkcO69zZs/JHDehn1L9Unv6nMvW/UCrTutzsm0nptXtNvJ4XkVDg3ewbCiN9XYzRZM8iUufU5eRvPdDBGJNQ7HgP4ASg3tsiocJ7mpdQ6vMHSv5EpM6py8nfP4FY4FLXAWNMDHAZ8IG19niwAhMRL9aG3hx/3pT8iUgdE7Z9/owxlxRtnlH0dawxJgPIsNausNb+zxizAHjKGBMLpANTgQ7AFbUfsYiU6uBBOHnS2W7UCBKKV9YHWfHkz9rQmYpGRKQawjb5o+TkznOLvq4AhhVtXwM8BDwINAa+Bc6z1v6nNgIUkUoI1f5+Li1bQmIi5ORAVhZkZEDz5sGOSkSk2sI2+bPWVvjR21qbC/ym6CEioSiU+/uBU8vXuTN8+62zv3mzkj8RCWt1uc+fiISDUK/5A032LCJ1ipI/EQmuUB7s4aJl3kSkDlHyJyLBFapLu3lTzZ+I1CFK/kQkuMKh5q9tW4iLc7YPHICiJd9ERMKRkj8RCZ7jxyGzaLGd6Gho1iy48ZQlOho6dfLsa74/EQljSv5EJHj27vVsp6Y6SVao0mTPIlJHKPkTkeAJh/5+Lkr+RKSOUPInIsETDv39XJT8iUgdoeRPRIInnGr+OnSAqKI/mbt3w7FjwY1HRKSalPyJSPCEU81fXBykpXn2Nd+fiIQpJX8iEjzhVPMHavoVkTpByZ+IBIe14VXzB5rsWUTqBCV/IhIchw458/wBJCU5j1CnZd5EpA5Q8iciwRFutX7gm/xt3+5JXkVEwoiSPxEJjnDr7weQkABt2jjbhYWQnh7ceEREqkHJn4gERzjW/IFv7Z8GfYhIGFLyJyLB4Z38hUvNH/gO+lDyJyJhSMmfiASHd7NvONX8aboXEQlzSv5EJDjCtebPu9l32zYoKAheLCIi1aDkT0Rq34kTcOCAs20MNG8e3HiqonFjaNbM2T5xAnbuDG48IiJVpORPRGrfvn3OJM8AqakQExPceKpKTb8iEsaU/IlI7QvX/n4uSv5EJIxVKfkzxlxljOlVwTmnGmOuqllYIlKnhWt/Pxct8yYiYayqNX/zgQsrOOcC4KVqRSMikSHca/6KL/PmasIWEQkDgWj2jQb0l1BEyhauEzy7NGsGDRs628eO+SazIiIhLhDJ3ynAoQBcV0TqinBc2s2bMZrsWUTCVoVD7IwxLxY7dKExJq2UU6OBdsA5wHs1jkxE6iZrw7/mD5ym36+/dra3bIFhw4IajohIZVVmfoXJXtsW6F30KI0F1gDTahaWiNRZWVmQm+tsJyR4mk/DjQZ9iEiYqkzy16HoqwG2AU8BT5dyXgFwyFqb46fYRKQuKl7rZ0zwYqmJ4tO9WBu+70VEIkqFyZ+1dodr2xgzE/jU+5iISJWEe38/l9atoX59pxbz8GE4eBBSUoIdlYhIhao04MNaO9NauzJQwYhIBKgL/f3AqeXznvJFgz5EJExUa00lY0w00BVogjPQowQliSJSqrpS8wdO0+933znbmzfDoEHBjUdEpBKqnPwZY+7HGdDRqIJTS00KRSTC1ZWaP9AybyISlqqU/BljfgvMBI4Afwd2AfkBiEtE6qq6VvPnohG/IhImqlrzdz2wG+hrrc0IQDwiUpfl58P+/c62MZCaGtx4aqp9e4iJ8byvrKzwnbpGRCJGVVf4aAu8o8RPRKpl3z7POrgpKRAbG9x4aiomBjp29Oxv2RK8WEREKqmqyd8+qjlIRESkTvX3c9FkzyISZqqa/L0BnGuMiQ9EMCJSx9Wl/n4u3tO9qOZPRMJAVZO/B4A9wFvGmA4VnSwi4kM1fyIiQVfVJtz1QCzQChhnjDkCHC7lPGut7VTT4ESkjvFO/upKzV/Hjs7gFWvhxx+dFT/q1w92VCIiZapqzV8UztQuO4seR3DW/C3+qOp1RSQSeDf71pWav/h4aNfO2bYWtm4NbjwiIhWoUs2ftTYtQHEEhDFmGPBpKU8dsdY2ruVwRKQu1vyB0/S7o2jJ882b4dRTgxuPiEg5ImXk7q+Br7z2NTG1SG3LzoajR53t+HhoXIc+f3XpAh9+6GxrpQ8RCXE1Sv6MMU2AJGvtLj/FEygbrbVfBDsIkYhWvNbPmODF4m9a5k1EwkiV++YZY5KMMY8bY/YCB4B0r+cGGGOWGmP6+jNIEakD6mJ/Pxfv6V62b4eTJ4MWiohIRaqU/BljGgGrgWnAT8BGnAEeLt8B5wA/91eAfvKqMabAGHPQGPMPY0y7YAckEnHqan8/gKQkT0Kbn+8kgCIiIcpY11JLlTnZmD8B/wdMttb+zRgzHXjAWhvtdc67QCtrbdBr/4wxfYArgBVAFtAHuBc4CfSx1u4v5TU3ADcApKamnvH6668HNMajR4+SlJQU0HtEGpWpf/mrPNu88QZNV68GYPdFF3FgyJAaXzOUpL30Eo3WrgVg12WXkTlwYJnn6mfUv1Se/qcy9b/aKNPhw4d/Y63tV9F5Ve3zdzHwvrX2b+WcswPoX8XrBoS19r/Af70OrTDGrAS+xBkE8rtSXvM88DxAv3797LBhwwIa4/Llywn0PSKNytS//Fae777rHuTR5NxzYdCgml8zlOzeDTt3AtCkXj0op8z0M+pfKk//U5n6XyiVaVX7/LUB1lZwzlGgUfXCCTxr7X+ATYRIgioSMeri0m7etMybiISJqiZ/2UDzCs7pgDMQJJQZoPLt3SJSMwUFsG+fZ79Fi+DFEijeI363bIHCwuDFIiJSjqomf18BE4wxDUp70hjTEhgHfFbTwALFGNMPOAVYE+xYRCJGRoYnGWra1Jnnr65JTnbeG8Dx47Ar1GfAEpFIVdXk72mgKbDUGNPd+4mi/TeBesAz/gmvZowxrxpjHjTGXGyMGWGMuQNYBuwGZgc5PJHI4T3St65N8+LNu+lX8/2JSIiqUvJnrX0fmAEMBtYB9wAYYw4U7Z8F3GOt/bd/w6y2dcBE4CXgfeB24G1ggLU21JumReqOut7fz+WUUzzbSv5EJERVeYUPa+0sY8wqnNGyA3FqAi2wFHjSWvuJf0OsPmvtI8AjwY5DJOJFSs2fVvoQkTBQreXdrLWfAp/6ORYRqasipeavePJnbd1axk5E6oQqL+8mIlJlkVLzl5oKDYrGwx096jvCWUQkRCj5E5HAi5SaP2M06ENEQl65yZ8xptAYk2+MOcVrv6ASj/zaCV9EQl5ODmRlOdtxcc6UKHWZ+v2JSIirqM/fSpzBHMeK7YuIVE7xJt+63gfOO/nbtCl4cYiIlKHc5M9aO6y8fRGRCnknf3VxZY/iiq/0ISISYtTnT0QCK1L6+7m0betZweTgQcjMDG48IiLFVCn5M8bUN8a0M8bElfF8fNHz9fwTnoiEvUgZ6esSFaVBHyIS0qpa8/cA8AOQVMbzicD3wL01CUpE6hDv5C8Sav7AN/lT06+IhJiqJn9jgY+staW2YxQd/wiYUNPARKSO8G72jYSaP/Bd5k2DPkQkxFQ1+UsDKvpLtqnoPBGJdIWFsHevZz9Skj9N9yIiIayqyV8sUFjBORZQnz8RgQMHIL9o2s/GjaF+/eDGU1vS0iA62tnes8dZ7UMCY84cTv/Nb2Du3GBHIhI2qpr8bQOGVnDOMGBHtaIRkbolEvv7AcTGQocOnn31+wuMzZvhrbecNZTffBO2bQt2RFKb5s+HW2+FtWuDHUnYqWry90/gDGPMb0t70hhzN9AXeKemgYlIHRCJ/f1c1PQbeAsW+O4vWhScOKT2bdsGL78M69fDH/7gfACQSqtq8vcYsAt4xBjztTHmYWPMLUVfvwEeAnYCf/J3oCIShiK15g+U/AXa/v2wfLnvsQ8+8CwlKHXb+vWe7T174NtvgxdLGKpS8metPYTTrPsFTg3f3cAzRV/7AKuB4UXniUikU82fQyN+/W/RIigo8D124gS8+25w4pHatXGj7/6//hWcOMJUlVf4sNZut9YOBvoBtwL3F33tZ60921q73b8hikjYirQJnr116uRZx3jnTjh+PLjx1CXHjsGSJe7dw717e557552SSaHUPT/84Lu/YgXk5AQnljBU7eXdrLX/sdbOtdY+XPT1P/4MTETqgEhb2s1b/frQpo2zba0GI/jT0qWef/Rt27Lz5z93RpMDZGTAqlXBi00CLy8P0tN9jx0/Dp9+Gpx4wpDW9hWRwMjNhcOHne2YGEhJCW48waDJnv2voMAZ4ety6aXYuDiYONFzbOHC2o9Las+mTaUP8Fi6tPZjCVMx5T1pjHkAZ96+OdbazKL9yrDW2t/XODoRCV/ekzu3aOGseRtpOneGjz92tjXdi3+sWgX79jnbjRrB6NGwerWT/P3jH868kuvWOQmCd/Itdcf333u2zzoLvvzS+b5v3AjbtzvzbEq5yk3+gBk4yd8CILNovzIsoORPJJJFcn8/Fw368C9rfad3ueACiI93tps2hWHD4KOPnP2FC+Gee2o9RKkF3snfmWc682quWOHs/+tfMHVqcOIKIxUlf8OLvu4sti8iUr5I7u/n4p38bdvm1E7EVPRnV8q0bp3nH39sLFx0ke/zkyZ5kr9PPoGbboImTWo3Rgk87+SvWzenZcGV/H3wAVx/vX7PKlBR6RwC9lpr8wCstSsCH5KI1Amq+YOGDaF5c2dOuvx82LHDGQUs1fPGG57t0aM9gzxcunWDHj1gwwanvJcsgauuqt0YJbCOHPH8bYmJcX6foqKcPsUHDjj9jL/4As4+O7hxhriKOuH8F7jJtWOM+cQYo98kEamYav4c3v3ONNlz9f34I3z+uWf/0ktLP2/SJM/24sWetaWlbvCe4qVzZycBjIqCMWM8xzXnX4UqSv4KgWiv/WFAWqCCEZE6RDV/Dq304R8LF3pGeA4YAO3bl37ekCFO/z+AzExN/1HXFG/ydRk71rP9xRdw8GDtxRSGKkr+fgR6V3COiIgva5X8uSj5q7nsbN/anMsuK/vcmBi48ELPvnfSKOHPO/nr3t2z3bo19OrlbBcWwocf1m5cYaai5G8JcL4xZqMx5pOiY5OLmn/Le3wc4LhFJJRlZjpLbYHT7y0xMbjxBJN38rdlixKR6vjnPz0rpHTuDL0rqJOYMMEZEAJOM+GGDYGNT2qHtb7LunXt6vv8uHGe7aVL9btWjooGfNwHxAHjgaE4U7ikUXHTr0pcJJKpv59H06bOwITDh52Jr3fvDnZE4eXkSXj7bc/+pZd6ls0rS+PGMGqUp7Zw4ULo2TNwMUrtyMjwTByfkADt2vk+P3QoPPOMs/zfrl1O0q/ve6nKrfmz1mZba2+y1ra11kYDBphhrY2q4BFd3nVFpI7zbvJt0SJ4cYQCY9T0WxMff+zUJIOTSI8YUbnXeQ/8WLHCSRwkvBWv9Sv+IaBePd+fD634UaZykz9jTENjTJzXoRXA9oBGJCLhTzV/vjTZc/VYC2++6dmfNKny87d16gSnn+5sFxY6I38lvJU12MOb98CPTz91atulhIr6/B0C7vba3w4cDlg0IlI3aLCHr+L9/qRyvvnGmRwbnFqdCROq9nrv2r8lSzz9BiU8VSb5697dMxI8N9cz+bP4qCj5szhNvS5Xo9G/IlIR7+RPNX8la/7UEb1yvJdyGzcOGjSo2usHD4bUVGc7K8tZ9UPCU2Ghb615WcmfMb61f5rzr1QVJX97gM61EYiI1CHezb6q+XMS4IQEZzsri9jDakCp0LZt8PXXzrYxcMklVb9GVJTvEnBvvaXEO1zt2uUM5ABnyb5mzco+d/Ro53sPsHatM0G4+Kio88QnwBXGmBScRBDgQmNMWgWvs9ba62oYm4iEo+PHPROsRkU5y5tFOmOcKUrWrgWgvv4ZVcy7r9+QIdX/EDFuHLz0kvNzuW0bfPttxVPFSOgpPr9feSO+mzSBQYM8K8IsWwZTpgQ2vjBTUfL3WyAVOBenltDiNPtW9JtjASV/IpFo717PdmoqRGvwP+As81aU/CVoupfyHTwIH33k2f/Zz6p/rQYNnKW//vlPZ//tt5X8haPy5vcrzbhxvsnfNdfob5GXiqZ62WetPQ+ojzO3nwGeAjpU8OgYuJBFJKSpv1/pvPr9qeavAu+841mTt2dP6NGjZte7+GLP9mef+X5AkfDgvaav98oeZTnzTKcGEJwPE64uBAJU3OcPAGvtSWvtTmAHsN1au6OiR2DDllplLRw9qr4yUjnq71c6JX+Vk5fnOy1LeUu5VVb79tCvn7NtLSxaVPNrSu05edJ3lHxlav5iYpwaXxfN+eejkhMmOay1HQIViIQQayE9Hb77zmmmWrsWDhyA+HhIS4MOHXwfTZtWPOO+RA7V/JWuXTuIi4MTJ4g9csRZqaBx42BHFXref99ZyxecDw+DB/vnupMmeWp/3nsPJk+G+vX9c20JrK1bPTXBrVo5S0ZWxnnnweuvO9v//rd+57xUKflzMcbEAiOB7kCStfb3RcfrAQ2BA9baQr9FKYF18qQzhN6V6K1b59T04YyuP3oUjuVCvfjjNKLfD1EAACAASURBVMj9gWjv6neApCQnCezY0TcprOq0DFI3qOavdNHRzu+Iq+P6li2e2ihxFBb6DvS45BLPqM2aGjAAWrd2ltfLyYEPPoALLvDPtSWwvP/nlDXFS2nat3e6Daxf7ySPH31UvVHjdVCVkz9jzHnAX4EWOH0ALfD7oqd7A58DvwRe81OM4m/Hjjm/DK5k7/vv4cQJ99PHTzhTYmVlwdFsKLRQYGKItvlEGedDV+PG0LARREfhZIfffec8vDVtWrKWMC3NmaxV6i7V/JWtSxdP8rd4sZK/4v79b8/ax0lJvvO11ZQxTt+/2bOd/bffhokT1WoRDrwHe1Ql+QPnZ2j9emf7X/9yaoD1Pa9a8meM6Qe8AxwApgFnAj93PW+t/cIYkw5cRIgkf8aYtsCTOCOWDfARcHtRH8bIcOiQk+S5mnG3bPHpv1donQ/CroQvLw+OxjRmW2IvtrU8jW1Jvfipfifq52fTIm87LfPSaXk0nVYH0+kWv41micdo1Ahiig+kOniw9I62LVuWTArbtav8sk0SuqxVzV95xoxxVpoAZ+DBqlVwzjnBjSmUvPGGZ3viRP83y553Hvz1r84H4J07nRVElICHvsqs7FGW4cOdhN811c+mTZXrM1jHVfW/7f3AMaCftXavMWZ6Ked8BfStcWR+YIxJwJmr8DjO6iQWeBD41BjTy1qbE8z4AsL1z9eV6H33XakTXJ7M9yR72VmwP6YVW5N6kd7sNLYm9uJAfGv3p6P27WHsqbBuXWO27ujN1ga9fe7X+GQGrY6lM6hFOn2T0+lk0onfu8OnNtHHnj3O49//9hyLjoY2bUo2Hbds6b9mHwm8w4c9S2glJjq1N35krfNjlZfn3Mb11fWIj3dumZTk3L5evRD7kN+zpzMFxT/+4ew/8wyccYZnAuhI9v33ntaDmBjfEbr+kpDg1AQtXOjsv/WWkr9Q50rUwfll9l4tpzISEmDYMKcvKTi1f0r+qpz8DQbesdaWN05+FzC++iH51fU40850tdZuATDGrAU2AzcCTwQxNv8oLHQ+zbgSve++80yw68Xi/A5lZcGRLMMW24n0xNPY2qgX6a1PIyu2qfvcuDgY0AcGDnS6yXhX3uzcCStXOo/NmwFjOBzXnMNxzdmQM4C/5ji/n71OLWTMaT8xqEU6jQ+lOwNI0tOdWdoLS+kOWlAAO3Y4j08/9RyPj3eyT++EsGPH0BpkYq0Tf16e78OVnRQ7diIrjz3peRyOSubQ4AlEx8cQHU2JR0yM79fi26Udi4oKTrFY63QdPbllD7EnnW/x8dRW/LjB+CRplf3qepR2vCqionyTQdd2WY/i5yQkBKA8b7qJfNeccwcOwLx58Otf+/kmYch7KbcRI5zf8UC46CKnyddaWLPG+XDcpk1g7iU1570cYocO1es2NG6cJ/n76COYOtX53xLBqpr8JeE0+ZYngUpOIVMLJgJfuBI/AGttujHmc+ACwjH5O3HC8wnZNTjDteRNMfkFzqC5w0djWF/YnY0xvUhPOo30ZqeSF53oc27z5s6E6AMHQp8+Zf9etGsHv/yl89izx0kCV6zw7ZJhLXz7XRTfftcGaEP37ucwZAgMvQFappx0EkBXMrhtm/O1rHm3jh93fvm913QEzyCT4o/SRoEVFpZMxMpIzKp9rLSEFifpPnECjuXA0Rzn67Fcz/P/+cc+lrS6sfT3Xk1lJYnVTSh37GjPxx87b7O0WjfXV2uh76E9/LJooqe1P7Vk/q1+fWtVVljoqeGuDmOcBLC8BLG8JDIxsZR5ZRs0YPeFF9Ls3Xed/XfegVGjaj6XXTjbu9f5Q+JSk0mdK9K6tfOHbvVqZ3/RIvjVrwJ3P6mZmjT5upx2mu9gn88+g5Ej/RNfmKpq8rcb6FnBOb2BbdULx+96AotLOb4euLSWY6menBwnwXPV7G3c6BnyXozF+Ud8KC+BDdGn8WXuaWxJ6MWuVl3Jj4rzOTcqyvl9GDjQebRvX/UajpYtnSm4LrsMMjKc7ksrVjhhek8JuHGj8/jLX6Bz51iGDOnIkCEdae/9u3fsmFPrl57u+8jMLP3mZQ0ySU6mW3Y2zJ3rScxOnqzaG6uBQgu5x5xvm+txsvRvFwBnHVjMh6m/LJGM10RBgfPwl8OHG7Otkr/RTY97+vsdjA/MYI+4OOfDSb16vl/j4pwk9OhRp9yPHq16TWFx1nq+j/v2Ve8a9euXTBoPZV7AbQ320+rHL4mvZ4l79HGiXvhL5PZ7XbjQ80fjjDOgU6fA3m/SJE/y969/wbXXOt8gCaoTJ5wKi6wsz9fUJd/TcD8U5MOa77vz7QyvLkvZzr/DtDSnNdj1aNOmWG8hY5zm/nnznP2lS5X8VfH8fwE3GWPOttZ+VvxJY8xY4CzgD/4Izg+SgUOlHM8EmpT2AmPMDcANAKmpqSxfvjxgwQEcPXrU5x4xR46QlJ5O4tatJG3bRr09e8qdXNkWwqGopnwf25M1uX34X8Fp/BiXhi2IgjggH8jKAXJISsqne/dsevTIomvXbOrXdzKE7dudR00lJzstKqNGxfDdd41Yu7YRmzY18An/66+dxxNPQGrqcU4//TC9eh2mVas8J/lMSHD6RfV0PmPEHP3/9u48TqrqzP/45+luutlXWZRVVgUVF1xwY3HfN/SXTGZi4kRjttGYZDLZZpzJZDITjSYxJtEkjpM4iQ7iAoosLuAG4oIm4sImICqIQiPQ0ND0+f1xqri3qqvpru6qunWrvu/Xq151b1X1rdO3q6ueOuc8z9lOxw0b6PjBB/6yYQOdPviAil27MjeitpaqvXvZsmlT+3+hVmhoMHbtqmRnfRWf7O7M1vou1FsNu62G+oqO7LFqdtV0Yo9VU28d2V1Rw56KGk5qeJr+bgMd2cW5djeLDzqfxkZj716jsdFobIS9e8P7TW9LvYbGRstLHe69e/dSW5vp3yhVZaWjR91KcHuwCse2rjV07/4e1dWN+y4dOrjEdWPG6+rqpvf77eD2bL6k7Pv77Mx0qdi3nekxu3ZVUl/f/kGM2tqmt+3d25NVjZ/jxnUvUe12Y39dzvyX7mTZ+PPo16+evn130a9fPf3719OlS0PRzHDIh4qdOxn3xz9SkYjUV48YwbYs33fT30db5ByH1NRQs3Ej1Nby3s0389GkSVk9Z6nL+pyG7N5t1NVVUVdXue96xw6/vWNHJTt3Jq8r2bEjeNyePU1f6P+55jV6Jzo87l40gHWvNH0vWr0annwy2O/QwTFw4E4GDqxj0KCdDBq0kyGdunL41q3+8/TJJ3lzxgx252tqQTPac05zLdvg78fAp4B5ZnYbfsk3zOw84FTgK8AHFNdwaqaPw2bfSp1zdwJ3AkyYMMFNnjw5T80CnGPR/fczsaIiKLsSLpMB0KNHkx+r6zOI1V2OYMnOw5m/8Qg22IH+m03ii2v4Jw45xM/bO+EEP8fVrG/+fp+QCy7w19u2+eUVn34aXnwxtdOyvh6WLBnAkiW+Isipp8KkScl27ufgzvm5UulDx2t9ksmW2lp6pRfyrKnxXTDJrqJkd1EWt+2tqmH9Rx15e21H3lxdw+urOrF+Uw27KzrSWNH8v1Lnzn5E77DDfEx76KHQ5alR8NOfAnBo/2f42h+uzcm6k8nphw0NQQ9gcjt8W/p9+9teuvQ1jjtufMbetuR1TU2i+ddvhdc6AHDkTYfBhIHt/p2itHev75Tevr3pJdm72Nx+8rZMAXlt7RYa+hzKE+4aLnj/NwCc/t7DvNztYpa+NzTlsV27wuDB/jJkSLA9cKDv7Yy9++7z/3OdOsHQoRxz7bVZD0MsWLCArN+rt2/330KBXsuXww9+oOSykKeeWsAJJ0xO6WVLv966NfPtzeX6Nccsc8dr1z1b6EctVFXRYNVs73skPffzXhtWW+svySovVVVww95FjNv+Ap06w5A3PqHPNy8raJ3vNr1O8yTbFT7eM7Mzgf8DvhW6ayY+oFoFXOqca2leYKFswff+petF5h7BwnnuObj5Zg5Zs2b/FcfNaBwxivd6H87Le45g3geH8+aGXpDM6Uh7r+rc2S9pePzx/tIrY/9m4XTr5qsrnH22/xBdtMgPDS9Zkjok9/77vhD7vff6+YennOKDwcMOy/B+bAZ9+/rLcccFtzc2woYNvPX000ycOjWITqqr2zRr/5NP4I03/Kj7G2/4S5NhxAz/QYMG+SAvGewNHZrhdzjjDD8EsXWrH0989lkf+baTmX+Ty+XoYWXlFk49tZUPDn95KYEyL5WV/jXc1nrlzsHOnU2Dwscff4/u3Xuxfu00Nj/8OL23rKTK7ebyd2/hNyNuSnm9bt8eTJ0IM4MBA4JgMBwcFlM+1H41NASZt+Dn+hWq4WecAXfe6U/w++/D4sVw4omt+tHkl6xMX6729yUr032ZvnBlc2nrMVt6vvffP6Lgdfqrqvz/Wvfu/jJ261v0/sCXEds+dBTXfa2K7t2Dx3Tr5t/2V63yCYjLl/tKZhlyHmlogLkV5zBg8wuwGWpvm8OVT17JwMEVKUPGo0a1fgGROMv6I8I594qZjcFn9E4E+gBbgcXAw865/cxwKrhlZJ6jOBZ4o8BtSdWrV+bxoOpqOPRQto84gtcaj+CpjWNZ9Fpn6lY2fWjS0KE+WeP4433AUazThjp39tMsTjvNT8VbssT3CC5alJqz8uGH/vNgxgw/lHzyyT4uGj++hc6xigo46CDqBwzwEWQWnPOZzK+/7r8pLlsWVBfYn5oa37uaHKkeO7aVqwfV1Pg6Zn/8o9+fPj0nwV+k9uzxkz/Bf4D37x9te4pAMmGkc+fUl+Tu3R/hOwAq4YvfYO+1X6Z+l2PYrpfpdezjLOlxBuvW+dyo5mY4OBdUTVqyJPW+Tp38l5AhQ1J7CwcNKrIa6wsXBq+Znj194ktIsrRPXV1w2bGj6fXSpQN4++1sA7KOHL/jfI5efi/OwZovPsCfjzlxv0Fb8rocljnfu7ftQXhVlR+0CgdpyYAu/bZu3YLHNinN9N9vQfJ9+KJDGHNh5uc76KDUcpmbN/tgcOVKHxCuWOH/T17vfiJ1ld3pvPcTeu75kJGfvMLydyfw7rupw8b9+tEkIDzggJh8oWqlNoUJzrm9+N6+mbltTs7NBG42s+HOudUAZjYMX7LmnyJsF4weDTU17O3UCSZOxB3uM3Gf3jCaRS91YPkDzf9odbXPyE0GfAMGFK7ZudKxo+/ZO/VU/+b+8ss+EHzuuWBZT/D/xDNn+kv37n6Zz0mT4OijoUOHtj9/XZ1PIksGe2+8sW9Fu/3q1y+1V2/EiHYE2xddBH/+s/9EWbbMN6it2WzFYOPG4FOxX7/i/RZSbA45hMppl9J5xgw6d4IzV9zOmX84Hrp3xznfi/Huu+wLBpOXDRuaD0J27vQfeCtWNL2vX7/MvYX9+uXuw62x0bchU6C27/Ydjgm/vY+uG6BxLywZdwnPfrO6yc+0JnmptrZ/k1ryrbF298WMrrsPw9Fv/cvs6rKGjZ2GZX+gEtWhQ2rQlimgyxTY1dTk6LXUxkzf3r2D0a+k7dth5coONN52Br2fmkHdTjh+y2Ms7960zuOHH/rLc88Ft/XsCSNH+kBw9Gi/PXBgfAPCdr07m1l3/BSzrc65NhZTyKvfAl8FHjaz7xMsRfcucEeUDaOqih2//G/+OHMDu+qPYsn/Ze4ITOrf38/bmzgRjjyytEoUVVf732viRB8HvfqqDwSfeSb1nHzyiU/Me+wx35Ny4ok+eDzuuP2fD+f8B2Uy0Hv9dT9NsKVv71VV/h892as3bpwfac6ZPn18PbN58/z+9Ol+3lFchVf20LJu2bnqKv+i37TJTwX49a/h29/GzPc4HHCA/8IXtnu3r1yRDAbDweH+vsgkP9hefjn19poa/2EW7ik84AAfrGXqcdtfT1xzvZVhI7a9xuGrVlAP7LEa/rD1Inb8tcUfy6kt1f15vcfJHL71GQBO/WgG0wd/o1U/21KZpExllZorp5Sr+1q6ZHPcxYv/wplnRjga4VxuyrwkdO3qPzv57jmw2k81GFP5DCf/1zbeeq/bvi9Lq1dnLhBRWxskLCZ17uyDwJEjfUA4alR8Fqtqy9q+lfj5fl8ADg7d/g7wO+DmYhn6dc7tMLOp+OXd/oifl/gEfnm3VvTz5M/cufCTnxzI5s0dMw4TVlb6UizHH++DoiFD4vsNIxtVVb7g/oQJcP31vpJLsqj0R6GZpHV1vlbn44/7D60TTvCB4AknwJ49xuuvpwZ7+wusk3r2DHr0xo3b1zmbX5dfHgR/CxbAF7+Y9ZB10QjP94tjd3SUOnf2L/jvfc/vz5kDZ57ZNOILqa4OyluGOefjx/SewnXrfHzeTEnKfatftbasT3tN2RQs5fZi77PYUdU0uQ38e0KXLv4UJa/D2126wJo1Gzj88F7NBlz7q2/ZeeU0DvyvZzCDMTXzufBX11DRo9t+A7uoiqkXUnV1xGPbGzYEBTq7dvXfTHJhxAj/5r58ORV79zD63ScYffHF++5uaPD/K8lgMDl8nKmcbl1dkKuZ1KGDX4dg1KggKBw+vPg6bLJd27camANMwveivYvP7j0Qn/n7I+BsMzvTOZdlvk9+JNbwvSzqdqQbMaLpm3DPnkHdvQkTVHaqosLP8xs/Hr76VT/hPRkIhuOM+no/dWjhQv+Pt3nz4S1OVDbz/5CHHRZk4h54YARv6CNH+q+jr77qXxAPPugDwDhSz1/7JLuyn37a799yi1+HNsuUXjP/XtKzJxxxROp9DQ3+fycZGIYDxK1bc/R7JISDtE6dUoO1frvWMfWDRVR0hYpKY/x3L+fooamPSf5Ma6Z3LFiwkcmTD21bQw8/HB4b6T/hqafza4/Cpz7VtmNJ7qT3+uXyzfncc4OFA2bPhlDwV1XlPxuGD/dLcUOwamo4IFyxInOnwp498Pbb/pJkluwRHMKIEb5XPWrZ9vzdAEwGHgG+4ZzbN6PEzEYAPwUuSDyuWGr9FaURI/wQYvfudVx6aS9OOMF/Qyj1b5NtZeaDtLFjfWy0cmUQCIYTM/bsyTxRuUuX1OHbQw8touVUL7/cB38AjzwCn/1s7he0L4QSy/SNxD/8gx9Xqqvzy47dc48fEs6RqqpgSDfdtm1Newu3bm3ay5YeyGXqkevUqYX3sp9O910GACdOpO+nIlxezcyvI/yTn/j9Bx/0/5M5KL0k7RAO/nK9Fu/UqXD77f4DI9m1N3Jksw838x2PAwdCslJLcj5uekCYqRi8c74SWW1tr6JJFso2+Psb4HXgYudcSr+Vc26VmV0KvAp8BgV/+2XmEz0XLVrB5MnxroVWaMm1vUeNgr//e/9Plez5Sw5ZDR4cDOEedliRD5tPnOh7yt5/30/Wmjs35ZtobISDP/X8tU2fPnDNNfCzn/n9P/3Jf1ANG5b3p+7WLaW+ev7U1gZTHcAvERS1007zZV9qa4OZ/q2ubyR5EQ7+Dm1jr25zunXzf98nnvD7jz2W9RJ/4fm4EycGt3/ySZBlvHKlDwjffdcHgNXVjUWzjHS2wd9I4Lb0wC/JOddoZo8BWiixFYptDkBcDR3qO8s++1nYsgUWLXqdc889peUfLBZmfrmp227z+zNm+Ezgoo1WM0iOiySp56/tLrwQ5s/3E1b37oWbb/avjTi9Hvbn4YeDKsBjxvhh16hVV/vK9MnSSzNmKPiL0t69qeOm+aiCcM45QfA3fz5ce237SkgkdO/uq1EcfXRw286dvmNi/vx1VFQUdlWR5mRbznw30LWFx3QBCreYqkhIr17QuXMOF7YtlHPOCSZ5rl8frDsaF9u2BTOiO3XKuDKNtJIZfOMbwbDjsmUwa1a0bcqV3bvhoYeC/csvL56g9qKLgnP+l79krpMjhbF2bVBR/4ADfI94rh19dJBcl1yKKk86dfI96kcemeOJte2QbfD3F2CaNbNGmJkdAEwDXmtvw0TKSqdOcP75wf7990fXlrZI7/Urlg/0uDr4YPj0p4P9O+7IvGxB3MyfH8yS79evuAqb9+kTTOgCeGA/xVYlv/Ld6wf+Peqcc4L9xx7Lz/MUqWyDv18CfYElZvb3ZjbczDqZ2cFm9nnghcT9v8x1Q0VK3qWXBuvALV2ayD6MCc33y72//dugvEVdXTAtIK6c87Usky67rPgKol0WKgzx+OOtqxEluRdeyzCfhe/PPjvYfvFFP9+zTGQV/Dnn/g+fyDEUuBNYAWwHVuJr/B0M3JR4nIhko1+/1HlG4TVPi53m++VeTY0f/k1auBCefz669rTXkiV+OA98WvB550XbnkwOPTQINhoa/NJCUng5LO68XwMGBJPznEtNRCpx2fb84Zz7LnAicBewFFiduL4LOMk5F+2yaSJxdvnlwfbjj/v17eJAPX/5cdRRQbExgJ//3M8ej6P77gu2zzuveAuZTpsWbM+c6YNAKZzdu1Mrjee6zEu6c88NtmfPLo+Fm2lD8AfgnFvsnLvaOTfBOTcqcX21cy5ms9RFikyymCH4D52HH462Pa2lnr/8+dKXggSaDz+Eu+6Ktj1tsXKln8oAfmpDOMAqNpMmBQkGH3/se1ylcFauDBZ0HjTIr+6RTyefHDzHBx+kLtdRwloM/sysxsyWmNkTZtZsHrSZVSces3h/jxORFoR7/2bODMpiFDP1/OVPjx7w5S8H+zNmpE6Ij4P/C80Emjy5uJcwrKry5XaS4pZ8FXeFGvJNqqnxdR6TZs/O/3MWgdb0/H0GOAb4qXOu2RIuieXcbgKOS/yMiLTFKacEH461tX74t5g1NKSWte/fP7q2lKozzoBjjvHbzvnaf3tjUtJo0yZ48slg/4oromtLa114YZCM8tZbqQkIkl/5LO7cnPDQ78KFmRfyLTGtCf4uBVY751oMh51zc/BJIJe39FgRaUZlpc/8TZo+vbjnoXz4YdC+Aw7Iei1aaQUzuOGG4NyuXBmfhKAHHggC1SOOyP8crlzo2RNOPz3Yj8u5LgXhQLtQr5VRo/xivuDrC4a/rJSo1gR/RwELsjjm08CRbWqNiHjnnQcdO/rtNWvg5Zcjbc5+aci3MA46CK68Mti/6y7YsCG69rRGXV1qgepiWMqttcJfwBYsgI8+iqwpZWP7dl/kHvyX4P2st5tTZqm9f2VQ8681wd8BQIalipu1ESiO9UtE4qpr19Q3o2KedxQO/pTskV9XXJHaQ3HrrcXdKzxnDuzY4bcHDUpdBLXYjRrleyrB91yq7Ev+LV8ebA8fXtg1UE8/PRjqf+ONoCxRiWpN8LeTlpd0C+sK7Gpbc0Rkn8suC1bKeOGF4n0zCmf6qucvv6qqfO2/5OtiyRJ46qlo29ScxsbULy3TpsVv5Zdw0edZs+KRfBVnhSrunEmPHnDSScF+iff+tSb4exc4NotjTgDWta05IrLPQQfBiScG+8U670g9f4U1dqxfhzbpttv82qTF5plngtdG9+6pqynExUknpSZfPfFEtO0pdYVY1m1/wsu9zZ1b0jUeWxP8LQBOMLMJLT3QzI7BF4Au0q+iIjETroc2bx588kl0bWmOev4K7+qrg1p0tbV+7d9iEy7vctFFhR3Cy5XKSrjkkmD/gQeKe5g97qLs+QM49liftAb+/+qFFwrfhgJpTfD3S8AB082s2bxrMzsEmA7sBX6Vm+aJlLnx44NJz/X1qZPni4V6/gqvc2e47rpg/9FHi6s47bJlft4U+KHqiy+Otj3tcd55QeC6ciX89a/RtqdUffxxkFRTUwNDhxa+DRUVqSvqlHDNvxaDP+fc28C/4dfzXWpm95jZVWZ2ppmdYWafN7N78Eu8DQP+NfEzItJeZqlFnx98sLiGIrZtC4Yca2qgV69o21NOTjkldY7SzTfDnmZLsRZWeCm3M86A3r2ja0t7devmf4ekYp1+EXfh+n5jxvhe1yiEh34XL47PEptZatXybs65fwO+DxjwN8BvgceAOcDvErdVAN9zzv17fpoqUqamTg0+PD/+uLgm+IdLjRx4YPwm9MfddddBp05++9134U9/irY94KcBPPtssB+Hos4tCSd+PPNMalFzyY304C8qAwcGWd6NjX66TQlq9dq+zrn/AEYDP8TP6XsLeDux/W/AaOfcj/PRSJGylj5sVkxFnzXfL1p9+8IXvhDs33MPrIs43+7++4PX53HHwbBhkTYnJ4YNS11h5aGHIm1OSYpiZY/mpNf8K5b32xxqdfAH4Jxb65z7F+fc6c65cc65sYntG51zRVqHQqQEXHhhsLrDihXFM+8oPN9vwIDo2lHOLr44mBzf0AA//Wl0H1bbtqXOkyqFXr+kcNHnRx6BXapoljPOFX5N3/2ZNCnoUV+3Lpi/WkKyCv5EJCI9esCZZwb7xVL0WT1/0auogG99y1+DT/yIqkbZzJk+MQl8kd6jj46mHfkwcWLwGt++HebPj7Y9peS99/w5BV8WKOovkh07+uk2SSVY80/Bn0hchMu+PPtsaq9bVJTpWxyGD09dOu3Xv4YtWwrbhoYGn5CUdMUVpTUH1Cy192/GjJIcDoxEen2/YnjdhBM/nnyy5Hp6FfyJxMXQob4OFfgPnWLIOtS6vsXjyiuDAHz7drj99sI+/5NP+oQk8DUITzutsM9fCGefHQwHrl0Lr7wSbXtKRdT1/TIZOxaGDPHbO3fCwoXRtifHFPyJxEm47Mvs2cG6qVFobGya7SvRqamBG24I9p94wi//VgjOpZZ3ueSSYJ3UUtKlS2qPUDF8ASsFxTTfL8ks9W9dYjX/FPyJxMmECUHx0507o31D2rTJL3gPvhRNHFdwKDUTJvgF6pNuvbUww1WvvAKrV/vtmhqfoFSqwit+LF7s56tJ2zU0+CS2pGIJ/sDPsw7PpV2/Ptr25JCCP5E4MUud+zdjRhCAFVo42UO9fsXjK1/xhYnB98zefXf+nzO8lNu55wbPX4oGDYLjj/fbzqXOyBTzNQAAIABJREFUc5TsrVkDu3f77X79iqtQfO/ecMIJwf6cOdG1JccU/InEzRln+Oxf8MVmwwV1C0nz/YpTz57wpS8F+9Onp/as5NqaNcHwcvqXk1IV/h0fewzq6qJrS9wV45BvWLjm35w50X3ZzjEFfyJxkz6sNn16NO1Qz1/xOvtsOPJIv93Y6Gv/NTbm57nCvX4nn1weXwSOOSaYflFXV1I9QgVXTMWdMzn+eP+FCnxC00svRdueHFHwJxJHF10UTKhftiz1DbRQ1PNXvMzgG9+ADh38/ttv52d4cvPm1Hp34XIzpcwsde7fAw+o7EtbFcuybs2pqoKzzgr2SyTxQ8GfSBz16ZNahDSK3j/1/BW3QYPg7/4u2P/d7+DDD3P7HA895Cfsgy+NMW5cbo9fzM46y2f/gk/6eOGFaNsTR/X18M47ftusOIM/SM36ff55qK2Nri05ouBPJK7C844WLMj9B3tL1PNX/D796WB4ctcu+NnPctdDVV8PDz8c7IfLEJWDjh3hvPOCfZV9yd6KFcF0hCFDoHPnaNvTnKFD/Zcb8F92Hn882vbkgII/kbgaNQrGj/fbjY2FzTqsq4OtW/12hw6+J1KKT1UVfPObwf6iRfD007k59pw58MknfnvAADjllNwcN04uuSRYjeKll3zhZ2m9Yizu3Jxw799jj8V+mF/Bn0ichXtbHnnE1/4rhHCv34ABxbEck2R22GFwwQXB/m23tb84uHOp60tPmwaVle07ZhwNGOCTXJIeeCC6tsRR+rJuxWzq1KCW6erVsHx5tO1pJwV/InGWvtj83LmFeV4N+cbLNdf4mmXgMxZ/+9v2HW/RoqDgbfqqF+UmvN7v3LmwbVt0bYmbOPX8de4MkyYF+489Fl1bckDBn0icVVTAZZcF+4VabD4c/CnZo/h17Qpf+1qw//DDPku8rcJLuV1wQfHO1SqE8eNh+HC/XV9fMtmgebdtW5A0VlUFI0ZE257WCNf8e/xx//eOKQV/InF3zjlB1uH69b5XJt/Cmb7q+YuHSZNSVyu4+eYgUzcbb7/tl7oCP9Qb7vkqR+mFrR98sGQKAedVuMTLyJFBWaJidsQRwfvdjh3RFdjPAQV/InHXqROcf36wH56LlS/q+YsfM7j+ep+lCn5ljnvvzf444aLOU6dC3745aV6sTZ0K3bv77Y0bfTkQ2b9ir++XiVnqFIcY9/Iq+BMpBZdeGixAvnQprFqV3+dTz1889e8PV10V7P/hD9ktVv/hh76sUNIVV+SsabFWU5OaVKOyLy0r9mXdmnPWWUGC2yuv+PWzY0jBn0gp6NcPTj012M9n759zTbN9JT4uvRRGj/bbe/bALbe0fp7o/fcHddmOOsoP14l38cXBF7DXXoOVK6NtTzFzrviXdWtO375w3HHBfkyX9ivp4M/M1piZy3C5OOq2ieRcuOzL44/7pbfy4aOPgrliPXuW92T/OKqs9LX/kr0XS5fCvHkt/9yOHfDoo8F+uSzl1loHHJCaDaqyL8376KPg/alTJxg8ONr2ZKsEav6VdPCXMBeYmHZZGGmLRPJh7NjUKvTh1RdySfP94m/UqNQvC7ff3vKSVY8+6ot7g1+NIdz7IV448/7xx0tiGbC8SJ/vVxGzUOTEE4M5nh9+6Id/YyZmZ7xNPnLOLU67bIm6USJ5Ef5AnzkTdu/O/XNovl9p+Pzn/RxA8GU3fv3r5h/b0JA6j+3yy1XYO5OxY4P5a3v2+MLr0lRc5/sldegAZ5wR7Mew5l85BH8i5eOUU/z8P/C9DvlYg1I9f6WhY0f4+teD/Xnz/BJlmSxcGKwd3bMnnHlm/tsXR2appW8eeqht5XRKXZyKOzcnPPT79NOxK+5dDsHfBWZWZ2b1ZrZY8/2kpFVW+vVGk6ZPz/18lHDPn4K/eDv+eJgyJdi/5ZamhWud86+jpIsvhurqwrQvjqZMSV1NJVdrKZcK5+K1rFtzRoxITZx68slo25OlqqgbkGezgBeBd4D+wFeBB83s75xz92T6ATO7BrgGoH///iwIlzXIg+3bt+f9OcpNuZ/Tyh49GFtXR8Xu3fDqq6y+8062taOOVvr5HPXSS3ROzGVa9d57bC/jc91WxfQarTrySA6ZM4fKnTuhtpYPv/c9PgjVjeyyahUjX3gBAFdVxRt9+tBQJG1PKqbzCdB/9GgGJLJA637xC1bEbU4b+TunNRs3ckjiC2RD164se+ON1J7AGOkzeDCDliwBYOfvfsfyHj32+/hiep3GJvgzs9OB+a146ELn3GQA59zXwneY2YPAYuDHQMbgzzl3J3AnwIQJE9zkyZPb3uhWWLBgAfl+jnKjcwqsWOFXGgCOeecd+OIX23yoJufzttv80B8w4cILg3lj0mpF9xqtqICf/hSAXq++ypgvfzlYsmz+/H1/b84/n5PDBcWLRNGdz/Hj/RB6QwO9tm5l4IABsevhyts5nTcveD2dcAKTwz3PcXPMMb5nd88eem3fzkGDB+93mbpiep3G6evI88Chrbh8trkDOOf2AtOBQWam8SopXZddFkzIf+EFWLs2N8etrw9KNFRWanWHUnHeeX7pKvBLk918s6/nl75cYDihSJrXq5df9SNJRZ8Dca3vl0m3bqn1VWOU+BGb4M85V+ece6sVl3UtHCqZoha/wjwirTVwIEycGOzn6sMnvbhzDIezJAMzuOEGqEoMBr35ps8WD88ZnTjRl3iR1gmXfVmwwM//k3gu67Y/4cSP+fP9/L8YKKt3bjOrAi4H1jnn4rkmi0hrhXtp5s2DTz5p/zGV7FG6hg6Fz3wm2P/tb2Hu3GBfS7llZ/RoOOwwv93Q4IPpctfQ4KekJMVsKDyjo48OKix88kls1nUu2eDPzD5tZvea2WfNbIqZfQp4CjgG+HbEzRPJv/Hjg+W36uth1qz2HzPc86caf6XnM58JVluoqwsyf0eN8q8nyU6492/mzNj0CuXN6tVB6ZsDD4QWEiRiwazpih8xULLBHz7Dtx9wEzAPuAOoB852zt0bZcNECsIstffvwQfbX3NMPX+lrUMH+MY3mt5+xRUq6twWp5wSzIutrY1dOZCcK4X6fpmcfXawvWQJbNoUXVtaqWSDv8RKHlOdc/2dcx2ccz2cc6c75+a2/NMiJWLq1NSaY0891b7jqeev9I0fD+eeG+z37QtFkqEYO5WVvi5i0owZsVwHNmdKob5fJgMG+OFf8H/f1qyVHbGSDf5EBD+BP/zh096iz+r5Kw/XXuszMaur4frrg0QQyd7550NNjd9esQJefz3a9kSpVHv+IPUL0+zZRR/kK/gTKXUXXhisyLBiBfz1r207jnPq+SsX3brB7bfDnDl+EXtpu+7dU9eBLdeyLzt3BiWnzILVMUrFySdDly5++/332/4+WyAK/kRKXY8eqWux3n9/246zeTPs3u23u3UL3uikNJlpnl+uhJdcfOaZYJ3kcrJiRdAbNmyYX1u6lNTUwOmnB/uzZ0fXllZQ8CdSDqZNC7affTa1B6+1wj+jIV+R1hs+HI46ym83NhZ9YJAXpTzkmxTO+l2wwGfMFykFfyLlYOhQOPZYv+1c24aeNOQr0nYXXRRsP/qoX0mlnISLO5dq8Dd6dLAsYn19+xPs8kjBn0i5CPf+zZ4NO3Zk9/Pq+RNpu5NOCta0/egjv+xiOSmlZd2aE6Oafwr+RMrFscf6HkDwk6+zHXoKZ/qq508kO1VVqYHBI49E15ZCq62FDYlFtTp0gIMPjrY9+XT66UF2/LJluVtXPccU/ImUC7PU3r8ZM7IbelLPn0j7nHdesL14cfkkfoTr+40aVdqlg3r2TM2QL9LePwV/IuXkjDN86QmAjRt98kdrqedPpH0GDoRjjvHbzpVP4kc5zPcLC9f8mzu3/Ssr5YGCP5FyUlPj6/4lTZ/eup/bvdvPUwKoqAiWrBKR7Jx/frA9e3Z5JH6UQ6Zv2IQJ0KeP366tLcr5nQr+RMrNxRenzkkJfytvTnK+DkD//qU9bCOSTyefHCR+bNrk14ItZc6V7rJuzamsTF3vtwh7eBX8iZSbPn38mr9Jren903w/kdyoqkoNDGbNiq4thbBxo+/9Al8YftCgaNtTKOG/8eLFvkh+EVHwJ1KOwokfCxa0PPFc8/1Ecic89FvqiR/hkYUxY8pn1ZhBg+CII/x2YyPMmxdte9Io+BMpR6NGwfjxfruxER58cP+PV8+fSO4MHAhHH+23nSvajNCcKIf6fs1Jr/mXXN6uCCj4EylXl18ebD/yiK/915xwz5+CP5H2u+CCYPvRR/2XsFKU3vNXTiZNgk6d/Pa6dXResybS5oQp+BMpVxMnBkO427f7kgTNUc+fSG6lJ34UYUZouzU2piZ7lFvPX6dOMGXKvt0+RZTco+BPpFxVVMBllwX7M2ZkHpZwTuv6iuRaeuJHKa74sW4d7Nrlt/v0gQMOiLY9UQjV/Ou5dGlwPiKm4E+knJ1zjs/AA1i/HhYtavKQqh07giHhzp2hW7cCNlCkhIVX/Fi0yPcAlpJyK+6cydixMGQIABX19dkV1s8jBX8i5axTp9TMw/vvb/KQ6o8/DnYOOqh8svVE8m3QIDjqKL9diokfCv78++WFF8KkSay++urUMlsRUvAnUu4uuSQI6JYuhVWrUu6uTq7sAZrvJ5JrpZz4oeDPu+wyuPFGto0d66fbFIHiaIWIRKd/f5+VlpTW+1cTLk6q+X4iuXXKKUHix4cfls6KH3v2pH6RLLdM3yKn4E9EUos+P/54SjV69fyJ5FGprvixahU0NPjtgQM1V7jIKPgTERg3LijD0NAADz+8765q9fyJ5Fd64kf4C1dcvflmsF3OQ75FSsGfiHjhos8zZ8Lu3QDUqOdPJL/SEz9mz462Pbmg+X5FTcGfiHinngr9+vnt2lo//NvQQIetW/1tZjBgQHTtEyllpZb4Uc7LusWAgj8R8SorfeZv0vTpsGFDUPi5b18/P0lEcu/kk6FHD7/94Yfw4ovRtqc9duyAd9/12xUVMHJktO2RJhT8iUjg/POhY0e/vWZN6qoDGvIVyZ8OHUon8WP58uBL4/DhUFMTbXukCQV/IhLo2tWv+pE0Y0awrWQPkfwKF1yPc+KH5vsVPQV/IpLqssuCos/JUg2gnj+RfAsnfjQ2xjfxQ5m+RU/Bn4ikGjgQJk5sert6/kTyL9z7F9fEj7ffDrYV/BUlBX8i0lS47EuSev5E8u+UU6B7d78dx8SPzZt9u8HP9Rs2LNLmSGYK/kSkqfHjm2boqedPJP/invgRnu83apSvIiBFR8GfiDRlltr717FjUIZCRPIrXPMvbokf4SFf1fcrWgr+RCSzqVN9mQaAyZODJBARya9Bg+DII/12YyM89li07clGONljzJjo2iH7peBPRDKrqoLbbmPF178O//iPUbdGpLzEMfHDOa3sERMK/kSkeZ07UzdkiHr9RArt1FODxI+NG+OR+PHBB7Btm9/u1k1JYkVMwZ+IiEixSU/8CK+2U6zCvX5jxuhLYxFT8CciIlKMwkO/zz8PH38cXVtaQ0O+saHgT0REpBgNHuzLLkE8Ej+0rFtsKPgTEREpVuGyL488UryJH3v3wvLlwb4yfYtaLIM/M7vBzGaZ2Qdm5szsxv089mIzW2pmu8xsrZl938xUdVJERIpfeMWPjRvhpZeibU9z1q6F+nq/3bcv9OkTbXtkv2IZ/AFXA/2Ah/b3IDM7C5gBvAicA/wc+D7wH/luoIiISLtVV8NZZwX7xZr4Ea7vpyHfohfX4G+cc+544GstPO4/gWedc9c4555yzt2CD/y+bmYD8t5KERGR9gonfjz3XHEmfmi+X6zEMvhzzrU46cHMBgNHAvek3fVHoAO+J1BERKS4DRlS/IkfyvSNlVgGf600LnH9evhG59w7QB0wtuAtEhERaYv0xA/nomtLuvp6WL062B89Orq2SKtURd2APOqduN6S4b4toftTmNk1wDUA/fv3Z8GCBXlpXNL27dvz/hzlRuc0t3Q+c0/nNLfK4XxaYyPjdu+msq4OamtZfccdbMvj8Go257TzO+8wavNmAOr79eOtOKxGEoFiep1GHvyZ2enA/FY8dKFzbnI2h05cZ/p61GzZcefcncCdABMmTHCTJ2fzlNlbsGAB+X6OcqNzmls6n7mnc5pbZXM+V6yA6dMBOOb99+Haa/P2VFmd048/hp49/fbkyQwoh79FGxTT6zTy4A94HmjNBIG6LI+7OXGdqYevZ+h+ERGR4nf++fuCv32JH8VQUkXJHrETefDnnKsD3mrxgdlblrgeByxK3mhmw4DOwBt5eE4REZH8GDIEjjgC/vIXn/gxZw585jNRt0rBXwyVbMKHc24d8BqQ/p/xt8AeoAjTpURERPaj2BI/tm2D9ev9dlUVjBgRbXukVWIZ/JnZBDObBlyauGmsmU1LXDqHHvpdYJKZ3WFmk83s6/gizz93zm0odLtFRETa5dRToVs3v71hA7z8crTtefvtYHv4cF+UWopeLIM/4KvAdOC+xP7lif3p+JU/AHDOzQamAScAc4Gv44s8/1MhGysiIpIT1dVw9tnB/syZ0bUFUoM/1feLjVgGf865zznnrJnLmrTHPuCcG++cq3HODXHO/Ztzbm9ETRcREWmf884Ltp9/PtoVP8LLuo0ZE107JCuxDP5ERETK1tChPvEDYO9en/gRFSV7xJKCPxERkbgJr/f76KPRJH589FHQ69ixow9KJRYU/ImIiMTNpElB4scHH0ST+BHu9Rs9GioUUsSF/lIiIiJxU10NZ50V7M+aVfg2hIM/JXvEioI/ERGROAoP/T73HGwu8MJVmu8XWwr+RERE4mjoUDj8cL9d6MQP5xT8xZiCPxERkbiKasWP996DHTv8do8e0L9/YZ5XckLBn4iISFyFV/woZOJHuL7fIYeAWWGeV3JCwZ+IiEhc1dTAmWcG+488Upjn1ZBvrCn4ExERibPw0O+zz8KWLfl/Ti3rFmsK/kREROIsPfHjscfy+3wNDbBiRbCvZd1iR8GfiIhI3IXLvuQ78eOdd2D3br89YAD07Jm/55K8UPAnIiISd5MmQdeufvuDD+CVV/L3XJrvF3sK/kREROKukIkfCv5iT8GfiIhIKQgnfjzzTP4SPxT8xZ6CPxERkVIwbBgcdpjfzteKH7t2+Tl/4Gv7jR6d++eQvFPwJyIiUiryveLH8uXBMYcOhU6dcnt8KQgFfyIiIqUinPjx/vu5T/wI1/fTkG9sKfgTEREpFflO/Ehf1k1iScGfiIhIKQnX/Mt14oeSPUqCgj8REZFScvDBMG6c3967F+bOzc1xt271NQQBqqpgxIjcHFcKTsGfiIhIqQknfsyalZvEj/B8v5EjfQAosaTgT0REpNRMnpya+LF0afuPGR7yPfTQ9h9PIqPgT0REpNSkJ37MmtX+Y2q+X8lQ8CciIlKKzjsv2H72WaitbfuxnFPwV0IU/ImIiJSi4cODxI+Ghvat+LFpU5A13LkzDB7c/vZJZBT8iYiIlKpcrfgR7vUbM8Yv7SaxpeBPRESkVE2eDF26+O333oNXX23bcVTcuaQo+BMRESlVuUr8CJd5UaZv7Cn4ExERKWXpK35km/jhXGrwN2ZMbtolkVHwJyIiUsram/ixbh3U1fnt3r2hb9/ctk8KTsGfiIhIqQv3/mWb+JFe4kXJHrGn4E9ERKTUTZnS9sQP1fcrOQr+RERESl1NDZxxRrCfTeKHgr+So+BPRESkHIRr/rU28WPPHli5MthXskdJUPAnIiJSDoYPh7Fj/XZDA8yd2/LPrFrlHwtw0EHQvXv+2icFo+BPRESkXGSb+BEu8aIh35Kh4E9ERKRcTJni1+YFWL++5cQPzfcrSQr+REREykXHjqkrfjzyyP4fr2XdSpKCPxERkXISHvp9+unmEz/q6nyBZ4CKChg1Kv9tk4JQ8CciIlJORowI1udtaIB58zI/bvnyYE7gsGG+11BKQiyDPzO7wcxmmdkHZubM7MZmHnd34v70y88K3GQREZHiES77MmtW5sSP8Hy/ZLAoJSGWwR9wNdAPeKgVj90ETEy73Jq/pomIiBS59MSP115r+hgle5Ssqqgb0EbjnHONZlYFXNvCY3c75xYXolEiIiKx0LGjX/Hj4Yf9/iOPwJFHpj5GwV/JimXPn3OuMeo2iIiIxFp46HfhQti6dd9u1fbtsHGj36mu9nP+pGTEMvjLUj8z+8jMGsxsuZl928wqo26UiIhIpEaMCHr00lb86JzM8gWf5VsV14FCyaTU/5qvAi8Dy4COwCXAj4FRwBcy/YCZXQNcA9C/f38WLFiQ1wZu3749789RbnROc0vnM/d0TnNL57Pteg8bxuDFfmZU/e9+x1t9+4IZPZcvZ0uiBMxHlZW8p/PbbsX0Oo08+DOz04H5rXjoQufc5GyO7ZxLz+qdbWbbgevN7L+ccysy/MydwJ0AEyZMcJMnZ/WUWVuwYAH5fo5yo3OaWzqfuadzmls6n+1wwgm+1l9dHezZw4DevWH8eNbdeSe9evYEoNeFFzJK57fdiul1GnnwBzwPtCaHvC5Hz/dn4HpgAtAk+BMRESkb6Ykfs2bBEUfQee1aP9cPYMyY6NoneRF58OecqwPeavGBuWPJpy7gc4qIiBSn888Pgr+FC2HaNCrr6nzw17UrDBwYbfsk58oh4SPd3+ADvxejboiIiEjkRo5MTfy47bbgvkMOAbPMPyexFXnPX1uY2QRgGEHwOtbMpiW2Zzvn6sxsKPBH4F5gJVCDT/j4HHCHc25VQRstIiJSrC64IKjr98Ybwe0a8i1JsQz+gK8CV4b2L09cAA4G1gDbgM3At4H++N6+N4F/AH5VqIaKiIgUvSlT4PbbfeJHmJZ1K0mxDP6cc5/D9+Dt7zGbgYsL0R4REZFY69QJTj8dZs5MvV0re5SkcpzzJyIiIunCK34AHHAA9OkTTVskrxT8iYiISGriB6jXr4Qp+BMRERFv2rRg+/jjo2uH5FUs5/yJiIhIHkydChUVvPvii/Q655yoWyN5ouBPREREPDOYMoXNZlBZGXVrJE807CsiIiJSRhT8iYiIiJQRBX8iIiIiZUTBn4iIiEgZUfAnIiIiUkYU/ImIiIiUEQV/IiIiImVEwZ+IiIhIGVHwJyIiIlJGFPyJiIiIlBEFfyIiIiJlRMGfiIiISBlR8CciIiJSRhT8iYiIiJQRBX8iIiIiZUTBn4iIiEgZUfAnIiIiUkbMORd1G4qWmW0C1ub5aQ4APsrzc5QbndPc0vnMPZ3T3NL5zD2d09wrxDkd6pzr29KDFPxFzMxecs5NiLodpUTnNLd0PnNP5zS3dD5zT+c094rpnGrYV0RERKSMKPgTERERKSMK/qJ3Z9QNKEE6p7ml85l7Oqe5pfOZezqnuVc051Rz/kRERETKiHr+RERERMqIgj8RERGRMqLgLwJmNtjM7jezrWb2iZk9YGZDom5XXJnZNDObYWZrzWynmb1tZj82s25Rt61UmNkcM3Nm9u9RtyXOzOxcM3vazLYn/vdfMrOpUbcrjszsJDObZ2YfJs7lK2Z2VdTtigszG2Rmt5nZIjOrS/x/D8vwuI5mdpOZfZB4f11kZqcWvsXFrTXn08wmmNmdZvZW4jHrzOx/zezgQrdXwV+BmVln4EngEOBK4O+AUcBTZtYlyrbF2DeBvcB3gbOBXwNfAuabmV7j7WRmnwbGR92OuDOzLwIPAy8DlwCXA9OBzlG2K47M7AjgcaADcDVwGfAi8Hsz+1KUbYuRkcAVwBbgmf087vf4c/zPwPnAB8BcMzsy7y2Ml9acz08B44BfAOcA/wQcDbxkZoML0cgkJXwUmJldB9wCjHHOrUzcdjCwAvhH59wtUbYvjsysr3NuU9ptnwX+BzjNOfdkNC2LPzPrCbwFfB34E/Aj59z3o21V/CR6AN4EvuOc+1m0rYk/M/sP/Je+3s657aHbFwPOOTcxssbFhJlVOOcaE9tfAH4LHOycWxN6zHjgVeAq59x/J26rApYBbzvnLix4w4tUK89nps+qocA7wL875/65UO1Vr0jhXQgsTgZ+AM65d4DngIsia1WMpf8zJbyYuB5YyLaUoJ8Ay5xzf466ITF3FdAI/CbqhpSIamAPsDPt9lr0udYqyUClBRfiz/N9oZ9rAO4FzjKzmjw1L3Zacz4zfVY559YCmyjwZ5X+SQpvHPB6htuXAWML3JZSNilx/WakrYgxMzsZ+Czw5ajbUgJOxvegfsrMVplZg5mtNLOvRN2wmLo7cf0LMzvIzHqa2dXAacCt0TWr5IwD3nHO1aXdvgwfgI8sfJNKi5kdCvSjwJ9VVYV8MgGgN35OQLrNQK8Ct6UkmdlA4N+Ax51zL0Xdnjgysw7AHcDNzrm3o25PCTgocbkJPzd1FX7O3y/NrMo59/MoGxc3zrnXzWwy8CDBl5M9wLXOuXsja1jp2d/nVfJ+aaPEEPpv8D1/vy/kcyv4i0amiZZW8FaUIDPrip9U3wB8PuLmxNm3gU7Aj6JuSImoALoBn3POPZC47cnEXMDvmNkvnCZgt5qZjQJm4HugrsUP/14E/MbMdjnn/jfK9pUQQ59X+fRL4ETgPOdcpiA7bxT8Fd4WMn9b6kXmb1jSSmbWEZgJDAcmOefWR9ykWEqUHfoe8AWgJm1eT00iCWSbc25vJA2Mp4/xWf3z026fh89QPxB4v9CNirH/wPf0ne+c25O47Qkz6wP83Mz+3Mo5bbJ/m4FMZch6he6XNjCzHwPXAFc65+YV+vk156/wluHnUaQbC7xR4LaUjMQw5QzgOOBc59xfI25SnA0HOgL34L+QJC/gMyy3AIdH07TYWtbM7ckeFAUq2TkceC0U+CUtAfrg51BJ+y0DDk6UKAsbC+wGVjb9EWmJmX0PX+blOufcH6Nog4K/wpsJnGBmw5M3JIZ+TkrcJ1lK1PL7X/xk74sLkknzAAAKeklEQVScc4sjblLcvQpMyXABHxBOQW/62XowcX1W2u1nAeudcxsK3J642wAcaWbVabcfD+xCPVK5MhNfS/Hy5A2JeWr/D5jnnKuPqmFxZWb/APw78D3n3G1RtUPDvoX3W+CrwMNm9n38fIofAu/iJ9hL9m7Hvzn9CNhhZieE7luv4d/sOOdqgQXpt5sZwFrnXJP7pEWzgaeAO8zsAGA1MA04E81NbYtf4gtkzzKzX+Hn/F0IfBq41Tm3O8rGxYWZTUtsHpO4PsfMNgGbnHMLnXOvmtl9wM8Soyvv4AvoHwx8pvAtLm4tnU8z+xTwM2AOfs5v+LPqE+dcwUb/VOQ5Aok5VbcCZ+CHfZ4Arg8Xg5TWM7M1wNBm7v5X59yNhWtN6TIzh4o8t5mZdQd+jA/6euFLv/ync+5PkTYspszsHHxi0jj8NIVVwJ3AHZqP2jqJ/+lMFjrnJicek0z8+hugJ/Aa8G19CWyqpfNpZnfjV/Zq9jF5aVgGCv5EREREyojm/ImIiIiUEQV/IiIiImVEwZ+IiIhIGVHwJyIiIlJGFPyJiIiIlBEFfyIiIiJlRMGfiIgUlJndbWYusbqRiBSYgj+RMpX48A1f9prZR2b2pJmpen8GifO0IOp2gC9unmjPNjPr38xjFiQeM7LQ7ROR4qXl3UTkXxPXHYAxwMXAFDM7xjl3Q3TNklbqiv8bXht1Q0QkHhT8iZS59OXvzOw0YD5wvZn9QssOFr2VwBfM7OfOuTejboyIFD8N+4pICufcE/h1Zw04Nnm7mX3OzGaY2Woz22lmn5jZc2b2t5mOExpyrDazfzazt82sPrG+JWbWw8y+lRhmXm9mu81sk5nNTFvwPHxMlzhufzO7y8w2mtkOM3vezE5JPKaLmd1kZmsTz7fMzC5v7vc1s0+b2VNmtsXMdpnZm2b2fTOrSfvdk2thTkobLr8x7XjHm9n9ZrYh8Tu9a2Z3mNlB2Z6jVvoOUAn8pDUPNrNhiefM+BzJNqXdNjn5u5rZBDObY2ZbE+dshpkNTjxuuJndm/g77kyc1/H7aU6Fmd1gZm8lzv16M7s1sQ5yprYNMrNfJl6D9Wb2ceL1cmyGx96YaPNkM/sbM3vBzLabXwtcpKyp509EMrHEdTgI+DXwBvA08AHQBzgX+KOZjXHO/aCZY83AB5GPAQ8BHyZuPxS/YPzTwKPAFmAIcCFwjpld4Jybk+F4PYHngG3An4HewKeAuWY2Ebgjcdsj+KHsTwP3mdm7zrnFKb+k2e+Bq4D1wANALXAC8EPgNDM7wznXALyKH1r9F2AtcHfoMAtCx/s88FugHpgJvAuMAr4AXGBmJzjn1mVxjlrjIfw5PN/MpjjnnsriZ7N1LPBtYCH+9zwcuBQ43MwuBJ7Ff3H4AzA0cd98MxvunNue4Xi3AqcC/wc8DJwFXA+cYmYnO+d2JR9oZkcD8/B/27n4v9cB+GkKz5rZJc652Rme4xvAGcAs4CmgR7vOgEgpcM7poosuZXjBB3Yuw+2nA42Jy9DQ7SMyPLYaeALYAwxMu29B4jn+AhyQ4Wd7NHP7IOB94M3m2gz8BqgI3f53ids34z/kO4buOyVx34Npx/pc4vYHgE5p992YuO+6DM+/oJnzORrYjR+GTT8XU4G9Gdqw33PUwt9vTeJnq/BBWSPwMmAZjj8ydNuwxG13N3PcBemvC2By6Nx/Ju2+34fO/ffS7vtBM+fx7sTtH6W9xirwgbADfhC6vSpxXncBk9KOdRDwHv4LSU2Gv+EO4Kio/9900aWYLhr2FSlzieGxG83sR2Z2PzAH3/P3M+fc2uTjnHOr0n/WObcbuB3/4XxaM0/xA+fcRxl+dmszt68H7gcOMbMhGY5XB3zLOdcYuu1PQAPQCx9o7Osxcs49gw+Ujkw7znWJn7nKObcz7b4fAh8D2WQ9fwnf03idc+69tN/pSXxP4AVm1i3Dz2Y8R63lnHsRuA84muzanK1nnXP/m3bb/ySutwL/mXbfHxLX6ec+6edpr7FG4Fv4QPaq0OPOA0YAtznnFoYP4Jx7Hz/kPYDMr8E7nXNLm3l+kbKkYV8R+ZfEtcMPez4D/N45d0/4QYlA7Nv4D9ghQKe04wxs5vhLmntiMzsJH4RNBPrhexLTj5k+TLrcObctfINzbq+ZbQS6OOdWZ3iq94DjQ8/bGRiP73m63swy/Aj1+KHp1pqYuJ6UaQ4a/verxPcQvpx2X7PnKAvfAS4BfmRm94cD4Bx6KcNt7yeuX3XO7U27LxkED2rmeAvTb3DOrTazd4FhZtbTOVdLcG6Hps+xTBiVuD4USB/6zcW5FSkpCv5EypxzLmPkE2Zmw/Efor3wweE8fE/PXvww4pVATTM/vqGZY16C7+Hbhc8uXoUfomvEDzNOauaYW5t5noYW7gu/3/XC9272JQh+26tP4vpbLTyua4bbMp6jbDjn1pjZbcA38QH1f7X3mBlkOr8Nzd3nnGtIBNYdmjnexmZu34CfM9gD/4UkeW6bTdxJyMu5FSk1Cv5EpDVuwH8Af945d3f4DjP7ND74y8g555q564f4OXITXFqJEjO7Ax/85UsyUFnqnDs6x8fs4Zz7JJsf3M85ytaP8MOl30kks2SSHC5v7v2/Z47a0hr9gbcz3D4gcb017foi59zMLJ8jV+dWpGRozp+ItEZyhYgZGe5ra5A2EngjQ+BXAZzcxmO2ivOZp8uAcWbWO4sfbcQP3WaSzCQ+pT1ta4/EEOkP8T1mzfVobklcD06/I1FiZXR+WpdRk9dOopd5MLAm8ftAEZxbkVKi4E9EWmNN4npy+EYzOwtfxqStxxwVrn9nfozwX4CxbTxmNm7BzzG8y8ya9HaZWa9EeZGwj8kQNCX8Ep/1fKuZNQmgErX8ChG8/Ao/hP5F/JB8isR8ybeAk8xs33k2s0r8OUmfy5lP15nZ0FAbKoCb8J9N/x163MP43+krZnZupgOZ2cTEXE4RaYGGfUWkNX4FfB6YbmYz8BP5DwPOxtdo+39tOOat+JItSxPH3AOchA/8ZgEX5KDdzXLO3WVmxwBfBlaZ2Vx8cklv4GB8/bn/JnXZtCeAT5nZLHzSRgPwtHPuaefcW2Z2FXAXsMzM5gDL8fPdhuB7rTYBh+T599ptZt/B/12GNvOwm/AlWp4zs+n4eZdTEm19DZ8MUwjPAa+a2X34od2zEs/9MqGi1c65PWZ2Kb6+36Nm9jy+9mIdPhg/FhgOHJi4TUT2Q8GfiLTIOfcXM5sC/Du+sHMVPki4FD8hP+vgzzl3h5nV44v6XgnsxCeTfB64jDwHf4k2fMXMHsMHeKfj57ttxgeBNwH3pP3Idfg5ZKfhz0MFvvjz04nj3WNmr+ELC08BzsQnsbyPT265L8+/Eol2TDezRQRZsun335XoZb0Bf+634HvXvkvmof18+To+Q/lqfC/lx8DPgX9Oz1ZOvAbHJ9p8Pv510oiv77cU32Pc5nI5IuXEcjfPWERERESKneb8iYiIiJQRBX8iIiIiZUTBn4iIiEgZUfAnIiIiUkYU/ImIiIiUEQV/IiIiImVEwZ+IiIhIGVHwJyIiIlJGFPyJiIiIlJH/D8d7Vu59lZShAAAAAElFTkSuQmCC\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,8))\n", "plt.plot(beta_2,label='Reduced Simulations (I = 10)',c='b',alpha=0.75,lw=3)\n", "plt.plot(beta_1,label='Full Simulations (I = 506)',c='r',alpha=0.75,lw=3)\n", "plt.grid(); plt.legend(loc='best',prop={'size':16})\n", "plt.tick_params(axis='both', which='major', labelsize=16)\n", "plt.ylabel('Coefficient',fontsize=20); plt.xlabel('Parameter Number',fontsize=20)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 531 }, "colab_type": "code", "id": "Ctsy0rVcj2_w", "nbpages": { "level": 4, "link": "[5.1.4.1 I < J ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.4.1-I-<-J)", "section": "5.1.4.1 I < J " }, "outputId": "36b7bef5-c325-47e7-8a54-9cee14baa929" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABLEAAAICCAYAAAAwMV+1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYXFWZ+PHvmwQCgUACIQmLkDCoiIoLEXFBAy7gBi4wOiqIGy4z6jguoz9QFnFhFBR1cERZRFFUBAEHR1RoRQQVFVAEBQlhjSEkgezr+f1xblHVlepOVXetXd/P89RT99bdTp2u7jr93nPeEyklJEmSJEmSpG42rtMFkCRJkiRJkjbHIJYkSZIkSZK6nkEsSZIkSZIkdT2DWJIkSZIkSep6BrEkSZIkSZLU9QxiSZIkSZIkqesZxJIkSZIkSVLXM4gltVBEnBcRKSJmdbosIxURAxGRWnj+WUUdndeqa4xERMwtynVii69zYnGdua28TqsVn5M/RURff69ExGuKn+cLOl0WSVJ9IuLeiLij6rW3FX/P39jC6/4qIta36vwjVas+WnCNvYr6/Xorr9NqEXFs8T6e3umy9JqIeGZRd2/qdFnUW/r6nw2NbcUfxcrHhohYXPyzfUxERKfLOFZFxIsi4pKIuD8i1kbEkoj4W0R8PyLe2091X3zWUkQc0+mytEpEHAE8HzghpbSx4vVSIHCgY4WrEBH7R8SnI+LHEbGgKNu9dRy3W0ScU3ye10TEXRHxhYiYWmP3i4E/AKf3e0BPkpqlRpuu+nFMp8sIEBG7RsQZEXFrRKyMiFURcXfR9jwlIvbsdBnbJSImFD+bn3W6LK0SEdsBnwAuSSn9oWrbvcX7360zpRtUlhdu5vfnlCGOmxARHyhuUq6KiIci4kcR8czNXG92RHw1IuZFxOqIWBQR10fEv1ful1L6DfAj4FMRsU3z3rHGugmdLoDUBicVz1sAewGvIv/DPQf4t04VaqyKiP8HfBJYD/wf8Fdy3c8m1/sRwJnFdoD7gCcAD7e9sN3hy8CFwN2dLshIFAHJU4C/AZd0uDib83rgfcA64FZgxuYOiIh/An4NTAcuBW4D9i/Oc2hEPCel9FBp/5RSiohTge8CrwO+3ew3IUl97KQhXr+xraWoISKeAlwNTAVuAs4DHgH2AJ4EHAfcAdxZcdjrga3bWtDuMZ/c/lva6YKMwr+T2wef6XRB6nQ18Msar2/yWtG++x75/6ZbgS8B04DXAodExKtSSj+qcdxLgYvInWV+BNwObAvsXZzrC1WHfBq4FvhX4L9G9K7UdwxiacxLKZ1YuR4RzyH/sX53RJyWUprXkYKNQRGxB3AyudH23JTSn6q2jwNeBGwovZZSWkcODPSllNIiYFGnyzEKLwQeDxyXUmrZsNMmOQ/4BnBLSmlt1DdM9kxyA/W9KaUvlV6MiNOB95MDtu+sOuZScqP83RjEkqSmqW7TdZkzyAGs41NKn6zeGBF7AeMrX0sp9eQNrGbo9fZfREwA3gHcmlL6bafLU6erUko1e13V8EZy0Oka4EUppTUAEXEW+f+or0fEXiml5aUDis/494CFwAtTStVDdLeovkhK6dcRcTvwzoj4XGWPfmkoDnVQ30kpXUv+0gxgv1r7RMQhEXFF0f11TUT8PSI+GxFThtj/hRFxTUSsKIYs/jAi9h5i32FzLRVDle4aYttrI+LnxTVWF/t+JyLm1Nj3XyLi6shD+VYXXduPj4iJQ5z7dRHx+6K78MKI+GZE7FJr32E8k9xAu7o6gAWQUtqYUvpJZbAjhsiJFeV8YrMj4t8i4i8V7/n/FXeIiIgjI+K3Rd0vjIgvR8RWVecaNu9WNJD3KyL2izxU4KaKn8PtEXFaVA0vizyM7txi9dyqrtuzin2GzIkVES+IiP+ruM7fIuIzEbH9UO8hctfv/1eUaU1E3BMRp0bEljWOOTAiLo/c5X1N5CF210fECfXUReGtxfN3GzimI1JKN6aU/phSWlvP/pGHfbwYuAv476rNJwArgKOiqgt80dD7IfCcof4OSJJaI4bJMxWtzXP1rOL5i7U2ppTuSCn9tao8m5Q1ykO/jo88DP7KiHi4aM99PyJ2LfbbKyK+GxEPRh66eFVEPLn6us2qj4iYEhEfLtqW90VOF7GwaPPuX31ecq9ngBdUtX+Oryh/zZxYEbFLRHwlIuYX7ZOFEfGDiHjacO+haDf9IiKWF3V2eUQ8vsYxMyPi9Ij4a9F+XBoRt0XEuVF/HttDgV3ogfbPCL2reD6uFMACSCldT+5pNYMc5Kp0MrAN8I7qAFZx7Lrq1wrfJY/YOGi0hVZ/sCeW+lUpJ9Mmf0wj4uPk7uqLyd1gFwL7Ah8EXhoRz0opPVKx/xHkP75ri+cHgOcC1wE3N6WwOWBzLvAmcq+di4EHgd3If/D/CtxQsf/ZwFuAe4t9lwIHkMftvyAiXpRSWl+x//uB04v9zi+eDyEPo2pkmF9pWNWeETE+pbRh2L3r8zlgLnA5cCVwGLn3y5YRsZjchfuHFHeKyN2Rx1P+8m22t5O/tH8B/Ky41tOB/wBeEhHPTCktK/Y9j1yXh5N751QOdxi2+3xEvAP4CjlQ8n3y53Au8J/AKyIPY6t1jm8DBwI/JveIeynwYXJvojdXnP9Q4H+LfS4jD+vcgdy1/90MPWSjsowBHAwsSCn9fXP796CDi+crq+8MppSWRcS15CDXAcDPq469FjiG3FOtZ+80S5LqthiYCTyWnBtxtA4AjgeuAr4GPIWckuFJEfFq8vfMn8nttlnAq4GfRsSeKaWVTbh+tSeR0wf8gtwmW0oeKnkYuX380pRSKf/VH8htzo8B84oyltQazvaoyMP4f0Wuy5+R2zW7A0cCL4s8jO3HNQ59Jbm9dQW5/fQk4OXAMyJin5TS4uL825Dbt7OAn5LbQOOL9/Iqclv+rjrq44XF86/q2LdbPC4i/g2YDPwD+GWtYFNETCLfmF5G/pxV+zHwL+R20jeLYyaSP4MPpJR+Ejlv1nPIdfsX4KfD3EQsXeNFbNqekjZhEEt9JyKeRx7+tBb4bdW2g8j/vF8HvLQySBA5aei5xfb3F69tC3wV2AgcmFKqDCR9njxWvhneTg5g/Y7cpffRwFJEjCcHKCrL+RZyfqI3pJRWVWw7kdyD5F/J3d4p7jh9BlgCPD2ldFfx+kfJwZNXN1DO68k5Dp4MXB2559NvgNtGEdDaD9g3pXRfxXu4A/gQsBLYL6V0a7FtIvBH4C0RcUJKaeEIrzmcTwP/Wv1+IuKtwNfJAaBTAVJK5+U4D4cDP0wpnVfPBSIPy/wisBzYP6V0W8W2M8kBuv8Cjq1x+D8BT6xorB1Hzs1xdER8NKW0oNjv7eTeuHNTSjdVXX9aPeUk/x7tRA72NkXx+Z3VwCF31VuvI1C6e/u3IbbfTg5iPY5NG12/K56fR857Jkkapajdi72V3wON+C45X+L/Ft/VA8CNFTe2GvUy4HUppUd7+kTEN4Cjyf/0n5pSOrVi20nAx8k3rKp7DzfDn4GdK/NAFtfdg9zW+zy5/UdK6Q8RcTM5iHVng8NAzyIHsD5S9f7+h1yn50fEHjUCdYeT28gDFcd8lnwT+hjyzVrI39uzgc+llD5U9V4mApv0XB/Cc4vnG4bdq06RZzc8rMHDTq+8sV6Ho4pHSYqIi4Bjq26MPpbcRvz7EMP7bi+eH1fx2r7ARODPxTlfU3XMXRFxRErp9zXOV9lmkjbLIJbGvIoGT2Vi9wA+mFJ6oGr39xbPb6/u5VIEJN4HvIEiiEX+wtwBOL8ygFU4kdyQ2GTo1wi8p3h+R2UAqyjXBnLvr5L3kZOmv6UygFX4BDmZ/RsogljF8pbAZ0oBrOK8GyPiQ+Q7W3UNPU4prYiIw8h5hw4sHgCrIuJ35Abe2ZXdkuvwiVIAq7jG0oi4jFy3p5UCWMW2NRHxXXLdP4Hce6mpUkrzh9h0DrmBdAhFEGsU3kj+mZxWGcAqHFdsPyoi3lOjLv+zFMAqyrsiIi4gN2znsGnAqfozUsrTVY/di+fq36PROIY8AUC9fkHu8dYKpd/doXojll6vNcy4FCzcvcY2SdLI1Bru3srvgUZ8hNzD5U3kYVWQgwR/Jfdc+WJlO6sOA5UBrEIpiLUY+GzVtvPJ3/VPbbDcdRmi9zcppfkRcTHwrojYJaV0/0ivUdxYPZjce+u0qutcExHfI0+a8ko2zTl5QWUAq3AWOYi1P5uq1f5ZA9TbRt0dWFXdLh+Fp1P78z2cr5N71G/OP8i98q8g32zeGngG8ClyD7cZETG3It3HSNo/pRvqB5NvMr+Z3MttW/L/Vx8AroiIJ1S2UwFSSg9FxDpsM6lOBrHUD6q/EBLw1pTSuTX2fRZ5iOGREXFkje1bAjtFxI7FnainF6//onrHlNLDEXEjjf1Dvomi2/OTgH+klP64mX0nkbubLwL+vegFVG0NOcBTMtx7uDMi7iF3sa5LSulm4GmR83QdRO5JdQD57srzgGMj4qCU0pI6T1nrDlepgVTrbk4p4NWSKY0jJ6V8B7kRtQ/5i74yyLdrEy5T+plcVb0hpbQkIv5Irsu9yb2sKtWqr3uK58qcXReQe9n9pgj8XQ1cm1K6t4Fy7lg81/uz3KyU0txmnasNSr9gtfKplRpo9fZqkyRtRkqpZsOmG6SUVgNvLXpAH0oOnOxXPPYG3hERr0kp/V+dpxyu/fPHGj1kWtr+gZxLkxyQOIActKjutbRrRRlHopTz6peVaS8qXEVufz2NTYNY9bZ/ribffDs+Ip5BDuxcS+4110hS8R3IwaGmSCl9nRyUaroiT21lrtrl5IDSteR25PPI6Sf+t85T1mr/jK94/nBF78jFwAcj4rHknmZvZdMALOS2pG0m1cUglsa8UoOnCAY9Czgb+J+ImJ9Sqg4S7Ej+vdjcnZBtyfmfSncqhvoSWzDE640o3eW4b9i9sqnkL5adqP9uTj3voe4gVknRM61yeOX+5DuITynKVu9Qy1p3gdbXsW2TGVCa5Lvk3nx3kvNcLaB81+7fyV2pR6v0Mxmqh1Pp9U16AA1xp7RUJ+Mr9rs4Il5OvjP2FnJgjoj4PfDRlNJP6yhn6S7mVsPu1btKn6+helNuV7VfpdKU6Zvc6ZUkjV3FsP3zigcRsSP5n/Y3kyd5ecwQAZpqXdX+KW7uXkj+XvspuR20gpxS42By7/vRtoFG3P6hdq7RWu2fpRFxALnX/ivIAUeAByPiv4FP1vnzWU2Pt3+KG+4XkvOtPo9yEGsk7Z/KG5qX1DjmEnIQq1avOMjtJttMqotBLPWNlNIK4GcR8QpywslvRMTjq8bUPwyMSyntUOdpS3+8ZwyxfWaN10p3eYb6/duewV8KpS/lenr4lI77Y0rp6cPuuekxM4Bbamyv9R4allL6bZFM8meUE2a3y+bqvOask9WK3mWvIr+Hl1bOshIR48hdtZuh9DOZSe2fyc5V+41ISul/ybk7tiEn8Hw5Od/WjyLiaSmlv2zmFKXhmjsOu1cDuiwnVmkWqccNsf2xxXOtnFmlOmlFXjZJ0tA2kuceGVejZ01d3/fNVAyVehs53cAu5F7cTZn4p07Nqo9PkAM3+6VNZ1l8DOUUEqNR2f6ppVntn7vJ+VPHkX8eB5PTbZxY7LLZyW3I3+97DFGvDWtTTqxaHiyeK2davp38ufmnId5frfZP5WeiVkCxFOTaunpDMcphMkPnIJUGMYilvpNSujkivga8k5zb6pMVm68nz3zyxJRSreBBtdLsM88n50R6VERsT+28BKU/4o+p3hARe5EbFI9+ORc5jf5Mno3macMNKUwpLY+IW4AnRsQO1WPOh3kPry7ew6CeaRGxZ61yjkIpuWm7hwMMV+fbMXSQotpexfNladNpgvenxhczUEoAP77GtqH8kfwzmUtVwvCImEL+XK0Gbt3kyBEoArxXAVdFxBJyLo+XkGeTGc4t5Pe3dzPKUTiG7smJdXXx/OLqRlxETCbPurOK/HejWqlObqyxTZLUOkvIw/x3pTycrGRO+4vzaJ7RFcVqJ9pAzaiPfwL+UCOANZ78fVit9J3ZaPsH4MCoPcv1QcVzM2Z/pPhe/zM5Gfnl5N5lr6S+INbN5ATxj6M5sxC3MifWcA4onu8svZBSWhkRvyGPYHkOeQbwSi8pnq+qOGZh6f+V4lGd8uNJxfNdNcpgm0kNqStZszQGnUIOAnwwIirHyX++eP5aROxSfVBEbFN0QS65lNw4eH3RS6fSidTuhnsb+Qvn8IionFVwa/KMdLWUXv9qERyrLNO4iNi54qXTyTkKzikCHtXvYWpxt6fkAnIesPcUCTUfPS+5+3vdfyciYv+IOKZ4L9XbtiB3V4bNTK/cbMXMQLcBz4mIfSrKNJ5cX7WCT7XcVTzPrXyx+DkONRNQaRafRpJVfovyz2Svqm2fIHfj/laDCfIHiYgX1Po5Ue5VuNnpuYtkpjcC+w5xroallOamlKKBx9xmXHeIsvwduJLcM+xfqzafRL5reX4RBKxW+jtxdY1tkqTWKc08/fbKFyPixeQk1i0REScVM/XV2vZacu+Vh9j8DaJma1Z9zAceHxGP9pKKnHz1ZMqz+T6qCBAtoYH2T5H4/mpywOw9ldsi4jnAa8l1eGkD5R4kIp48xM+p7vZPYaB4PmC4neqVUvp6g+2fqDePaUQ8p2jXV7/+JuAI8v9EF1Vt/krx/MnIszaWjnlmccw/2HTY4H8PccxjyBNPQR6SWs02kxpiTyz1pZTSfRHxVfIf1A8DHy1e/3lEfAT4NHB7RFxBniFlW3JeqOcDv6IYP1/0fDqWnCfpmiJB9gPkaXefRA7WPK/q2usi4gzytMN/jIhLyL+LLyInw6yVEPPrxTmPLsp1Kbn77y7kLtDnUHSBTimdExH7Ae8G/h4RPwHuJiegnF2U51xyTzRSSncV7/m0ojzfJfcEO4TcK+xm8rS59dilOPeXI+JX5IbaanL370PJ3cPvoDxrTzt9lpwP7dqI+H5RroPIuSNuIufq2pzfkZN/vjoifk3+LMwg35H6K7V/dteRG0T/HhGVSUC/NNSMNsXP5N/JjYE/RJ6N50Hy5+9Z5IDcf9Y6tgGnAbMiYoAcnFtLTj57MLmhWquRUcsPKo6rNyFoR0TE3uTZoypNjYjzKtY/WDU747uBXwNfjIgXkHu/PZP82fkbebbIWl5M7k6/SXJ+SVJLnU3O9/ixiHga+e/23uR2yCXAa1p03dI1/0jOCbqIfDNzDvl7Yz1wbI2e3K3WrPr4PPBl4MaI+AH5/RxI7on0I3JKgmo/B44o2q1/LI4ZSCn9apjrvIPcvvp8RLyE3KNnd3LAbT1wzBA3j+p1CHBq0Y67jdy+egx5xvGN1E46XssPyW2pQ+iO2TGH811gQ0RcB9xLzuW1P3mGwnXkz+XdVcd8izwq4JXk/w9+RE68/lryDe63pZSWVx3zNeBl5M/CTcX/INuSU3FMJQ9/rPWzfzH5Z3vZaN+o+kRKyYePMfkgz5iRhtk+g5yQcgUwo2rbc4HvkYMSa8lfcDeSe+3MqXGuF5G/cFeS7zpdSm4gnFeUY1bV/kH+Z/rvxfnvBv4LmEQOKNw1RJnfQB4+9TA5CDOP3JPq6TX2fTm5UbGwuMYC8t24U4C9a+z/L+Tu2auL9/stclBqYLh6rDrH5OI855KDX4vIX0qLyYGAjwCTq46ZVdTReVWv16y7YtuJxba5NbYdU2w7psa2t5KHwK0p6uOr5NxFm7xHcm+rBJxY9foOwJnFz2l18TP81HA/O3JD8TrybDCp8n1t5r28mNwTaElR5juKz8mUGvsO+XOqVSfAPwPfIec9WE7uHfhn8vDanRr4PZtelO27NbaV6nCg3b//Q5S1VJ7hHrU+b48pPtMPkH+X5gNnADsMcZ3HFef6Qqffsw8fPnyMhQebadPV2P/JwI/JaQyWk3t4HAi8rTjXG6v2vxe4o+q1mvsOc83nFe2BX5GH7a0ltzFvA84CnlTjmF8B66tee2Fx3eNr7L9Xse3rNbZNKLb9rBX1Ubz+FvKNv5XkNt7FwBPJbcsEPLdq/5lFW2MhOf3Ao+9rM+9lN+B/yO3jtRXXqtUGH/LnVKtOivJ+nhxofJDclruL3O4/oMHP5eVFXWxXY9u9xbV364Lfn4+S87neQ06DsJrcpjwbePIwx00gB0D/XByzhHzDcsh6Ko55f/E5WVV83n4F/MsQ+08tzn1Rp+vJR+88IqVaM4NLklSfolfjm8gBoGbMyNnTIuI0coLYJ6SU7tzc/pIkqfdExIHkURfvTSl9qdPl6UUR8X5yJ4Fnp5Su63R51BsMYkmSRiUiZpB7dH0jpfSeze0/lhX56f4OnJlS+mCnyyNJklonIi4m53T6p5TSqk6Xp5dExCRyQvmBlNLrOl0e9Q4Tu0uSRiWl9A/gjcD9tRKH9plZwKnkoRWSJGls+w/ycNFZHS5HL5pNHjb64U4XRL3FnliSJEmSJEnqev1+x1ySJEmSJEk9YEKnC9BLpk2blmbNmtWSc69YsYJtttmmJeceq6yzxllnjbPOGmedNcb6alwr6+z3v//9opTSTi05uUbMNlh3sc4aZ501xvpqnHXWOOuscd3QBjOI1YBZs2Zxww03tOTcAwMDzJ07tyXnHquss8ZZZ42zzhpnnTXG+mpcK+ssIua35MQaFdtg3cU6a5x11hjrq3HWWeOss8Z1QxvM4YSSJEmSJEnqegaxJEmSJEmS1PUMYkmSJEmSJKnrGcSSJEmSJElS1zOIJUmSJEmSpK5nEEuSJEmSJEldzyCWJEmSJEmSup5BLEmSJEmSJHU9g1iSJEmSJEnqegaxJEmSJEmS1PUMYkmSJEmSJKnrGcSSJEmSJElS1zOIJUmSJEmSpK5nEEuSJEmSJEldzyCWJEmSJEmSup5BLEmSJEmSJHU9g1ga0u9+Bx/+MPz8550uiSRJkqSmWbUKPvMZ+PSn87Ik9YgJnS6Autdpp8E//gF/+hM897kwcWKnSyRJkiRp1H78Y/jJT/Ly7Nnwutd1tjySVCd7YqmmNWtyAAtg9Wp48MHOlkeSJElSk9x5Z3n51ls7Vw5JapBBLNVUHbR66KHOlEOSJElSk5XuVsPggJYkdTmDWKrJIJYkSZI0RlUGse67Lw/DkKQeYBBLNRnEkiRJksaglGDhwsHr8+d3rjyS1ACDWKqpOoi1eHFnyiFJkiSpiR5+eNOeVw4plNQjDGKpJntiSZKkzYmIIyLiBxExPyJWRcRfI+LTETG5ar+pEfH1iFgUESsi4mcR8eROlVvqawsWbPqaQSxJPcIglmpatGjwukEsSZJUwweBDcD/Aw4FvgK8C/hpRIwDiIgALiu2vwd4DbAFcHVE7NaJQkt9rXIoYcm8ee0vhySNwIROF0DdyZ5YkiSpDq9IKVW2Gn4REYuBbwBzgauAw4DnAgenlK4GiIjrgHnAh4H3trXEUr+rTOpeYk8sST3CnliqyZxYkiRpc6oCWCW/K553LZ4PA+4vBbCK4x4GLgcOb20JJW2i1nDCxYtzrixJ6nIGsbSJ9ethyZLBry1bBuvWdaY8kiSppzy/eL61eH4i8Oca+90C7B4R27alVJKyWj2xwN5YknqCwwm1iaGGDi5eDDNmtLcskiSpd0TErsDJwM9SSjcUL+8A3FVj91I/76nA8hrnOhY4FmDGjBkMDAw0u7gALF++vGXnHquss8Z1U5097sYb2XrpUgDWzJjBxCKodd/ll7OoS3pjdVN99QrrrHHWWeO6oc4MYmkT1UMJSx56yCCWJEmqrehRdSmwHnhz5SYg1TpkuPOllM4CzgKYM2dOmjt3bnMKWmVgYIBWnXusss4a11V1dvrpMGVKXn7Vq+DCCwGYOmkSdEkZu6q+eoR11jjrrHHdUGcOJ9QmhgtiSZIkVYuIrcgzEO4JHJJSurdi82Jyb6xqU4vnJTW2SWqFlStznhCACRNgv/3K25yhUFIPMIilTQwVxDK5uyRJqhYRWwA/APYHXppS+lPVLreQ82JV2we4O6W0yVBCSS2ycGF5ecYM2HPP8vq8eZBqdZqUpO5hEEubWLSovDxxYnnZnliSJKlSRIwDLgBeAByeUrq+xm6XAbtGxPMrjtsOeEWxTVK7VCZ1nzEDpk6F7bfP66tW1Z65UJK6iEEsbaKyJ9bjHldeNoglSZKq/DdwJPA5YEVEHFDx2K3Y5zLgOuBbEfG6iDikeC2A/+pIqaV+VRmkmjEDIjbtjSVJXcwgljZRGcTae+/yskEsSZJU5SXF83HkQFXl420AKaWNwMuBnwJnApcAG4CDUkr3tLvAUl+r7okFMHt2+bU772xveSSpQc5OqE1UBrEe//jysjmxJElSpZTSrDr3Wwy8pXhI6pRaQazKnlgGsSR1OXtiaZCNGwfnxKoMYtkTS5IkSephBrEk9TiDWBpkyZIcyALYbjuYObP2NkmSJEk9pjKIVWroz5pVfu2ee2DdurYWSZIaYRBLg1QOJdxpJ5gwoTxhSUo5kCVJkiSpx6xfXx5aEZEb+wBbbw0775yXN26Eu+/uTPkkqQ4GsTRIdRALYMcdy6+ZF0uSJEnqQQ8+mO9KQ27gT6hIj+yQQkk9wiCWBqkMYk2blp932KH8mnmxJEmSpB60YEF5uZQPq8QglqQeYRBLg1Qmda/VE8sgliRJktSDaiV1L6kMYs2b157ySNIIGMTSIJsbTmgQS5IkSepBCxeWl6uDWLNnl5ftiSWpixnE0iDmxJIkSZLGoOGGE+62WzlH1oMPwrJl7SuXJDXAIJYGqRXEMieWJEmS1OMqhxPOnDl42/jxsMce5XWHFErqUgax9KiUHE4oSZIkjUnD5cQC82JJ6gkGsfSoZctg3bq8PGlSfoBBLEmSJKmnpTQ4iDV9+qb7OEOhpB5gEEuPqtULCzbNiZVS+8okSZIkaZQWL4b16/Py5Mnlu9WVTO4uqQf0ZBArIh4TERdFxMMR8UhEXBwRu4/gPB+NiBQRv2pFOXvNUEGsiRPL33Pr18Py5e0tlyRJkqRRGG5mwpLq4YTeuZbUhXouiBURk4CrgL2BNwFHAY8Fro6IbRo4z57AccDCze3bLyqDWNOmDd7n+M7MAAAgAElEQVRmcndJkiSpR20uHxbkfwC23TYvr1gx+J8DSeoSPRfEAt4O7Am8MqX0w5TSpcBhwB7AOxo4z1eAC4Bbm1/E3rRoUXm5sicWmBdLkiRJ6lkLFpSXhwpiRZgXS1LX68Ug1mHA9SmlO0ovpJTmAdcCh9dzgoh4PfB04KMtKWGPGmo4IRjEkiRJknpWPT2xYHBeLGcolNSFejGI9UTgzzVevwXYZ3MHR8RU4PPAh1NKi5tctp5WbxBrsbUmSZIk9Y56g1j2xJLU5SZ0ugAjsAOwpMbri4GpdRz/WeBvwHn1XCwijgWOBZgxYwYDAwN1FbJRy5cvb9m56/WnP+3N0qUTAfj73//K6tWrH922YMF0li7dGYDrrnuQmTPv70gZK3VDnfUa66xx1lnjrLPGWF+Ns84kqUEGsSSNEb0YxAKoNVVGbO6giDgQOBp4ekr1TbeRUjoLOAtgzpw5ae7cuQ0Us34DAwO06tz1+uxnYcqUvPzylx/A9tuXt61bB9dck5d33HEqc+c+rv0FrNINddZrrLPGWWeNs84aY301zjqTpAZVBrFmzhx6v8rhhHffnacmn9Cr/zJKGot6cTjhEnJvrGpTqd1Dq9JXgbOBeyNiSkRMIQfyxhfrE5tb1N6xcmV+AGyxBWy33eDt5sSSJEmSetCKFfkBMHEig+5UV9tmG5g+PS+vXw/33tv68klSA3oxiHULOS9WtX2Av2zm2CcA7yQHu0qP5wAHFMvval4xe0t1Pqyo6tdmTixJkiSpB1X2wpo+fdOGfjWHFErqYr0YxLoMOCAiHv3rGhGzyMGoyzZz7EE1HjeRE8UfBFzU/OL2huGSugPsUNH3zZ5YkiRJUo9YsKC8PFw+rBKDWJK6WC8OcP4a8G/ApRFxPDk/1ieAe8jDBQGIiD2AvwMnp5ROBkgpDVSfLCKWAhNqbesnlUGsadM23b7ttnmY4bp1sGpVfmy9dfvKJ0mSJGkE6k3qXlIZxJo3r/nlkaRR6LmeWCmlFcDB5BkGvwlcAMwDDk4pLa/YNYDx9OB77IRFi8rLtXpiRZgXS5IkSeo5jQaxKpO72xNLUpfpxZ5YpJTuBl6zmX3uoo4ZC1NKc5tTqt62ueGEkINYpd7IixfDbru1vlySJEmSRqHRINbuu8P48bBhQ278r1wJkya1rnyS1AB7KQmoL4hlXixJkiSpx1QGsWbO3Pz+EybkQFaJQwoldRGDWALq74lVYhBLkiRJ6gGN9sQC82JJ6loGsQQYxJIkSZLGnLVrcx4Q2DTJ7XDMiyWpSxnEEmvXwiOP5OVx42Dq1Nr7VX7nlb4LJUmSJHWphQvLyzvtlIcK1sMglqQuZRBLg2YmnDYtB7JqMSeWJEmS1ENGMpQQBg8nvPNOSKl5ZZKkUTCIpbqGEoLDCSVJkqSeUtkTq5Eg1owZ5RkJly1zGIakrmEQS4OCWNOmDb2fQSxJkiSphyxYUF5uJIgV4ZBCSV3JIJYGDSccrifWlCnloYbLlsG6da0tlyRJkqRRqBxOOHNmY8caxJLUhQxiqe7hhBGDk77bq1iSJEnqYpVBrOnTGzu2Oi+WJHUBg1iqO4gFg5O7G8SSJEmSuthIE7vD4CDWvHnNKY8kjZJBLDUUxDIvliRJktQDNm4ceWJ3GBzEuuuufD5J6jCDWKo7sTsYxJIkSZJ6wuLFsGFDXt5+e9hqq8aOnzy53Phftw7uu6+55ZOkETCI1efWrx88LLCRIJbDCSVJkqQuNZqhhCXmxZLUZQxi9bnFiyGlvDx1KkyYMPz+lTmx7IklSZIkdakFC8rLBrEkjREGsfpcI/mwwOGEkiRJUk9odk8sk7tL6gIGsfpcI/mwwCCWJEkqi4jdIuJLEXFdRKyMiBQRs2rsl4Z4PLX9pZb6RDOCWLNnl5ftiSWpC2xm8JjGukWLysuN9sQyJ5YkSX1vL+Cfgd8D1wAvHmbf84CvVr32t9YUS1JTglh77AHjxuWZCe+/H1avbjxBvCQ1kUGsPtfocMLKnFiLF+fvs3H255MkqV/9MqU0AyAi3sbwQaz7UkrXt6dYkgYFsWbOHNk5ttwSdtsN7r47J9K96y7Ye++mFE+SRsLwQ59rNIg1YQJst11eTgmWLm1NuSRJUvdLKW3sdBkk1ZBSc3pigXmxJHUVg1h9rtEgFpgXS5Ikjci7ImJNkTvrqog4sNMFksas5cth1aq8PHEiTJ488nOZF0tSFzGI1edGG8QyL5YkSarDt4B3Ay8EjgV2BK6KiLmdLJQ0Zi1YUF6eORMiRn6uyp5YBrEkdZg5sfpYSoN7UtUzOyEMzotlTyxJkrQ5KaWjKlaviYhLgT8DpwDPrXVMRBxLDngxY8YMBgYGWlK25cuXt+zcY5V11rh219n2f/oTs4q8H8tmzuTOUVx7ywcf5AnFudb/9rfc0ob34WescdZZ46yzxnVDnRnE6mNLl8L69Xl58uT6JxpxOKEkSRqNlNKyiPhf4K3D7HMWcBbAnDlz0ty5c1tSloGBAVp17rHKOmtc2+vsoYdgyhQApj7jGew+mmunBGefDWvWADD3qU999Nyt4mescdZZ46yzxnVDnTmcsI+NZCghGMSSJElNEUDqdCGkMalZSd0hD0U0L5akLmEQq49VBrHqHUoI5sSSJEmjExHbAS8DftPpskhjUmUQa+bM0Z/PIJakLuFwwj62aFF5uZGeWObEkiRJJRFxRLG4X/H8koh4EHgwpfSLiPgg8HjgauB+YA/gg8BM4A3tLq/UFyqDWNOnj/58JneX1CUMYvUxhxNKkqQm+H7V+pnF8y+AucBfgVcVj+2BR4BrgbemlH7bpjJK/aWZwwlhcBBr3rzRn0+SRsggVh9rVhArpdHN2itJknpXSmnYVkBK6XLg8jYVR9KaNXkGJ4Dx4xvLGzKU6iCW/wBI6hBzYvWxkQaxttoKJk3Ky+vXw/LlzS2XJEmSpBGq7IW1004wrgn/8k2ZUp6RcM0auP/+0Z9TkkbAIFYfG2lidzAvliRJktSVFi4sLzdjKGGJebEkdQGDWH0qpZH3xAKDWJIkSVJXWrCgvNyqIJZ5sSR1iEGsPrV8ee4JDHl44DbbNHZ8ZV6sxYubVy5JkiRJo9DspO4lBrEkdQGDWH2quhdWo3kZnaFQkiRJ6kKtCmLNnl1edjihpA4xiNWnRpMPC+yJJUmSJHWlVgaxSne+770X1q5t3rklqU4GsfrUokXl5UbzYYE5sSRJkqSuVBnEmjmzeeedOBF22SUvb9wI8+c379ySVCeDWH1qNEndweGEkiRJUtfZsGFwQ3/69Oae37xYkjrMIFafMoglSZIkjTEPPZR7SQFMnQpbbtnc85sXS1KHGcTqU80MYpkTS5IkSeoCCxaUl5uZD6uksieWQSxJHWAQq0+NNoi17bawxRZ5eeVKWL26OeWSJEmSNEKtSupeYhBLUocZxOpTo03sHmFyd0mSJKmrtDqIteuu5TvZDz0Ey5Y1/xqSNAyDWH1o1SpYvjwvT5gA228/svOYF0uSJEnqIq0OYo0bB7NmldftjSWpzQxi9aHqXlgRIzuPebEkSZKkLlIZxJo5szXXMLm7pA4yiNWHRpsPq8ThhJIkSVIXaXVPLDAvlqSOMojVhyp7Yk2bNvLzOJxQkiRJ6hIpDQ5iTZ/emutUBrHmzWvNNSRpCAax+lCzemIZxJIkSZK6xMMPw5o1eXnSpDydeCtUB7FSas11JKkGg1h9qBVBLHNiSZIkSR1UPZRwpIlvN2eHHWDy5Ly8cuXg60pSixnE6kPmxJIkSZLGmIULy8utyocFOThmXixJHWIQqw9VBrHMiSVJkiSNAQsWlJdbGcQC82JJ6pieDGJFxGMi4qKIeDgiHomIiyNi9zqOmxMRZ0XEbRGxMiLujogLImL25o4dS5rVE2vKlHIv5UcegfXrR1cuSZIkSSNUOaxv5szWXsueWJI6pOeCWBExCbgK2Bt4E3AU8Fjg6ojYZjOHvw54IvBF4CXAR4CnAzdExGNaVugusm4dLF2alyMGDwls1Lhxg483L5YatW4dfPrTcNRRcMMNnS6NJElSD2vHzIQlsyv6ABjEktRGEzpdgBF4O7An8PiU0h0AEXEzcDvwDuD0YY49NaX0YOULEXEtMK8478dbUuIusmhReXnHHWH8+NGdb4cdykMJH3qo9d+XGjtSgtNPhyuvzOuf+hR85zswcWJnyyVJktSTqhO7t1JlEOuee/KQjAm9+K+lpF7Tcz2xgMOA60sBLICU0jzgWuDw4Q6sDmAVr80HHgR2bXI5u1KzhhKWmNxdI3XxxfB//1deX7IELrmkc+WRJEnqaZU5sVo9nHDSpPI1NmyAu+9u7fUkqdCLQawnAn+u8fotwD6NniwingBMB24dZbl6QmVPrNEkdS8xubtG4ve/hzPP3PT173wnz9QsSZKkBqxaBcuW5eUJE0aXM6ReJneX1AG9GMTaAVhS4/XFwNRGThQRE4D/IffEOnv0Ret+ze6JVRnEMieW6nH//XDSSbBxY17fe+/yjbxHHoEf/KBzZZMkSepJCxeWl6dPL8++1ErmxZLUAb06cDnVeG0kf6m/DDwbeFlKqVZgjIg4FjgWYMaMGQwMDIzgMpu3fPnylp270q9/vStLl+YuWA8++AADAws3c8Tw7r9/R5Yu3Q2A3/3uIWbPvnfUZaxXu+psLOl0na1ePY4zzngsCxZsBcB2263n0EP/ym23bceFF+a5Fc48cyM77vgXJk3a0LFyVup0nfUi66wx1lfjrDNJqlI5lLDV+bBKnKFQUgf0YhBrCbk3VrWp1O6hVVNEfJocnHpTSunKofZLKZ0FnAUwZ86cNHfu3IYKW6+BgQFade5KV18NU6bk5ec/fypz5zY8AnOQ8ePh5z/Py1OmTGXu3L1GWcL6tavOxpJO1llK8LGPwerV+TO4xRZwxhnwhCfsxMtfDn/+M9xbxEAXLDiQt7ylI8XchJ+zxllnjbG+GmedSVKVdiZ1LzGIJakDenE44S3kvFjV9gH+Us8JIuI44CPA+1JK32xi2bpeZU6sZg8nNCeWhnPeeXDtteX1D34QnvCEvDx+PBxzTHnbRRfBww+3s3SSJEk9rBNBrN12K89IuHAhrFjRnutK6mu9GMS6DDggIh4N/UfELOA5xbZhRcR7gVOA41JKX2pRGbtWK3NiGcTSUAYG4Pzzy+tHHgkvfvHgfQ46CPbYIy+vWgUXXti24kmSJPW2TgSxJkyA3Xcvr5vcXVIb9GIQ62vAXcClEXF4RBwGXArcA3y1tFNE7BER6yPi4xWvvQ74AvB/wFURcUDFY3Tj6nrAhg2DA02VAaiRqpz4ZMmScrJuqeSOO+Aznymvz5kD73jHpvuNG8egIYSXXOJkAZIkSXWpDGKVZsxpB4cUSmqzngtipZRWAAcDfwO+CVwAzAMOTiktr9g1gPEMfo+HFq8fClxX9Tiz5YXvsMog05QpsOWWoz/nFlvA5Ml5eeNGh4BpsKVL4fjjYc2avL7rrvDxj+fhg7UceCDsVaRVW7MGLrigPeWUJEnqaZ3oiQUGsSS1Xc8FsQBSSnenlF6TUtoupTQ5pfTKlNJdVfvclVKKlNKJFa8dU7xW6zG3zW+j7Zo9lLDEIYWqZf16OPHEcptq0iT45CfLQc9aIgb3xrrsssEzRkuSJKnK+vXNT3xbr9mzy8sOJ5TUBj0ZxNLIVH63TZvWvPMaxFItX/4y3HRTXo6A444r57wazgEHlBO+r18P3/pW68ooSZLU8x58ME8DDblhvsUW7bt2dU+sUjkkqUUMYvWRdvTEMoeRAC6/HC69tLz+1rfCs59d37HVvbGuuAIeeKC55ZMkSRozOjWUEPI/Fdtsk5eXLx9811ySWsAgVh9pVRCrMrm7PbF0881wxhnl9blz4fWvb+wc++0H++6blzdsGDyzoSRJkip0MogVMXhIoXmxJLWYQaw+Yk4stdo//gEnnJADT5CTtP/nf+b2TSMicu+tkp/8BO69t3nllCRJGjM6GcSCwUMKzYslqcUMYvWRyiCWObHUbGvW5JkIly7N61Om5ETuW201svPtu2/ukQU5vcJ55zWlmJIkSWNLZRBr5sz2X98ZCiW1kUGsPmJOLLVKSnDqqXDHHXl9/Hg46SSYPn10563MjXXVVd7ckyRJ2kRlEGu0ja+RcDihpDYyiNUnUmpdTyxzYunb34arry6vv+995ZxWo7HPPnm2Qsif4XPPHf05JUmSxpRODyesDGLNn5+nl5akFjGI1Scefrj8fbLNNjBpUvPOXT2c0Jl1+8uvfw1nn11eP/xweMUrmnf+yt5Y11wDt9/evHNLkiT1tJQ6P5xw8uTyMI/16+G++9pfBkl9wyBWn2jVUEKArbfOD4B16/LsuuoP8+fnvFelwOW++8K//Vtzr/HYx8KBB5bXzzmnueeXJI1cROwWEV+KiOsiYmVEpIiYVWO/rSLisxHxQESsKvZ/XvtLLI0xS5bkBjjAtts29051I8yLJalNDGL1iUWLysvNHEpYYl6s/rNsGRx3HKxcmddnzMh5sCZMaP613vzm8gyH118Pf/lL868hSRqRvYB/BpYA1wyz39nA24GPAy8HHgB+EhFPbXkJpbFs4cLycieGEpaYF0tSmxjE6hOt7IkF5sXqNxs2wMknl3uLT5wIp5ySZyRshdmz4eCDy+v2xpKkrvHLlNKMlNJLge/X2iEingK8Hnh/SulrKaWfkwNfdwMnt6+o0hi0YEF5uZNBrMqeWM7EI6mFDGL1CYNYaqavfhVuuKG8/pGPwF57tfaaxxxT7o31+9/DTTe19nqSpM1LKW2sY7fDgHXAdyuOWw9cCBwSERNbVDxp7Ot0UvcShxNKahODWH2i1UGs6uTuGruuvBK+X3Gv/aijYO7c1l93t93gkEPK6+ec4yQCktQjngjMSymtrHr9FmBL8pBESSPRLUGs3XeHccW/lg88AKtWda4sksa0FmSvUTeqzInV6iCWObHGrltvhc99rrz+7GfnfFXtcvTR8NOf5uGMN9+ce2TNmdO+60uSRmQHcs6saosrtm8iIo4FjgWYMWMGAwMDLSnc8uXLW3busco6a1yr6mz2b3/LdkuXAjD/gQdY2sGfy95bbMHEIqh2+/e+x8o99hjxufyMNc46a5x11rhuqDODWH2inT2x+jmI9de/wrXX5uDO3nt3ujTN9dBD8LGPlSfA2WOPnNi9NMSvHXbeGV76Urj88rx+9tmw337tLYMkqWEB1Oo7O+xf75TSWcBZAHPmzElzW9Ttd2BggFade6yyzhrXsjr75jcfTUo69dBDO9sA/eUv4eqrAdh/2rRRddX3M9Y466xx1lnjuqHOHE7YB1IaPHGJObFaY+1a+PCHc1viXe+CE06Ae+/tdKmaY+1aOP748s928mT41Kc6M4vzUUfBFlvk5dtuy7MVSpK62mJq97aaWrFd0kh0y+yEYF4sSW1hEKsPrFwJq1fn5YkTYdttm38Nc2LlgNUjj5TXf/lLeNOb4POf7+06SQlOPz0HjCCnOzjhBNhll86UZ6ed4BWvKK+fe665sSSpy90CzI6I6lsf+wBrgTvaXyRpDFi5EpYvz8tbbNG6aaLr5QyFktrAIFYfqB5K2IqhVwax4L77Nn1t40a47DJ4wxtysGVldUrbHnDRRfCTn5TX3/3uPISvk97whhyQBbj9drjmms6WR5I0rMuALYAjSy9ExATgtcCVKaU1nSqY1NMWLCgvz5jR+fwKs2eXl++807uMklrCIFYfqEzqPm1aa64xeTJMKDKsrVwJa/qwOVoZxNp/f3ja08rra9bA+efn4MvFF8P69e0v30jccAN85Svl9UMPhVe/unPlKdlhB3jVq8rr556bA4aSpPaLiCMi4gigdIvjJcVrzwdIKd0IfBf4QkS8LSJeAFwIzAZO6EihpbGgW2YmLJk5E7baKi8//DAsqTWfgySNjkGsPtDqpO6Qb/z0e16s6iDWaafBqacO7lm9dCl86Ut5lr2rruruG1T33QcnnVQu4z77wH/8R+dv8pW87nWw9dZ5+a67Hs0jKklqv+8Xj3cW62cW6ydV7PNm4FzgFOB/gccAh6aU/tDGckpjS7cFsSI27Y0lSU1mEKsPtCOIBQ4prAxi7bpr/h7ff3/4+tfhox+F6dPL2x94AD7xCXjnO+EPXdh8X7kyzzxYSrOw445w8snlhOrdYPvt4YgjyuvnnQcbNnSsOJLUt1JKMcRjbsU+q1JK/5FSmplS2iql9MyU0kDnSi2NAd0WxALzYklqOYNYfcAgVntUB7FKIuDFL86zFr773XnoZcnf/gYf+AB86ENwR5ektU0JPvlJmD8/r2+xBZxyyuCfb7f4538uT1Rw771w5ZWdLY8kSVLbVAaxZs7sXDkqOUOhpBYziNUHKoNYrcqJBYODHIv7bLLsdevK9RxRux2x5ZZw5JHw7W/D61+f10tuuAHe/vYcPKrM0dkJ55wDv/51ef1DH4K99+5ceYaz7bY5kFVy/vm9k29MkiRpVCqDWJVd/jvJ4YSSWswgVh9oV0+sfs6J9cAD5dxRM2YMP+xu221zwOqCC+ClLx2cY+pnP4OjjoL//u+cD7PdBgbgW98qr7/2tfCiF7W/HI14zWtgu+3y8oIFcMUVnS2PJElSW3T7cMK77nLmHUlNZxCrDzicsPWGGko4nGnTci+nc8+FZz+7/Pr69XDRRbm31gUXwOrVzS3rUG6/HT7zmfL6M54Bxx7bnmuPxqRJ8C//Ul7/5jdh7drOlUeSJKnl1q0rN7gjWtvIb8T225fvbK9dC/ff39nySBpzDGKNcWvWwLJleXn8eJg6tXXXMoiV7bJLY8fusUceRvjFL8ITn1h+feXKnBT+jW+EH/2otUnLly6F44/PnxeA3XaDj30MxvXIX4hXvar82V60CC6/vLPlkSRJaqmFC8vL06bBhAmdK0s182JJaqEe+RdVI1WdD6ty6Fqz9XNOrJH0xKr25CfDl76UZy3cfffy6w89BKedBm95C/zqV+Vhi82yfj2ccEK5LTRpUg6qVSag73YTJ+ZgX0k7e7BJkiS1XTcOJSwxL5akFjKINcYtWlRebmVSd+jvnFjNCGJBDjI+97k5ufoHPjA4MHj33bl31HveA3/608ivUe2LX4Sbby5f/2MfGxxE6xUvf3m5J/2SJfDDH3a2PJIkSS3TzUEse2JJaiGDWGNcu/JhQR7OVerp9fDD/TVLXLOCWCXjx+egzAUXwNvelntHldxyC7z3vXDccTB//uiuc9llg4feve1tcMABoztnp2y5ZU6KX/Kd7+QhmZIkSWNOrwSx5s3rXDkkjUkGsca4dgaxxo0bnHOrX4YUrl+fZ8UraTQn1nAmToQ3vAG+/W044ojB6Q5+/Wt485vhs58d/HOu10035V5YJQcfPDhBei96yUtg553z8iOP5AT5kiRJY043B7H22KN8Z/u++8pJVyWpCQxijXHtDGJBf+bF+sc/yrMHT5uWA0/Ntv328K//CuefDy98Yfn1lOCKK3I+qK99DZYvr+98CxbkPFilZPGPfSx8+MOtzZnWDhMmwNFHl9e/973yxAaSJEljRjcHsSZOLA9NSGn0QwckqYJBrDGuMidWO4JY/ZgXq9lDCYez8855GOFZZ8GcOeXX167NvbVe/3r4/vfz+lBWr84zET78cF6fMgVOOaU1wbdOeNGL8uyKACtW5ECWJEnSmFI5DGDmzM6VYyjmxZLUIgaxxrh298QyiNWeaz72sXkY4ec+l5dLli2DM8/MuaGuvLLcQ6wkJTj1VPj73/P6hAlw8skwfXp7yt0O48fDMceU13/wA1i6tGPFkSRJaq6UBjfyu60nFhjEktQyBrHGuE4OJ+yXINb995eX2xXEKtlvP/jqV/OMgqVcUAALF8KnPw1vfzv89re5rQPw05/OYGCgvN/73gdPfnJbi9wWBx9cnt151Sq48MLOlkeSJKlpFi8uz6C03Xaw1VadLU8tJneX1CIGscaw9ethyZK8HDG4l1Sr9GNOrE70xKoUkYM2558P73lPzp9Vcued8J//CR/4QB5W9+Mfl7ubv/KVeQbEsSgiJ70v+eEP+yeoKkmSxrjKoYTd2AsLyncTwZ5YkprKINYY9tBD5R44O+wweGa7Vun3IFYzZyZs1IQJ8OpX59xYRx89OMfVH/8IX/lKef2pT82J4sey5z63PNRyzZpcL5IkST2vm5O6l+yyS7kxunhxORmrJI2SQawxrDKp+7Rp7blmv+XE2rixs8MJa5k0KfdC+va34bDDYFzVb/nMmXDiie0JanZSBLzlLeX1yy7LwywlSZJ6Wi8EscaNg1mzyuv2xpLUJAaxxrB258OC/suJ9eCD5ZQEU6bkAFK32GEHeP/74RvfgOc9L782efJ6PvnJwUMOx7JnPhP22Scvr18P3/xmZ8sjSZI0ar0QxILBQwrNiyWpSQxijWGdCGJV9sRasqQ8nHGs6nQ+rHrsthucdFLuiXTccbcOyrM51lX3xvrxj+GBBzpXHkmSpFGrzIk1c+bQ+3WaMxRKagGDWGNYJ4JYW24Jkyfn5Q0bxv7w914IYpVMngwTJ27sdDHa7ulPh6c8JS9v2JB7pkmSJPWsyvwIvdITyyCWpCYxiDWGVQax2pUTC/orL1YvBbH6VXVvrCuvhHvu6Vx5JEmSRiylwcMJp0/vXFk2p7In1rx5Y3+IhqS2MIg1hnWiJxb0V14sg1i9Yd99Yc6cvJwSnHdeR4sjSZI0MsuXw8qVeXnixO5OdDp1arl8q1cPHgYpSSNkEGsMM4jVegaxesdb31pevvpq84tKkqQeVJ3UPaJzZdmcCPNiSWo6g1hj1MaNgwNI7RxOWBnEWry4fddtt5Tg/vvL6waxutvee8Ozn52XU4Jzz+1seSRJkhrWKzMTlpgXS1KTGcQao5YsyUmsAbbbLvc2bpd+yR/Q680AACAASURBVIm1eDGsWZOXJ08uJ7RX93rzm8vL11wDt9/eubJIkiQ1rNeCWPbEktRkBrHGqEWLysvt7IUF/TOc0KGEvWevveD5zy+vn3NO58oiSZLUsMog1syZnStHvaqTu0vSKBnEGqM6lQ8LDGKpux1zTDl9xPXXwy23dLQ4kiRJ9euVmQlLZs0qL99zD6xb17GiSBobGgpiRcTRETFrmO2zIuLo0RZKo9ctQayxnBPLIFZvmjULXvCC8rq5sST1KttlUh/qteGEW28NO++clzduhPnzO1seST2v0Z5Y5wLPHmb7M4t91GGdDGJV58RKqb3XbxeDWL3rTW+CccVfv9//Hm66qbPlkaQRsl0m9ZsFC8rLvTCcEMyLJampGg1ibW4O1y2AjSMsS/2FiHhMRFwUEQ9HxCMRcXFE7F7nsVtFxGcj4oGIWBUR10XE81pd5narzInV7iDWpEmw1VZ5ee1aWLGivddvF4NYvWu33eCQQ8rr55wzdoOtksa0rmiXSWqTNWtg6dK8PG7c4OEP3cy8WJKaaCQ5sWr+qxcRU4CXAQ+MqkSbERGTgKuAvYE3AUcBjwWujoht6jjF2cDbgY8DLyeX9ycR8dTWlLgzOtkTC8Z+XqyUDGL1uqOPhgkT8vLNN+ceWZLUgzraLpPURtUN/PHjO1eWRhjEktREmw1iRcQJEbEhIjaQG0rfKq1XPoCHgH8GLmxxmd8O7Am8MqX0w5TSpcBhwB7AO4Y7MCKeArweeH9K6WsppZ8XZb4bOLm1xW6vbgpijcW8WA8/DCtX5uVJk2D77TtbHjVu5kx42cvK62efbW8sSd2vC9tlktqlcihhL+TDKpk9u7zscEJJozShjn1uBM4nd1k/GrgGqP7rk4DlwPXAd5pZwBoOA65PKd3x6MVTmhcR1wKHA6dv5th1wHcrjl0fERcCH4mIiSmlNS0qd9uk1PkgVnVerLGmuhdWbG5Ah7rSG98IV1yRJ8q57Ta47jp49nDZZSSp87qtXSapXXotqXvJbrvBFlvkBteDD8KyZTB5cqdLJalHbTaIVfR0uhQgIvYATil6MHXKE0vlqXILcGQdx85LKa2sceyWwF7Fck9bvjznooLcS2jSpPaXod+CWOpN06bB4YfDRRfl9XPPhWc9y6CkpO7Vhe0ySe3Sq0Gs8eNhjz3gjqIPwrx5sO++nS2TpJ5VT0+sR6WUDmpVQRqwA7CkxuuLgamjOLa0fZCIOBY4FmDGjBkMDAzUXdBGLF++vGnnvv/+rVi69PEAbLnlGgYGbmvKeRvxj39MZ+nSPJ3uddc9yIwZ9zf9Gs2ss0b9/OczWbp0RlGOhQwM9EbKkU7WWbfaffcJrFixD+vWBTfcAGeccRdPferDj263zhpnnTXG+mqcdZZ1SbtMUrv0ahALcl4sg1iSmqChIFZJkVx9FrAjNWbGSSn9cnTF2qxamWvq6TsRjR6bUjoLOAtgzpw5ae7cufWUr2EDAwM069y/+Q1MmZKXn/xkmDu3/dPvrlkD116bl6dNm8rcuY9r+jWaWWeN+tWvynV88MFTmTv38R0pR6M6WWfd7IEH4DvFgJsbb5zKe9+bJ/0B62wkrLPGdGN9rViReyZOnw5HHtl9vRO7sc46qQvaZZLaoTIn1sz2t+9HxbxYkpqkoSBWMfvfacCbhzi2FCRq5VQZS6jRY4rcC6tWL6tKi4Hdhzi2tL3ndTofFoz92QkrhxPuskvnyqHmeN3r4NJLc7L++fPhqqvghS/sdKmkzjnjDPjpT/PynnvCnDmdLY9q65J2maR2WbiwvNxrPbEMYklqkkZ7Yn0BeCtwBXAVeeabdruFnNuq2j7AX+o49lURMakqL9Y+wFrgjtqH9ZZuCGJV5sQai7MTmhNrbNluOzjiCDj//Lx+3nlw0EG9M3O11EwLF+ZAbslf/mIQq4t1Q7tMUjts3Di4kT99eufKMhJ77llenjcvz0TVbd18JfWERoNYrwS+k1J6QysKU6fLgM9FxJ4ppTsBImIW8BzgI3UcexI5Afw3imMnAK8FrhwLMxNCdwSxxnJPrGXL8gNg4sTB71W968gj4eKL88QI990HV14JL3lJp0sltd8ll8CGDeX1+fM7VxZtVje0yyS1w6JF5T/OU6bkRmgvmTYNtt02N7RWrMj/sPRaIE5SVxjX4P5bAwMtKEcjvgbcBVwaEYdHxGHkWXruAb5a2iki9oiI9RHx8dJrKaUbge8CX4iIt0XEC4ALgdnACW18Dy1VGcSaNq0zZdhuO5hQhEhXrMg5sv4/e/cdHmd1JX78e2VZkmXLllyErLgg90K3CcQ0uWKaTTMkwAJZCGyAZLPJb5OQbLLsJmzKpmwCgUAgJAESQgu4Y2NbBgOm2TQXGfcqhItsybIkS7q/P66G+85YlmakmXnb+TyPHt93NJq5Gkua+573nHODIraUUC4iBUOPHnDttfb4z3+Gxkb35iOEG44cgTlzom/butWVqYj4eGFdJoRIBz83dQezYHZmY0lJoRCigxINYr0DDE/FROKltT4MTAI2AI8DTwJbgEla6xrHXRWmB0Ts9/hl4DHgx8A8YCAwXWu9KsVTTxsvZGIpFdySQiklDK4rr4Revcz4k09g3jx35yNEui1YYC48OO3YEZ2ZJTzF9XWZECJN/B7EAumLJYRIikSDWN8FvqyUOjMVk4mX1nq71voqrXVPrXWe1vpyrfXWmPts1VorrfU9Mbcf0Vp/U2tdpLXO0VqfpbUuS+P0U84LQSyIDmIFqaRQgljBlZsLX/qSPX78cWhokFQ7EQ7NzfDss8fefvSo2cFTeJIn1mXxUEqVKqV0Kx9Vbs9NCF8IQhBLMrGEEEmQaE+s24CdwBtKqTeAzUDs9Vmttb4lGZMTiautNR8AXbuasj63BLUvlgSxgu3yy+Hpp0324L598MYbfZk2ze1ZCZF6r71mg1V5eTBoEKxZY463bYMBA9ybmzguP67Lvg687TiWwm0h4uEMYhUVuTePzoht7i6EEB2QaBDrZsf4nJaPWBqzU45wwd69dty3r7v9moIaxNq9244liBU82dlw/fVw333m+OWXC/nud/3XP1WIRD3zjB3PmGH6Y0WCWFu3wjmtveMLt93sGPtlXbZOa73S7UkI4TvOIJZfG6I7ywm3bzfNRzMTPR0VQoRdQuWEWuuMOD5kU3oXeaWUEKKDWNITS/jJZZfZ35+amkw+/NDd+QiRauvX89nPeWYmXHEFnHii/bzsUOhNsi4TIkSCUE7YvbsNwDU2mqaLQgiRoER7YgmP81IQK4g9sWpr4cABM87MdP81FqnRtSt84Qv2uLzcvbkIkQ7OLKxJk8xFiMGD7W2yQ6FIoieVUk1KqX1Kqb8qpQa5PSEhPE9rqKiwx34tJwTpiyWE6LQOBbGUUt2VUlOUUtcrpXx6KSCYvBTECmI5obOUsH9/yJAwcGCNGmXH69e7Nw8hUq2yEsrK7PHVV5t/nZlY27ebcyjhTT5Zlx0Efgncitll+kfAFEw/L5/WRgmRJocOQX29GXfrBj16uDufzpC+WEKITkq4CFkp9VXgJ0BPTJ+FqcAnSql+wA7g61rrh5M6SxE3Z08sCWIln5QShocEsURYPP+82ZkQ4PTTYfhwM+7ZE/LzoarKnDtVVJjgvfAWv6zLtNargdWOm5YrpV4B3sI0e/+P2K9RSt2GaV7PCSecQJkz2ppENTU1KXvsoJLXLHGdec267djBiCqzkWddTg7ly5cncWbplX/oEINbvpdDy5axZdiwVu8nP2OJk9cscfKaJc4Lr1lCQSyl1FXA74AXgTnAI5HPaa0/VUotBGYCri+WwsqrmVhB6YklQazwGDwYcnLMeO9eE4h1/kwLEQS1tTBnjj2eNSv68yeeCO+9Z8bbtkkQy2v8vi7TWq9SSm0AzjzO5x+mZe7jx4/XpaWlKZlHWVkZqXrsoJLXLHGdes1efdVcVQA49VT6+/m1HzQI5s4FoKCpicHH+V7kZyxx8polTl6zxHnhNUu0GOrfgWVa6yswC6ZY7wAndXpWosO8FMTKz7e7I1ZVmf6NfidBrPDIyIARI+yxZGOJIFqwwASyAAYMgLPPjv689MXyvCCsyxQmg0wIcTxBaOoeMWgQdGnZb+KTT+ybkBBCxCnRINbJwD/a+PweQPoauMhLQawuXexFI7AN0f1MgljhMnKkHUsQSwRNczM8+6w9njXLXniIkB0KPc/X6zKl1HhgBPCm23MRwtOCFMTKzDSBrAjpiyWESFCiQaymdr6mGDjc8emIzmhogIMHzTgjAwoK3J0PBK8vlgSxwkX6YokgW7HCbnaVlwcXXnjsfSQTy/N8sy5TSj2plPqxUupKpdQkpdS3gIXALuA+l6cnhLcFKYgF0txdCNEpiQax3gdaWeaCUioDmAW83dlJiY5xBon69PHGznm9e9ux3/ti1dfbxvkZGcFYQ4i2OYNY5eWyO5sIlqeftuOZMyE7+9j7xGZiye+A5/hpXfYRMAN4DHgJ+AbwPHCW1npvW18oROhFrjgAFBW5N49kKSmx482b3ZuHEMKXEg1z3A9cpJT6ERAJT2QopUYCzwBjgd8mcX4iAV4qJYwIUibWnj12XFRksqFFsPXvD7m5TQBUV0f/DAjhZ2vXwpo1ZpyZCZdf3vr98vNNlhbAkSPR7zPCE3yzLtNa/0RrfYrWupfWuqvWeqDW+jattfxlFaI9Qc7EkiCWECJBCQWxtNZ/B/4H+D6wruXmhcBa4ArgHq31gqTOUMTNi0EsZyaW34NYUkoYPkrBwIG24aiUFIqgeOYZO548+fg7byolfbG8TNZlQoRAXR0cOmTGmZnB2Co5Noglab5CiAQkXHCmtf4PYDzwG2ABsAhzJfDzWusfJXd6IhFeDGIFKRNLgljhJEEsETQVFbB8uT2eNavt+0tfLG+TdZkQAefMwurX79gdOPyosBByc824utr/PUeEEGnVoYIorfUqYFWS5yI6yetBLL+/PzmDWMXF7s1DpNfgwbW8844Zl5e7OxchkuH55+1F73HjYOjQtu8vmVjeJ+syIQIsaKWEYAJxJSW2rn3z5mBkmAkh0sIDrb9FsjiDWH37ujcPJ8nEEn7nzMQqL4emJhcnI0Qn1dbCvHn2uL0sLJBMLCGEcFUQg1ggzd2FEB3WZiaWUuqHgAbu1Vo3txy3R0v6uju8mIklPbGE3/Xq1UjfvmZnyvp6k4nibOUghJ/Mm2cCWWCCU5//fPtf09oOhUGoZvEjWZcJEUJBDWJJc3chRAe1V054D2ax9DOgoeW4PRqQxZILvBjEcmZiHTjg35Ofo0ftGkIps2udCI9Ro2DFCjMuL5cglvCnpiZ47jl7fPXV8f097tPHtC6prYWaGlMaLlUfrrkHWZcJES4VFXZcVOTePJLNuZjassW9eQghfKe9IFYJgNa6wXksvKepKbrnlFfKCbOyoEcPc+LT1AQHD5ot2/2mosL2kOnXz3xfIjycQaz16+Gii9ydjxAd8eqrNhjfqxdMnRrf10V2KFy71hxv2yZBLBfJukyIsKmstOOgZmJt3WpOFLp0cW06Qgj/aDOIpbXe1tax8I79+22QJT/f7MDrFX36mCAWmHn6MYglpYThNnKkHcsOhcKPtIann7bHM2dCdnb8Xz94sA1ibd0KZ5yR1OmJOMm6TIgQcpYTFha6N49ky8szJwn79pmSh127YNAgt2clhPCBhBq7K6UylVI92/h8T6WUh8In4eHFUsKIIPTF2r3bjiWIFT7OINbmzWatJYSfrF0L69aZcWYmXH55Yl8vOxR6k6zLhAi4xsboRX6QglggfbGEEB2S6O6EvwTeaePzb2P6NIg083IQKwg7FEomVrjl5dn/98ZG2LTJ3fkIkShnFtbUqVBQkNjXyw6FniXrMiGCbO9eW2rRu3fw+llIXywhRAckGsS6EHiujc8/B0i3GBdIECu1JIglRo2yYykpFH6yZ4/phxUxa1bijyGZWJ4l6zIhgiyoOxNGSCaWEKIDEg1iDQTaykHY3HIfkWZ799qxl4NYzubzfiJBLOEMYkXKsoTwg+eesxfyx4+Hkg60Ai8shJwcMz54EKqqkjc/0SmyLhMiyIIexHK+IUkQq3O0RjU0tH8/IQIg0SBWA9C/jc8XAc0dn47oKC9nYvm9J1ZTk8lkiCgudm8uwj3OIFZ5uXvzECIRNTUwf749vuaajj2OUtElhZKN5RmyLhMiyJxBrKIi9+aRKoMHQ0bL6eiePVBX5+58/OroUfjGNzjl7rthzhy3ZyNEyiUaxFoNXKOUOqYgu+W2a4EPkjExkRgvB7H8Xk5YWWkCWWC+l0g2ggiX4cPtOmv7dqitdXc+QsRj3jw4csSMBw82mVgdJX2xPEnWZUIEWVB3JozIyoIBA8xYa3lz6ahly+CDD6C5GR55RHYg8rvXX4c774Tnn3d7Jp6VaBDrd8BYYJ5SarxSKqvlYzwwFxgD3J/sSYr2SRArdaSUUABkZ9u+QFrDhg2uTkeIdjU2Rq9/rrnGZFR1lPTF8iRZlwkRZEEvJwTpi5UMs2fb8aFD0Y0whb9oDb/6ldlW+r77osuBxGcSCmJprZ8DfgJMBt4EaoHDLeMpwM+11n9P9iRF27SO7onVt697c2lNbE+sSG8Wv5AgloiQ5u7CT155xWSSAuTnw5QpnXs8ycTyHlmXCRFwFRV2HMRyQpC+WJ21aROsWRN927x57sxFdN6+fdFZH0uXujcXD0s0Ewut9feBszBX9l4CFgO/Bc7SWt+d3OmJeBw8aK64A/To4b1yt27dTBYLQH29/8qwJIglIqQvlvALreHpp+3x5Zd3fmd2ycTyJlmXCRFQWtsrESCZWKJ1rfXAWrUKdu9O/1xE5338cfTxkiXuzMPjMjvyRVrrt4G3kzwX0UFeLiUEU77Sp4/9W7pvH3Tv7u6cEiFBLBEhmVjCLz76yAZau3aFmTM7/5hFRSYQ1tBgsmqrqyEvr/OPKzpP1mVCBFBVlfmDC2bh7KfFcyKcQawtW9ybhx/V1sKiRZ8dHi0osCUv8+fDrbe6NDHRYbFBrC1bzEdHtpYOsIQzsYT3eD2IBf7uiyVBLBFRUmICAmAy/Kuq3J2PEMfzzDN2PG2aKSfsrIwMGDTIHktJoRBCpFAY+mEB9O9vy0iqqmRxlYglS6J2b9l1+eX2cwsX2p2phH9s3HjsbZKNdYw2M7GUUj8ENHCv1rq55bg9Wmv9o6TMTsTFD0Gs3r3teP9+9+aRKK2js3GLi92bi3BfZqbZpXDtWnNcXg5nneXunISItXs3rFhhj6++OnmPPXiwXV9t2wYnn5y8xxbtk3WZECESliCWUqZePZLivnkznHGGq1PyBa3hxRft8YwZHOrVC5YvNydb+/bBypVwzjnuzVEkrrUg1tKlcMstndudJ2DaKye8B7NY+hnQ0HLcHg3IYimN/BDE8msm1qef2l1q8/ODm8kt4jdqlA1irV8vQSzhPc89Z6sJPv/56F5WneV8LMnEcsU9yLpMiHAISxALTKq7BLESs26daeoOpvnwtGnod96B6dPhr381t8+bJ0EsP6mpsbsRduliMhQPHza3rV8Po0e7Oz8PaS+IVQKgtW5wHgtvcQaxvLYzYYQzE8tPQSwpJRSxRo60Y+mLJbymutq0wYiYNSu5j+/coVCau7tC1mVChEWYgljS3D1xziysSZPM7l4AF19sg1grV5oTRa9mOYhokaAkmKuGI0bAggXmeMkSCWI5tNcT6ybA2bZVA5Va621tfaRuuqI1komVOhLEErFim7tHMl6E8IJ586CuzoxLSmDcuOQ+vmRiuU7WZUKERUWFHRcVuTePdJDm7omproZly+zxjBl2/LnPwemnm7HWpjeW8AdnU/fhw2HyZHu8bBk0N6d/Th7VXhDrHuAUx/EW4IqUzUZ0iN+CWH7qieUMYkk/LAEwcCDk5ppxVVX0758QbmpsNKWEEbNmJb99QnGx6Q0HsHevyXIXaXUPsi4TIhzCmom1ZYtcIWzPwoW238mIEdFXWAEuucSO58+X19MvnP2whg83wciCAnO8fz+895478/Kg9oJYVYBzTyPpJuYxWpsTiQg/BLEkE0v4mVJSUii8afly+35QUABTpiT/Obp0MYHcCCkpTDtZlwkRFpWVdlxY6N480iE/326jW18fvauSiKY1zJ5tj51ZWBHnnQd5LUm7FRXw7rvpmZvoHGcm1rBhZlvoiRPtbbJL4Wfa64m1Gvi2UqorcKDltvOUUm1+ndb6L8mYnGjf4cO2dCQ727uNx6UnlgiSkSNh9WozXr8ezj/f3fkIoTX8/e/2+PLLoWvX1DzX4MG22mPbNhgzJjXPI1ol6zIhwqC21pSMgUl/dS6kg2rIEFi1yoylL9bxrV4NO3eacW5udMlZRFYWTJtm07PnzYPx49M3R5G4o0ejrwwOHWr+nTQJnn/ejF95Bb7xjdQt8HykvSDWN4HngV+3HGvg9paP49GALJbSJLaU0Ks7b/bqZa7gNzWZwFt9vQm6eZnWEsQSrXP2VZRMLOEFH35oL+BlZbV+YTZZpC+Wq2RdJkQYxJYSenWBn0zOINaWLTBokLvz8SpnFtaFF5od7FpzySU2iLVihemBkZ/f+n2F+7ZuNSfKAP3728yUMWNMT7yKCrN74dtvw4QJrk3TK9q7cve+UmoEMAToD5QB9wIvp35qIh5+6IcF5r23d2873/37ze+nl+3fb4JtYDb8yMtr+/4iPJytB8rLTcAzDOtL4V1PP23H06aldp0qOxS6R9ZlQoREmPphRcTuUChBrGPt22cCUhFtXbEqKTEBkLVrTdPMRYvgmmtSP0fRMbFN3SOUMtlYkR0nlyyRIBbtBLGUUucD67TWHwMfK6WWA2Va6+VpmZ1ol1+CWGD6YvkpiOUsx//c5yRIIax+/UyQoKrKZPzv2CFrLeGenTvh9dft8dVXp/b5JBPLPbIuEyIkwhjEKimx482bobTUtal41vz5NlvnlFOi35Bbc+mlJogFMHduanZ8EckR29TdafJkG8R67TXTS+h4GXgh0V5j92XAVMfxiYBHuy6Fkx+aukf4rS+WlBKK41EqOhtLSgqFm557zm48dNZZ0ZlSqTBggOk1CuY868iR1D6fiCLrMiHCoKLCjouK3JtHOpWU2ADLzp2ohgZ35+M1zc0mEBURT9+A0lK7pfaOHab3gPCm2KbuTkOG2IBlfb0JZIVce0GsesDZuWgw0CN10xGJ8lsmVoQEsYTfxZYUCuGG6mpYsMAep6NSIDPTBLIitm9P/XOKz8i6TIgwCNPOhBHZ2VBcbMZak+N8DQSsXGl/Lnr1im9XoW7dTClaxLx5qZmb6BytYdMmexybiQXRDfyXLk39nDyuvSDWBuAmpdSpSqlIsUwfpdSgtj5SPGfhIEGs1JEglmiLZGIJL5gzx/buGzIETj89Pc8rfbFcI+syIcIgjOWEENUXK8fZ10NEN3S/6KL4d6i79FI7Xr7cNAcX3rJrl01rz89vfTdSZzDyrbfs7qUh1V4Q68fABGAVsAWzw83/tYzb+hBp4tcg1v797s0jXhLEEm0ZOdKON240PTOFSKfGRrvrMsC116av1YX0xXKNrMuECIMwlhNCVF+sbnv2uDgRj9mzxwQuIhLZgnjECBg61Izr601jcOEtzn5Yw4a1vpgrLrZX0BsbTUAyxNrbnfBZpdT7QClmF5z/BF4APkj91EQ8pCdWamgdHcSKZDcLEZGfby6OfvIJNDSY3aBby/4VIlWWLbN/S/v0ib5Il2qSieUOWZcJEQKNjfZqr1LeX+AnkzMTS4JY1rx5tvnlmWcmtjuWUiYb6ze/Mcdz55ogmDR49462mro7TZ5syz+WLo3OsguZNoNYAJEdcACUUvcAz2mt/5rieYk41NXZTMLMTFMe7WV+Kic8dAgOHzbjnBwoKHB3PsKbRo+2Gf/l5RLEEumjNTzzjD2+4grzPpAukonlHlmXCRFwlZU2YNGnT3r/uLvNEcSSTKwWjY3Rvaxmzkz8MaZMgQcfNFddN26EDRuiSwqEu9pq6u40cSI88ID5+/Dee+aE2nmCHSLtlRNG0VpnyELJO5xZWH37ej+g7qcgVmwpoddfW+EO5/v/unXuzUOEz/vv2zVPdjZcdll6n3/AAPt3cc8e25dLpJesy4QIoLD2wwKz6M7KAiDz0CFzVTnsXn0VqqrMuF8/OPvsxB+jRw+zU2GENHj3FmcQq60r4n36wGmnmbHWJiU/pBIKYkUopc5XSv1YKfUHpdSoltt6tNyen9wpHvPcGUqpu5VSW5VSdUqp95VSV8XxdT2VUj9USr2ulNqnlKpqGV+eyvmmkp/6YYHJZoqc9Bw8CE1N7s6nLdIPS8RDmrsLtzizsKZPh5490/v8MZtIsWNHep9fRHNzXSaESLIwB7EyMqLr1Tdvdm8uXvHii3Z86aXQpUvHHueSS+x4yRLbSFy4a/9+OHDAjHNy2j/xdPaOCHF/s4SCWEqpLkqpvwPLgO8B/wxEugU1Yvoy3JHUGR7rR8A9wP3ARcBK4Bml1MXtfN0gzNyWAzcA12J2+fmHUurOlM02hfwWxOrSxZY8am1/X71IglgiHiNG2MDs1q2SjSLSY+dOeP11e3z11e7MQ/piuc8j6zKRCs3NUFvr9iyEG8IcxIKokkK2hHxfim3bTOo1mADfxe2d7rbh5JNh4EAzrq2FsrJOT08kgTMLa+hQ8//clgsusCXG69dDSHfxTDQT6zvAVcA3gdHAZ0VWWus64B9AJ3672qaUKgT+H/BTrfUvtNbLtNa3YxZvP23ny7cAQ7TWd2utF2itX9Ja3wwsxXxfvuO3IBb4p6TQ+fdAgljieHJzYVDL5vXNzdHvQ0KkyrPP2vGECaa0zw3SF8sTXF2XiSTS2pywPv88/Md/mMbLl1wCV10F3/0uPPKIOenctcv2SxLBJEEs23w4ygAAIABJREFUOw57JtacOXZ8zjmmf0xHKRWdjSUlhd4QuzNhe/Ly4POft8dLlyZ/Tj6QaKfAG4G/aK1/o5RqrYvYOlK7WLoQyAKeiLn9CeCPSqkSrXWrIXut9eHjPOY7wAXJm2L6OINYnfmblk59+sCmTWbs5SCWZGKJeI0cabNQ1q+Hk05ydz4i2A4dgoUL7fGsWe7NRTKxPMHtdZnojMpKePddWLUKVq9ufWG0fz+8+ab5iMjNNVfshw0z/VOGDTNR5a5d0zZ1kUIVFXZcVOTePNwimVhGfT289JI9njGj84954YUmIN7YCGvWmCtQzitSIv0SDWKBKSmMpOS//DJcf33oGjgnGsQ6EfhlG5+vAlK5j9tYoB7YGHP7mpZ/x2AyrhJxPuDLbjZ+zMTq3duOI7sHe5EEsUS8Ro2CRYvMWPpiiVSbM8eWrQ4fDqee6t5cJBPLE07E3XWZSMTBgyZYtWqV+XAuNlrTpUvrDURra+HDD82H876DB9ugVuTf7t2T+z2I1At7JlZJiR2vX2+aLkbK4MJk6VKoqTHj4mIYN67zj5mfbzK6li83x/PmwZ2+7KoTHPE2dXc65xzTnLS+3lxF3LIlOvgbAokGsaqB3m18fhjwaRuf76zeQJXWx+RR73d8Pm5KqduAszE9snzHj0EsP5QT1tSYdSaYDVL8kuUm3OFs7l5e7t48RPAdPWoqjSJmzXL3wluklBbMufjRo5II4gK312UJUUoNBH4NTMWUPr4MfENrvd3ViaXKkSPwwQc22yqSin48eXlm56lx4+CMM8xVtF27zEnOxo3238hOZU5NTab0avPm6OyN/v1NMMsZ2PLDltZhpbXJ0IsoLHRvLm7p08dcoVm+3PxcP/AA/OQnbs8q/WbPtuMZM5L3O3vppTaI9dJL8JWvfLYjpEiz2lp7MSMjIzqA25acHBPIipQSLlkiQax2rABuUEr9PPYTSqkCTEPRhcd81XEopaYAi+O463KtdSlmwdNaI4CEf6uVUqXAb4HHtdZPtnG/24DbAE444QTKUtQEr6amJuHHXr9+LNXV5r9ww4a1VFYeTcHMkmv37r5UVZnUpjff3MfgwTs7/Fgdec3isWNHN6qqRgBQVFTH8uXBiUyk6jULsvZes6NHFYcOnUJzszmvmD//I3JzPbz1ZhrIz1li4n293n67gM2bTeSoZ89GMjLWUlbmbm+cjIzR7N9vFr/PPltO//51aXle+Rn7TFLXZamklMrF9CGtB27CrOd+DCxTSp3SRtsH/2hshLVrbdBq3bq2t2LOzjbNliNBq2HDjm3qO3Cg+YjsSKW1SWWPBLUiga3jNffds8d8vPqqva1Xr+ig1rBh5jnaaygsUm//fvNzBCaomZvr7nzccued8MorZrxyJbz9Npx5prtzSqcNG2x6f9euZhviZBk3zmT4ffIJVFfDihXRO96J9HFe2Bg8OLFg4uTJNoi1dCncemuoLk4kGsS6F7NgWgr8qeW2U5VSw4HvAt1pv8G60+uYRqTtiWzPsh8oUEqpmGysAsfn26WUOhOYjfk+bmnrvlrrh4GHAcaPH69LS0vjeYqElZWVkchjNzaazPH8fPPzetll53R4x9V0UgqWLTPjgoICSkvjrP1tRaKvWbyWLTOvK5g1ZWlp/6Q/h1tS9ZoFWTyv2bPPmvUGQGHheYwfn/p5eZn8nCUmntdLa3jiCfu36StfgcmT3W/nuHChbdXTv//ZpOu/XX7GPpPsdVkqfQUYAozUWm8EUEp9AHwM3A78ysW5dUxzswkgrVplAlcfftj2NrVdupj03UjQasyYxNMXlTKZKn36wFln2dsPHzYnRBs32gDX1q02IOJ08KCZ77vv2tuys82V/Ehwa/hwkxWQnZ3Y/JKtqclktNXVRf/b2m11dVBQYJpX+zUtNOylhBHDh7P/zDMpiCyufvc708spM9FTV59yZmGVltrt3ZNBKbPL4WOPmeO5cyWI5RZnP6x4SwkjzjwTevQwJUQVFeYCytixyZ2fhyX0l0Br/Y5S6krgUaDlJ59fYDKhKoErtNZrE3i8WhLrR7UGyAaGEt0Xa0zLv+0+t1LqZOAl4D3gKq2199OXWrF3rx337o0vAlgQXU7o1Z5Y0g9LJGrUKBvEKi8n9EEskXzvvWcv2GVnw2WXuTufiBNPtEEs6YuVfslel6XYDGBlJIAFoLXeopR6DZiJH4JYWsPOnTZo9d57JpOhLUOHmoDVuHEm6ypVmTXdu8Mpp5iPiMZG84vpLEXcuNGUsMSqrzeZY+vW2duUMnXDzqyt4cOhZ8/or9Xa1BMnEmyKfC5yfLzPtRaEa09FBfzLvyT+dV4gQazP7LnkEobu3Gl+XrdtM4GdK690e1qpd/iwadYdkYyG7rEuugj+9Cfzu7t6tcnkLC5O/vOItjn7YcXb1D2ia1c4/3yYP98cL10qQay2aK3nK6VOBKYBozALpY+Bl1qCUqm0EGgArgf+y3H7DcBHx9uZMKLlyuRiYDNwqdb6SKommmp+7IcF/uiJJUEskahRo+xFM2nuLlLh6aft+KKLTJWJF8gOhe5zeV2WiLHAi63cvgZwcZ/Ndnz6qTnJi5QIOq8itqa42AatTjvNpk+6ITPTlgtGypG0NuWFzsDWxx+3vijT2vxib9tmeq5E9O3LqIMH4f77bbDpmHa1LpozB26+2fSN8RsJYn2msWdPuOEGePhhc8Of/gRTp3rnDTBVFi2yGZ1DhqQmMNGvn8nkXLnSHM+fb8rRRHp1ZGdCpylTbBBr2TK44w7/ZLZ0UodyMrXW9cCclo+00VpXKqV+DdytlKoGVgHXApMwV/E+o5RaAgzWWg9rOS7EBLCygP8ExqjoutHVLd+XLzjXUH4KYsXuTqi198p3JYglEjVypB1LEEsk2/btdp2pFFx1lbvzcZIdCr3BrXVZgnoDB1q5fT/H2UHRjb6kXWpr6fHxx+R9/DE9Nmwg+9O2++I35uVRM3w41SNGUD18OEedC5333kvJfJNm6FDzceGFZNbU0G3XLrrt3PnZv9l797YenKqqIrOpiQPtvDZJoRTNWVnmIzub5qwsmlr+dd7WnJ1N/urVdK2qgqoqdvzmN+x3llt6QDy9/AasWEGflsb9u/ft49MQ9/6rqalheb9+jMrIIGv/fqiqYu/3v8+uIGdjac3Ihx8mp+VnYGdJCfsiTdjjkEi/yJ7FxZS0PE/jX/7C2pISdEgCIE5u9dhUTU2cvGoVqqVv4kd79tAU2VksXs3NjG1uJvPQIaiqYtMjj1DjPClJES/0Je1QEEsp1ROYgultACazabHWup2c6qT4PlAD/CtQBJQD12itYxduXYj+/sYAkWvGc1t53BJga1JnmkJ+zcTKzjYZ74cPmzYHBw+6e5GyNRLEEokaPNjudLt3r7mg7cw6FKIznn3WjidMgAED3JtLLGcm1s6dpvInLC1LvMTldVkiEtqcJy19SevqePdPf2KcUibbauPG6MBN7CKle3eTYXXGGeZj8GD6ee1qXLLU1R3bZ2vzZjh6lANVVRQ4X5vMTOjWzXzk5LT+b0c+l5UV/9XOp56Chx4CoGDbNvjOd1LwonRcXL38Fi367GeuYOJEuMD93oduKSsr44LSUrPA+uEPAShYs4bh3/pW9JtPkHzwgfm9y8+HnBwKvvnNhEqQE+oXee65UFb2WX+XCyI73oWMaz02N22yWYUnnMB5F1/cscdZuxaeew6A8QcPko7mpF7oS5rwUlMpdSvwS6AHduGhgRql1De11o8mcX7H0Fo3YXaz+XE79yuNOS6jA7sYepVfg1hgTu4Pt+xBtH+/t4JYdXW2V1dmZjh3NhaJ69IFRowwPX3B9MWaMMHdOYlgOHjQ7IAdcc017s2lNbm55j3o009NAGv3btNCR6SP2+uyBBzAZGPFKqD1DK3U+8EPYOVKhuzde/zFSFYWnHSSLREcPjw05Rrk5JhSJmc5U1MT7N7N+jfe4AuTJpn75OR4I3o9fTo8+qj5Y7RunTlJHDrU7VklRsoJj3XuuSZw/N57ZjOF3/0OfvYz75VyJIOzofuUKandnTIz0/QnePJJczx3biiDWK7pTFN3p8mTPwti8cor8G//5t+NLRKQ0F66SqkZmCtinwLfBKa2fPwbpoHow0opj7SbDTa/B7EivNbc3blDdVFReNapovNGjbJjKSkUyfLii9DQYMYjRpi+0F4jfbHc47N12RpMX6xYY4hjY56UUOrYxuFKwejRcP318Ktfmf5Kv/ylOR41ShYGXbrAwIHUFxZC375mdywvBLDABCLPP98ez/Fyde1xVFTYcVGRe/PwEqXgrrts0Ortt+Gtt9ydUypUVYGzdDAVDd1jObN/3nwz+gRTpFZnmro7jRoF/fub8eHDdredgEsoiAV8G1gHnKa1/o3WeknLx2+BMzA7DXordzeg/BzEcraL8FpzdyklFB0lfbFEsjU0wD/+YY+vucabF56lL5ar/LQumw2crZSKlDzS0pD+nJbPpd8ZZwBQV1Rkms3de68JfDzwgGlyfPrpJhNL+Mell9rx4sUmxd4vamrszpHZ2dCrl7vz8ZKhQ+GSS+zx737XsZ0rvWzhQvs9jR7dueyceBUXm79zYMqoFyxI/XMKwxnE6sz/tVIwaZI9dm7CEWCJBrFOBf6kta6J/URL34U/t9xHpJhfG7uDt3colCCW6KjRo+14/XpvbdQk/GnJEnNhFkzCg1dbo0gmlqv8tC77A6b36ItKqZktWWQvAjuAh1yZ0ZQp8PzzlH/nOybTY8IE0/NK+Ndpp9nGgbW1Ztt5v3CWEhYWevOqhZtuucWW1+3YAS+84O58kknr6FLCdGRhRTgDv/PnywI2HbTu/M6ETpMn2/Ebb5gdYwMu0SAWtN1XSn7q06C5OTqI5bcG0hLEEkHUv7/tz1hdbXYwF6KjtIZnnrHHV13lnYqdWJKJ5TpfrMu01ocxu0lvAB4HngS2AJNaC8KlRY8eUNDqxojCr5SCyxwVtH4qKZR+WG3Lz4cbb7THf/6zaRwZBO+8YxeOPXrAxInpe+5zz7UL2E8+MRtciNSqqLBZl3l5nc9IKSkxH2B2mXrttc49ng8kGsR6H7hJKXXMZSqlVA/g5pb7iBQ6cMAEssBkGvst093LPbEkiCU6SikpKRTJ8+67sGWLGefkRFdReI0zE2v7dvv+JNLCV+syrfV2rfVVWuueWus8rfXlWuutbs9LBMyFF9qo//r10RkPXiZBrPZddZVdoNfUwGOPuTufZHFmYU2fbspJ0yUry/zORMydm77nDqvYpu7JyLp0ZmOFoKQw0SDWL4DRwCql1J1KqYktH3cB7wKjgP9N9iRFND/3wwLpiSWCS5q7i2RxZmFdfLG9SOpFeXn27/rRo5KFmGayLhMiVq9e0fXXfsnGkiBW+zIz4Y477PHs2faKj199+ml05kw6SwkjnFfKXnvN9jIQqZGspu5Ozr5Yb78Nhw4l53E9KqEgltb6BeAuoBi4D3i55eO3LbfdpbV+MdmTFNH8HsTyajlhfT1UVpqxUrIpjEicM4hVXu7ePIS/bd1qN15Sylx49jrpi+UOWZcJcRzOksKXX/ZHjxgJYsXnC1+AcePMWGvT5N3PfZzmzbPzP/10GDgw/XM48UQY27J5bGMjvPRS+ucQJslq6u7Uvz+MGWPGTU3wyivJeVyPSrgnltb6AWAgcC1wN/A94BpggNb6weROT7QmaEEsr7zvxO5q7NX+M8K7nEGsDRukrEp0zLPP2vG555rNg7xO+mK5R9ZlQrTilFNsMMAvDd5jF6KidUrBnXfaEqx33zXNrP2osTG6fM+NLKwIZzaWM7Amki+2nDBZnCWFL7+cvMf1oI40dkdrXaW1fkZr/XOt9c+01s9qrQPSWc/7nEGsvn3dm0dH5ebaUu/6eu9cHJNSQtFZffrYIG1dnWSkiMRVVcGiRfZ41iz35pIIycRyl6zLhIjhxwbvkokVv5KS6IDPAw+Yena/eeMNW5ZSUGCuXLll4sTo3R8//NC9uQRZVZXdoS0ry+6mmgylpTa4+8EH0TvBBUy7QSylVBel1E+VUv/Szv2+qpT6H6VkP9hU83smllLe7IslQSyRDNIXS3TGiy/adfioUXDSSe7OJ16SiZU+si4TIk7OBu/l5dElPF7T0GB2bgKzUPbjVep0+/KXzU5+YBbx//iHu/PpCGdD90sucbcMJCcnOpNn3jz35hJkziysIUOgS5fkPXbv3qYkFUwm3bJlyXtsj4knE+sG4N+Bt9u531vAd4AvdXZSom1+D2KBN/tiSRBLJMPo0XYsQSyRiIYGeOEFezxrVnI2rEmH2EwsqUJIKVmXCRGPnj390+A90pQVzOI+mSe2QdWrF9x0kz3+85/91ZB81y545x0zVgouvdTd+UB0SWFZmdkBUiSXM4iVrKbuTiHZpTCeINY1wMta63fbulPL519CFksp58wM9GsQSzKxRFCNHGnHEsQSiXj5Zbv+LiyE8893dz6JyM835xNgysSdVTEi6WRdJkS8nCVnL79s+mN5kZQSdszll0f3Pnv0UXfnkwhnUPXss73x/z5ihA2sNDQEvq+SK1LR1N3pvPOiM1B37kz+c3hAPEGscZidbuKxDBjf8emI9mjt/55YEJ2JtX+/e/NwkiCWSAZnEGvzZn+2aBDppzU8/bQ9vvJK/20uIX2x0kbWZULE6+STYdAgMz5yxLsN3iWI1TGZmXDHHfZ43jzYtMm9+cSroQEWLLDHbjZ0d4rNCJs7V1Krky1VTd0j8vLg85+3x179m9dJ8QSxegOV7d7L+LTl/iJFDh2yJ8W5ubb/nt94rZywsdFuCqOU2aVUiI7Iy7NB0MZGf6ylhPveeccGfrp180ZVQaKkL1bayLpMiHjFnpR7taRQglgdd9ZZcOaZZqw13H+/9wMvr7xiTurA/H87gw5umzzZ7sC1aZPZblskR12daZoP5m/TkCGpeR5nSeHSpd7/feiAeIJY1UC8+T59ACmeTaEg9MMC75UTVlTY3+++fc1mEUJ0lDR3F4lyZmFdcgl07+7eXDpKMrHSRtZlQiRi+nTo2tWMN2zw5kl55EoqQFGRe/PwI6Xgzjsho+W09r33YMUKd+fUnhdftOPLLrNz94IePaJ7yc2d695cgmbTJnvCOWiQDRYm24QJplE/mAXZ5s2peR4XxfMbswaYFufjTW25v0iRIPTDAu9lYkkpoUgm6YslErFnT05Ub9crr3R3Ph1VUmLHkomVUrIuEyIReXlm6/kIL2ZjSSZW5wwebPpjRTz4oHf7OWzeDB99ZMZdusBFF7k7n9Y4G7wvWWJKcUXnpbqpe0RODpxzjj0OYIP3eIJYzwNTlFIz27qTUmoGZrH0XDImJloXlEwsr/XEkiCWSCbJxBKJKCuzf8zPP9+/5cyyQ2HayLpMiEQ5SwqXLPFeg3fn7oSFhe7Nw89uvtkELAH27IFnn3V1Osc1e7Ydn3dedHmKV8T2kisrc3U6gZGuIBYcu0thwBZl8QSxHgI2Ak8rpe5VSp3o/KRS6kSl1I+Bp4ENLfcXKRLEIJZkYomgGT7cZNQAbN/uvbWy8I4DB+Dddws+O541y8XJdFJBgT1/qK2NzhwWSSXrMiESdfLJNtJ+5Ii3MhOam6ODWJKJ1TF5eSaQFfH44964Uu505AgsXmyPvdLQPZZS0dlYUlKYHKlu6u505pl2UVZZCWuClZTdbhBLa30EuATYAtwNbFJKVSmltiulDgCbgO+1fP5SrXVdKiccdkEJYvXqZTJoAWpqzJbsbpIglkimnBxbWqW1N9tvCG944QVoajIRzzFjYOxYlyfUCUpJX6x0kHWZEB2glOk9FOGlksJ9+6CpyYx79bK9bETiZsyIDlY+8oi784nlzAIcOBBOO83d+bRl2jS7TfLatbBli7vz8bumpujeVKnOxMrMjO5t5qXAfRLE1UVOa70ROA34V2AF0AgUAU3Aqy23n6G1ln24UiwoQSylzFX7CLcvlOzebccSxBLJICWFoi0VFfC//wtPPGFv83MWVoTsUJgesi4TogOmTbMN3j/+GMrL3Z1PhPTDSp7MTNPkPWLhQvN/7QVaR5cSzphh0/a9KD8fzj3XHs+b595cgmD7dmhoMON+/UzAOtUmTbLjsjIbLA+AuLdC0FrXaa3v01pfoLXuq7XOavm3tOV26fiWBkFp7A7e6YvV3GxK5yOKi92biwgOZxDLK+tk4b7KSvjVr+CGG2D+fPP3B0zw/Lzz3J1bMkgmVvrIukyIBOXlwcSJ9tgr2VgSxEquM8+Es882Y63h/vu90Q9o/XobUMvKggsvdHc+8XCWFC5aZIMwInHpLCWMOPVUe8JdVQWrV6fnedPAQ/t5ingEJRMLvNMXq7ISGhvNuHdv6NbNvbmI4JBMLOG0bx/89rdw/fXmvMl5MWz48Bp+9jNbYu1nkoklhPA0Z0mhVxq8V1TYcVGRe/MIkjvusG+qH3wAy5e7Ox+IzsKaNMn2K/KycePsz2R1Nbz6qrvz8TNnRmCqSwkjMjKiA/cBKimUIJaP1Nba99qsLOjRw935dJZzMw43M7GkH5ZIhZISW7VQUWEugIjwqaqCBx6A666Df/zDBswBTjkF/u//4I47NgXmb4/sUCiE8LSxY+0fqro6ePlld+cDsjNhKgwcCFdcYY9//3t3G/BWV8PSpfZ4Zpuby3qHUnDxxfZYSgo7Lp07Ezo5dyl85ZXAZNNJEMtHYrOwvFxGHQ+vZGJJEEukQmZm9HuUlBSGy8GD8NBD8MUvwjPPRK8ZxoyBX/zCBLBOPdW9OaZC376Qm2vG1dVm90UhhPAMpaJ3hJszx/1ou5QTpsaNN0LPnmb8ySfw7LPuzeWll+xCYPhwGDnSvbkkavp0e9K5enX0iZOIj9buBbFGjrS9cmpr4c030/fcKSRBLB8JUikhSBBLBJ/0xQqf6mp49FH40pfgqaeiL/yOHAk//alpzzFunP8vRLRGdigUQnje1KmmpAHMiaXbb9BSTpgaeXnwz/9sj594wp0TDr81dI/Vr5/tMQamoadITGWlWSCCKaVK5++5UtHZWM6MQB+TIJaPBDmI5ZVyQmnqLpJJ+mKFx+HD8Oc/m8yrJ54wO3tHDB0K994LDz4IZ53lr7VrR0hfLCGEp+XlQWmpPXazwbvWkomVSpdeavo7gCkf/cMf0j+H996DHTvMODc3OqDgF84G7wsXRvdGEO2LzcJK90LQ+TP3+uve6AXYSRLE8hFnEKtvX/fmkSzOnliSiSWCyBnEWrfO/YoFkXxHjsCTT5rMqz/9KXpdcOKJ8F//ZdbMEyYEP3gVIZlYQgjPc5YUutngvbraBFcAcnL80ezbT7p0gbvusscvvZT+q4rOLKypU/25g9TZZ9vsg/37YeVKd+fjN240dXcaPBiGDDHjhgZYsSL9c0gyCWL5SJAzsdwKYmkNu3fbY8nEEsk0cKDtD1RVFf07LPytvt6UC37pS/DIIzZLHMz/+w9+AH/8I5x/fniCVxGSiSWE8LwxY2yGTn09LF7szjxis7DC9oaRDmecYa4kRdx/f/quKu7fH72jnzN46iddupjeWBFz57o3Fz9yZmINH+7OHAJWUihBLB8JWhCroMC+V1dVRW85ny5799o+iz17ygUwkVxKRffulJJC/6uvN71hv/Ql07j94EH7ueJiuPtueOwxs3t2WM9FJBNLCOF5SplSswi3GrxLKWF6fPWrZscdgDVrYNmy9DzvggX2BOekk2w2jB85dyl8663oXTVF29zOxAKzMI14553oBawPSRDLR/buteMgBLEyM6FXLzPW2gSy0s2ZhSWlhCIVJIgVDEePwgsvwPXXw+9+F73r3gknwLe/bXpiTZtmLliG2QknQHa2GVdVufO3XQgh2jVtmv1jtWmTOw3eJYiVHgMGwFVX2eOHHoreeSUVmpujSwlnzkzt86VacbHJagNz4rZwobvz8YtDh2zAr2tXGDTInXkUFcHYsWbc1ATLl7szjySRIJaPBC0TC9zviyX9sESqSXN3f2tsNFnzN9wAv/lN9N+pfv3gm980jdwvushe5A272B0Kt293by5CCHFcPXrAxIn22BlwSBcJYqXPP/0T5OebcWUl/P3vqX0+Z7ZSz56mv4DfORu8z5tnAnWibZs22XFJibuLRWc21pIl7s0jCSSI5RP19SaQC+Yqf0GBu/NJFrf7YkkQS6SaM4hVXi7N3f2iqclUAdx4I/zyl9FZ8336wNe/boJXl10mwavWSF8sIYQvOEsKly41W82mU0WFHRcVpfe5w6Z7d7jlFnv817+mtlnpiy/a8cUXQ1ZW6p4rXc47zwTkwCyM3n3X3fn4gRdKCSMmTrS9Lj780NfNeiWI5RPOUsI+fYLTa0UysUTQFRbaC3+1tbBzp7vzEW1rbjb9fW+6CX7+c9izx34uPx/uuMPsRnjFFcFYj6aK9MUSQvjCmDG2T1F9Pbz8cnqfXzKx0uvii2HoUDOurzfbB6fCJ5/Am2/aY2ew1M+6doULL7TH0uC9fV5o6h5RUADjxpmx1unrDZcCEsTyiaD1w4pwZmLt35/+55cglkg1ae7uD5H38i9/Gf7nf6L/NvTsCbffDn/7G8yaZVuoiOOTTCwhhC8oZVJqI2bPTm/KtDOIVViYvucNq4wMuOsue7x4Maxdm/zncW4UMH58sE4ynCWFr70mjS/b46VMLIguKUx30D6JJIjlE0HshwXulhNqLUEskR6jR9uxBLG8RWuz+/Utt8B//3d0/6YePcztf/sbfPGLkJPj3jz9RjKxhBC+MWWKvTqxeTOsW5ee562vtzuEdekCffum53nD7rTTTFlcxP33Jzdw2dgI8+fb4xkzkvfYXjB4cHSDcGnwfnz19XZhqZTNAnTTeefZPhgff+zbEhEJYvlEUINYbpYTVlXBkSNmnJtrS7yFSDZp7u49WsPEZEJAAAAgAElEQVTrr5sMqx/+ELZssZ/LzTXlhH/7m2nonpvr3jz9qn9/U3UA5m97dbW78xFCiOPq0SM6OyFdJVLOLKx+/UyWkEiPr37VnsivW5fcjJQVK+wWxn36wIQJyXtsr4ht8C4NX1u3ZYttfv+5z0G3bu7OB8zfu7PPtsc+bfAufy19IqhBLDczsWKzsILSZ0x4j7OccONGc5FOuENrs2HQHXfA978fneWdkwPXXw9PPQU332ze50XHZGRE7yItOxQKITzNWVK4dCnU1KT+OaUflnv694drrrHHDz8MdXXJeWznLpeXXmqy7IJm4kR7hW/nTtMkXBzL2Q/LC6WEEZMn2/GSJb4MQkoQyyfCEMRKd08sKSUU6ZKfb9enDQ3RWT8iPbSGVavga1+D73wnOiMuO9uUC/7tb3DrrZCX5948g0T6YgkhfGPUqOgG74sXp/45JYjlruuvt9u9791rFgGdtX07rF5txhkZ0RlLQZKTY8pwI6TBe+u81NTd6QtfsFlhO3ZEz9MnJIjlE2Fp7J7OQLAEsUQ6OUsKy8vdm0cYrVsH//Zv8K1vwZo19vauXeGqq8wu27ffbneRFMkhfbGEEL6hVHTvorlzU78oraiw46Ki1D6XOFZuLnzlK/b4qaegsrJzjzlnjh1PmBCsk7ZYzgDd8uXSN6A1XmvqHpGdDeecY4+XLnVvLh0kQSyfCGomVna2zUZtbIRDh9L33Lt327EEsUSqSV+s9Nu9G/7rv0zp4Pvv29szM2HmTBO8uuuu6N58InkkE0sI4SuxDd5TsWudk+xM6L7p022GTEMDPPRQxx+rvj66yXnQGrrHGjEi+rXz8U53KdHcDJs22WMvZWJBdEnh0qW+KymUIJYPNDbaUjulgnfC5VZfLMnEEunk7IslQazUOnTIbDZ0001QVmZv79LFtKd48kn4xjdkI6hUk0wsIYSvdO8e3eDdmVWTCs6sHykndIdS5mpWxNKl8NFHHXusZctsL7X+/WH8+M7Pz+uc2VjpyF70k507TWATzMlupHTVK8aPt7uaVVZ2/OfeJRLE8gFnmV1Bgd1MIyjc6oslQSyRTiNH2s0Dtmyx72sieerrTTXAddfBc89FN9C/4AL4859NSaFc8E6P4mL7flVZCbW17s5HCCHa5cyeWbYstSVSUk7oDaecAqWl9vi++zoWjHE2dJ8xIxw7RsVmL0q/DMurpYQRmZlmcRzhs10KJYjlA0EtJYxwIxOrutquS7Kzg5fdJrwnNxcGDjTj5ubo9zbROVrDokVw442mEuDwYfu5sWNNVtY990iwOt0yM2HAAHssOxQKITxv5Eh7wtnQkLoG701N0Q1v5eqKu26/3TTKBNiwwSwqEvHxx6YBJ5g3v+nTkzs/r+rePToAOG+ea1PxHK/uTOjkLCksK/PV9ukSxPKBoAexnAGkdGVixWZhheFiiXCf9MVKvlWrzNrzJz+JrswYMAD++7/NBdWxY92bX9hJXywhhK8oZerOI+bMSU2J1N695ooWmDKLrKzkP4eIX1ERXHutPf7DH+DIkfi/3pmFdcEF4dopxllSuGRJYq9bkPkhiHXKKba3xsGDZlHtExLE8gFnECuIPVzcyMSSUkLhBgliJc/mzfCd75jyQGdWW36+6Xf12GNw3nkSoHab9MUSQvjO1KmQk2PGW7empsG7s6m79MPyhuuusycl+/aZBprxqK2Nbmo+c2by5+ZlJ50EgwaZ8ZEjpgw37LSOXpx6ral7hFIwcaI99lFJoQSxfCDomVgSxBJh4QxiSduAjtm7F37+c7j1VnjrLXt7djbccINZc86cGbzegX4lmVgiQim1VSmlW/m43O25CRElNze6zMaZZZMszn5YEsTyhm7d4Lbb7PHTT8OePe1/3eLFUFdnxieeaII6YaJUdDaWlBSaE9qDB804N9c0CfUq59+6FSt807RXglg+EKYgllvlhEKkw9ChZoc8MJuWRDaxEe2rrYVHHzWBqgULbHWHUnDRRfD443DLLWatILxDMrFEjJeAL8R8LHd1RkK0xllSWFaW/AbvsjOhN02daq84Hj0KDz/c9v21jg5yzpwZzhTwadPs1cO1a80ORmHmzMIaOtTbPxMjRtiT4dpaePNNd+cTJwli+YCz72MQg1jOnliSiSWCLCsLhgyxx5KN1b7GRnjxRbj+enjiiegLRJ//PDzyCHz728H82xgEAwZARstKo6LCXqwWobVXa70y5uOA25MS4hgjR9oSoFQ0eJdyQm9SCu66yx6XlcEHHxz//mvWmP4GYFLCp05N6fQ8Kz8fzj3XHs+d695cvMAPpYQRSkVnY/mkpFCCWD4QpkwsCWKJoJO+WPHRGl59Fb78Zfi//4OqKvu5YcPgF7+An/0sOigovKdrV/s3VmvYscPd+QghRFyUgssus8ezZye3wbuznLCoKHmPKzpv7Njok/r777dN+GM5s7CmTjW79YWVs6Rw8WIT/A0rPzR1d5o0yY7feMNkZHmc74JYSqkMpdTdLb0V6pRS7yulrurA4wxRStW29GPw7E+X1tGZWEFs7N69u92Upa4u9b83tbX2hLhr12AGBoV3SV+s9q1dC//6r/DDH5qyy4jCQrj7bpPdP26ce/MTiZG+WMLhspa1V71SaqX0wxKeNnmybfC+bRt89FHyHlsysbzttttMZhWYrJqFC4+9z8GD0U3MnUHPMBo3zgZkq6vNlciw8lsQa/BgO8+jR01vLI/zXRAL+BFwD3A/cBGwEnhGKXVxgo/zAHAwuVNLvgMHoKnJjPPy7N/TIFEqvX2xnFlYxcXeLlMWweMMYq1b5948vGjXLrjnHrjzTvjwQ3t79+5w++3wl7+YtgvyO+sv0hdLtJgDfA24ELgeqAP+oZS6wdVZCXE8ubkwZYo9TlaJlNbSE8vrCgvhi1+0x3/4w7FX2RcuND0PwCzuRoxI3/y8SCm42HE6HtYG7zU1dkOAzEwoKXF3PvFyZh86d9v0KF/t36SUKgT+H/BTrfUvWm5e1pJJ9VNgfpyPcx1wOvAT4NepmGuyBL0fVkTv3vb3fd8+00clVaSUULhp8GATjK6vN7/f+/ZFB3HD6OBBE6CaPduuB8G898+cCf/0T9Crl3vzE50jmVjBo5SaAsTTJGi51roUQGv9tZjH+AfmQuRPgCeO8zy3AbcBnHDCCZSVlXV80m2oqalJ2WMHVVhes26FhYxoSd/Xzz/PmlNPpamDO4hEXrPMmhrGtmRiNWdn8+Hbb8vVmVa4/TOWUVzMKK3pevAgVFVR+YMfsCeSbaU1o//wB7JafjZ2nHgi+z3w++D2a9a1Z0/GHDxoArXLlrHumWdo8PgJbLJfs+4bNzKs5eeirriYch9kNQF0zc5mTKRU6eWXWTN3Lo09erR6X7d/zsBnQSzM1bssjl3sPAH8USlVorVuczsEpVQB8CtMMKxLSmaZREHvhxWRzr5YEsQSburSxVysi2QalZfDhAnuzskt9fXw3HPw5JPHXuAsLYWvfMXbuxKL+EgmViC9DoyO437HbRCgtW5SSj0D/Ewp1V9rfcxe9lrrh4GHAcaPH69LS0s7ON22lZWVkarHDqpQvWYrVsCGDQCcV1sbnW2SgM9es/Jy0wgboKSE0okTkzTRYPHEz1hGBtx7LwAFH3zAyG99yyxM3nnHlMrk50OPHhR84xueKJfxxGv25pumrxIw4cABmDXL3fm0I+mv2d699vf7/PPp7/b/RyKWLv2sbPrcpiazGG+FF37O/FZOOBaoBzbG3L6m5d8xcTzGz4H1WuvHkzmxVAlLECudOxRKEEu4LezN3bWGRYvgxhuPzdA/+WR44AH4z/+UAFZQDBxokwx27Qp3r9eg0FrXaq3Xx/GxvZ2HiqSfJLFjthBJ5ux1NHdu5xu8Sz8s/5g8Gca0nF42NsLvf2/GzobuF17oiQCWZ1x6qR07Sy7DwtkPy+s7E8by0S6FfsvE6g1UaX3Mu8d+x+ePSyl1LnAjppQwLm6nsq9Y0Z+qqkIA9u6toKzsk2PuEwSVlSdQVWWaAb7xRiX9+h1zQfYYHU1lfPPNYVRVmd1DKio2U1ZWnfBj+JUX0j/9JhWv2ZEj+VRVmfSURYuqGTJkc1If321tvWbl5XnMnl3M7t05Ubf361fPZZft5qSTDvHJJ9Fr/KALw+9lRsZo9u0zO3g8+2w5xcV1nXq8MLxmQaeUygRmAdu11hXt3V8I10yaZK6uHDli0kk//BBOOaXjjydBLP9QCr72NfjqV83xq6+anfdee83eJ+wN3WOddZYpsdm3zzR3fuMNOO88t2eVPh9/bMd+aOruVFoK991nduP88EPTu6+w0O1ZtcrVIFYHeiooWr9a124huVIqC3gI+LXWem28c3Q7lf31150ZiQWUlsaTve8/R46Y7xWgb98CSktHtvs1HU1lvP9++5pedtm4UGV7eCH9029S8ZoNH277w9bWFnDBBYMC1Q6jtdds82ZzAfPtt81x5HcwPx9uvtnszJyZGc5txsPwe7l4sf0bX1R09vEy1OMWhtcsSJRSXwJmYnqX7gBOAO4ExgFfcnFqQrQv0uB9zhxzPGdO54JYFY6YbVE43/d8ZdQos6vMokXm+Cc/sdl4p50WXTMvTN+M6dNNrwgwDd7DEsQ6ejS6b8LQoe7NpSPy8+GMM0y5LJjyQucGBx7idjlhpKdCex83ttx/P1Cg1DGnewWOzx/PNzCZWr9VSuUrpfKBSGfGPKVUXie/l5QIU2P3iFSWE9bV2cfv0kUugAl3FBeb3UbB7EJcEeAchE8/hZ//HG691QawwGTe33ijWePMnGmauIvgkr5YobcFKAT+F1iEuahYD0zXWj/l5sSEiIsz22b5cjh0qOOPJZlY/vOVr9iSQWdB0IwZ7szH6y65xI7feit6N84g27rV9EoD6N/fbK/tN86SwqVL3ZtHO1wNYnWgp8IaIBuIDWtGemG1lWE1BigCdgEHWj5+1/K5VcCrSfmmkiwsPbHS1dh99247LioygSwh0k0pGOlINgxiX6zaWnjkEbOz4IIFds0X2YH5ySfhy182F7hF8MkOheGmtV6ptZ6ktT5Ba91Va91Laz1Fa/2S23MTIi7Dh9s37qNH4aVO/Og6T+g9WqojYvTtC9ddF31bfn54MowS1b+/yegBswBcsMDd+aSLs5TQb/2wIs47D7p2NeOPP4YdO9ydz3G4nYmVqIVAA3B9zO03AB+1szPhT4GJMR8/c3z9rcmdaudpHR3E6tvXvbmkmjOItb+tfLpOcgaxpKm7cJMziLVunXvzSLbGRnj11b5cd50JVNXX28+ddRY8+ij8+79H/86L4JNMLCGE7zmzsebM6XiDdykn9Kdrr40OOpo+CO7Nx+ucDd7nzzd9loLOz03dI7p3h7PPtscebfDuqyCW1roS+DVwt1Lqm0qpUqXUg8Ak4HvO+yqlliilNjq+dr3Wusz5AUTyH97UWr+Tpm8jbjU19gSwW7dgZyzk55tdbMGUV6Vq9yrZmVB4xWhHe7vycvfmkUxr15rsquef/xwHD9rbhw+HX/0KfvpTKClxb37CPYMG2fHOneHbrEgIEQCTJtnF+I4dpvFxoo4cMQtdMAGQ3m3uSSW8JDsbvvtdc5JfUgJXX+32jLzt3HOhZ08zrqy0fZaCzM9N3Z1idyns7I6sKeCrIFaL7wM/Bv4VeAk4B7hGaz0n5n5d8N/ui1FiSwmD1Pg5llJQUGCPU5WNJUEs4RWjRtnxhg3+v0BVXQ13320CFBGFhfC978FDD8Hpce8JK4KoWzfb+qWpKfpvsRBC+EK3bqbBe8Ts2Yk/hrMfVmFhsBf3QXT66SYL749/tDvUiNZ17QoXXmiP581zby7poDVs2mSP/ZqJBSYTKxKw37kzOjjnEb4LYmmtm7TWP9ZaD9ZaZ2utT9FaP9vK/Uq11ie281h/0lorrfXGtu7nlrD0w4pIR18sCWIJr+jTx/7M19X5v8Tqscdsn9vs7GZuvx0efxymTpU1ujCkL5YQwvdiG7w7047jIU3d/U8WNfFzNnh/7TWoqnJvLqm2a5fJtAQT4PRzlmV2tsmki/BgSaHvglhhEuYglmRiiTBwZmP5ubn75s3wwgv2+LrrtvPFL0JWlntzEt4jfbGEEL43bJh9825shEWLEvt6Zz8sCWKJoBs8GMaONeOmJk8GQ5LG2Q9r2DD/BzsnTbLjZcs8V1IoQSwPC0tT94hUZ2IdPWo3hFFKemkK9zmDWH7ti6U13H+/fW874ww4+eQEr0yLUJBMLCFEIHSmwbtzZ0IJYokwmD7djhMN+vpJEJq6O40bZ3uaffppx3oAppAEsTwsbJlYzqzLVASx9uyx64wTTrC7hwrhliBkYr3yCqxebcYZGfC1r/n/4pNIDcnEEkIEQmyD9/ffj/9rpZxQhM0FF9hdHDdsCO4CIChN3SMyM6G01B57LItOglgetnevHYchiJXqckJnKWFxcfIfX4hEjRxpx5s2mWxBP6mvhwcesMdXXBGdbSOEkzOItX27qSwQQgjfyckxDR8j5s6N/2ud5YRSEiDCIC8PJkywx4sXuzeXVApaJhZE71JYVuapraUliOVhYcvESnU5ofTDEl6Tl2cDqo2N0Zua+MFTT9nKiF694OabXZ2O8Lju3W1pfGOjyY4VQghf6miDd8nEEmE0bZodL17suf5KnbZ/v83AyM4OzonmySfbIMShQ/Duu+7Ox0GCWB4W5p5Yqc7ECsrfFuF/o0fbsZ9KCj/5BP76V3t8663Qo4d78xH+IH2xhBCBMHSofQNvbISXXmr3S1RTk71Kq1Q4rlALAXDWWba/UmVlYiW4fhBbSpgRkBCLUtEN3j1UUhiQVzh4jhyBw4fNODPTZDkEXap7Yu3ebccSxBJe4Swp9FMQ6/e/h4YGMx4+HC6+2N35CH+QvlhCiMBIsMF716oqe5/evaU5qwiPzEyYONEeB63Be+zOhEHiLClcscL0EvEACWJ5VGw/rDA0SnYGsQ4cgObm5D6+ZGIJL/Jjc/fVq01pfMTXvx6ci04itSQTSwgRGBMn2gbvO3fCe++1efesAwfsgZQSirBxlhQuX+6ZYEhSBDmINWwYDBhgxkeOwBtvuDufFnLa4VFh64cF0RlnWptAVrI0Nkb30pTG7sIrhg+3Qert26G21t35tKepCe67zx5PmQInneTefIS/SCaWECIwcnKiT8zbafDe1dkrQ4JYImxGj7bBkNpaeP11d+eTTM5ywqA0dY9QKjoba+lS9+biIEEsjwpjEAtS1xerstLuhNW3r+m5J4QX5ORASYkZax39PuhFc+bAli1mnJMDt9/u7nyEv8QGsZKdcSuEEGnlLCl85RWoqjruXSUTS4SaUtG7egalpLC21pb7ZGTYRX2QOINYK1eSceSIe3NpIUEsjwprECtVfbGklFB4mV/6Yh06BH/8oz2+4YZwbDohkqdnTygoMOOGhuiNuoQQwneGDIExY8y4sREWLjzuXbOcV2eLilI8MSE8aMoUO37rrTaDvr7h3Fp88GDIynJvLqkycKDNMDt6lPwPP3R3PkgQy7Nie2KFhTMTS4JYIiz80hfrj3+E6mozLi6GWbPcnY/wJ+mLJYQIFGc21ty5x23wLplYIvSKi2HsWDNubvZMaVqnOPthBa2U0MmxS2H+qlUuTsSQIJZHSSaWBLFEePghiLVxI8yebY/vvDOYF5tE6klfLCFEoEycCN27m/GuXcdt8B4VxCosTMPEhPAgZx+5IJQUOvuABK2pu5MjiJW3YYPrWXQSxPKosAaxUtUTS4JYwsuGDLE7bVdUuP6+cAytTTP3yMXlM8+EL3zB3TkJ/5JMLCFEoGRnR5+YO6/4RGhNV+ebu5QTirCaONHs5gVQXm52NfKzIO9M6FRYCCefbMZaR29T7gIJYnmUM4gVpp4z6SgnlJ0JhddkZka/75WXuzeX1pSVwQcfmHGXLnDXXXZHRSESJZlYQojAufRSO16x4tirUQcOoBobzbhHD8jNTd/chPCSvLzoK6F+zsZqbLS7HUGwg1gQ3eB9yRL35oEEsTzp6FH73peREV1iF3SpKCdsbobdu+2xZGIJL3KWFHopiFVXBw8+aI+vvBIGDXJvPsL/YjOxjtM+Rggh/GPIENvrp7UG785dLKQflgg75y6Fixf7dyGwbZv5fQfze52X5+58Uu2CC2DUKHbPmAE//KGrU5Eglgc5m7r36WMCWWGRikysvXvt35f8fLn4JbzJq32x/vpXmxmanw833eTufIT/9epldikEEyR1Zh4LIYRvORu8z5kTfWIuQSwhrLPPtgGfykqb7u83YWnqHpGfDw8+yKcTJ7re7yhE4RH/CGs/LDi2J1YyAvPSD0v4wciRdrx+vTcuSu3ZA089ZY9vu832rhWio5SSvlhCiAAqLTWlgmBKAFavtp+rqLBj6Yclwq5rV9MbK2LxYvfm0hlhaeruQRLE8qAwB7FycmymVGMjVFd3/jEliCX8YNAg+7N/4IA3slMefNCUN4MJsk2f7u58RHBIXywhRODENnifM8eOnZlYsjOhENG/K2Vl0NDg2lQ6zBnECkMmlodIEMuDwtrUPSLZfbEkiCX8QCkYMcIeu90X69134dVX7fHXvy7N3EXySCaWECKQnCWFr75qrkqBKZmKkHJCIWDMGLvb1uHD8Prr7s4nUVqHZ2dCD5Iglgc5e2KFLRMLkt8XS4JYwi+80hersRHuu88eT5tm1hpCJItkYgkhAunEE+Gkk8y4qck2eJdyQiGiKXVsg3c/qaiA2lozzssL50m7iySI5UFhLieEY/tidZYEsYRfOINY69a5N48XX7SBhW7dTC8sIZJJdigUQgRWaw3epbG7EMdyBrHefBOqqtybS6Jim7pLuUJaSRDLgySIZcedzcTSWoJYwj+cQazycndO7Kuq4LHH7PGNN0b/TgqRDL17200CDh9OzgULIYTwhAsusDuv7dkDr7xi/tABZGWZHb6EEObEbOxYM25qgmXL3J1PIqSpu6skiOVB0hPLjjsbxNq/H+rrzTgvz64phPCiwkK7tq2thZ070z+HRx+1a+0BA+D/t3fvcXKV9eHHP9/cE4gkJCHcAyFWIS+UH0ZQRFnuxSrWioqgLdCKoiBq259a/FWreKGlP2qlIvhrSwvWUvBKpZogLG25FWtFDPeQAAEChCSQCwm5PL8/ziwzO5ndncnO7Dln9vN+veY155w5c+a7z+7OPvud5/k+73rXyMeg7ucKhZK6Vn2B99pPhnbbzREbUq3a0VgLF+YXR6ss6p4rk1gFs3Vr/8TNaExitXMklqOwVCYR2SqAfUa6LtZDD8GPf1zdP/fcbBVkqROsiyWpa9VOKax9g3MqodTf0UfDuHHZ9v33w+OP5xtPs+qnE2pEmcQqmNWrq1OIpk0bnf9AtrMmlkkslU1exd1Tgq99rfr+c/jh2U3qFEdiSepac+bAwQdvf9wkltTfK14Bb3hDdb8MBd7XrKmuxDZhQjZ1QSPKJFbBjPZ6WGASS6NbfV2skfKzn8Hixdn2uHHZKCypkxyJJamr1Y7G6mMSS9pe7fTbRYuKv9pL7SisuXNh7Nj8YhmlTGIVjEms9tbEMomlsqlNYj30EGzZ0vnXfPFF+OY3q/unnOKHSuq82pFYS5cWv88qSS15y1u2L8a6++75xCIV2RveUP1dWbEC7rkn33iGUpvEsqh7LkxiFYxJLNh55+o0yhdfzG47yiSWymbatKzuK8BLL43MNKtvf7uaMN51V/jABzr/mtKsWTB5cra9di08/3y+8UhSW02cCCee2P+YI7Gk7Y0fDz091f2iTym0qHvuTGIVTN/0Whi9SayI9hR3T8kklsppJOtiPfEEXHNNdf9DH4IpUzr7mhJk7/W1UwqtiyWp67ztbf33+z6lktRf7ZTCm2/OPsktKou6584kVsE4EivTjrpYzz8PGzZk21OmwC67DD8uaSQceGB1u9NJrG98ozpl8cAD+690LHWadbEkdbU5c14eYfLiPvs4nVAayPz5sMce2fb69XD77fnGM5CNG6srKEZkNbE04kxiFYxJrEw76mLVj8KKGF5M0kh51auq251MYt11F9x2W3X/Yx/z90QjyxUKJXW9Cy6Ayy7jofPO84+sNJCI/p+kLlyYXyyDeeSRahHPfffNpg1rxJnEKpjaJNbMmfnFkbdOJLGksnjVq6r93KVLYdOm9r/Gli3w9a9X9086qf80RmkkOBJLUtcbNw5e/WpSX8FXSY3VJrHuvLOYxTJr62FZ1D03JrEKJCWTWH3aURPLJJbKasoU2GefbHvbtv5T79vl+9+vjoaeMgU++MH2v4Y0FEdiSZIkIFsau6+mxtatWW2sonFlwkIwiVUgzz9frU2z887VVZtGo3bUxKpNYu255/DikUZaJ4u7r14NV15Z3T/jDJg+vb2vITVj9uzqSPzVq+GFF/KNR5Ik5ai2wHsRpxRa1L0QTGIViPWwqhyJpdGuk3WxvvWt6qIH++wD73xne68vNWvMmKykRB+nFEqSNIodfTSMHZtt33cfLF+ebzy1tm7NamL1cSRWbkxiFYhJrKp21MR68snqtkkslU2nRmLdfz/8279V9889NyvXIeXFuliSJAnIlpM//PDq/qJF+cVS7/HH4aWXsu1Zs7JYlQuTWAViPayq4Y7EWru2Oi1l4sT+15PKYN686gdRy5fDunXDv2ZK/Yu5H3EEHHbY8K8rDYd1scotIj4ZEddHxFMRkSLi84Oc+9sR8T8RsTEiHo2Iz0bE2BEMV5JUdLVTChctqq4GmDeLuheGSawCWbmyuj3aR2JNm1ZdnW3tWti8ubXn147C2nNPVzRW+UyYAHPnVvcfeGD411y0CO69N9seNw4++tHhX1MaLkdild4Hgd2AHwx2UkScCHwXuAs4Cfga8Fngy50OUJJUIm98I+y0U7b91FOweHG+8ddmn+gAACAASURBVPSpTWJZDytXJrEKxOmEVWPG9J9S2Gpxd+thqRu0c0rhhg1w+eXV/fe+1wUPVAyOxCq9+Smlw4Hzhjjvq8B/ppTOTindnFL6v2QJrE9ExO4dj1KSVA4TJmS1sfoUpcC7KxMWhkmsAjGJ1d9w6mKZxFI3qE1iDXck1lVXVZPBM2bA6acP73pSu+yxR7Uu28qVsH59vvGoNSmlbUOdExH7AIcAV9c9dBUwnmxkliRJmeOPr2739rY+LafdUjKJVSAmsQrEmlj9DaculkksdYN2jcRavhyuu666/+EPw+TJO349qZ3GjnWFwlFgfuX+17UHU0pLgQ3AQSMekSSpuA4+GHavDNJduxbuuCPfeJ55JosDsqmOuzuAOE+uSVUQKTkSq15tEsvphBqN5szJFibYtCl7f1i1qv8IxWZdeils2ZJtz58Pxx7b3jil4Zozp7pq9aOPwkGmNLpN3zvX6gaPra55vJ+IOBs4G2D27Nn09vZ2JLh169Z17NrdyjZrnW3WGturdd3WZrvvsw+zK5/iPv+tb7Fs69a2v0azbfaKe+5h/zVrAFg/YwYP33JL22MpiyL8nJnEKoiNG8ewcWO2PXEi7LxzvvEUgSOxNNqNHZvVjfx1ZezC/fdnKwq24o474M47s+0IOP98FzpQ8VgXqxgi4jigmfXMb0kp9bRy6cp9oyWmBnxHSildAVwBsGDBgtTT08pLNq+3t5dOXbtb2Wats81aY3u1ruvabN48uOsuAKY/9RT7HXoovOIVbX2Jptts2bJs5TFg+tFHs3c3tXOLivBz5nTCgnj++Qkvb8+a5T+ZsOM1sTZsgNWVz3rHjXNUm8ptOHWxtmyBv/mb6v5v/ZaLqaiYXKGwMG4DDmzi9rstXrdvPHWjEVfTah6XJCmz997VjvCWLXDzzfnFUlsPy8507hyJVRBr1ox/edukS2ZHR2I9+WR1e489spUOpbKqTWLdd19rz73uuqweFmTT93//99sXl9ROjsQqhpTSBmCYa6E21Lc++nzg9r6DEbEfMAW4twOvKUkquxNOqBaGXbQI3vGOfOJ46KHqtkXdc+e/9wVhEmt7O1oTqzaJ5VRClV19cffUaDJOA889B//4j9X9M898eRS0VDh77ZVNnwV4+ml48cV841F7pZQeA+4G6tdFfT+wGfi3EQ9KklR8xxxT7SAsXty/ZsxIeeGFrLA7wPjx/VejUS5MYhXE88+bxKq3o0ks62Gpm+y5J0ydmm2vXQsrVjT3vCuuqCYC5szJ74MrqRnjxmWzBvo89lh+sag1EbEgIk4Bfqdy6KCIOKVym1Jz6p8AR0XE5RHRExGfAD4LfC2l1OQ7myRpVNllFzj88Or+ombKNrbZkiXV7f33zzotylXpklgRMSYiPhMRyyJiY0TcHRHvauH5kyPi8xHxUERsioinI+JfI2LC0M/uHJNY26utibVqFWzb1tzzTGKpm0TAq15V3b+/iYk+994LCxdW9887z7+3Kj7rYpXWucC1wDWV/XdX9q8Fdus7KaV0A3AK8Abgp8AngC8Dnx7JYCVJJXP88dXtRYuan5bQLk4lLJzSJbGALwKfBy4FTgLuAK6NiLcO9cSIGE82ZP1M4C+B44GPAMuBsR2Ktylr1vQv7K7sn+6+BShSgsqqpkMyiaVu00oSKyX4+ter+29+M7zudZ2JS2on62KVU0rpjJRSDHBbVnfu91JKr00pTUwp7ZtS+kJKqf1rpkuSuscRR2TFXSGrG3PvCJdRtKh74ZTqs/mI2A34I+CrKaWLK4dvjoh5wFeBG4a4xB8ChwLzU0qP1xz/btuDbVFtTayZM3MMpGBmzMimIUNW42fXRusa1TGJpW5TXxdrMD/5SfWc8ePhnHM6F5fUTo7EkiRJ25kwAXp64Mc/zvYXLoT580fu9R2JVThlG4l1IjABuLru+NXAwRGx/xDP/whwbV0CqxCcTthYq3WxNm2CZ5/NtseMgdmzOxOXNJJqk1gPPjjw1Nr167NaWH1OPTVboVMqA0diSZKkhk44obp9882wefPIvO6mTdVCnRFwwAEj87oaVNmSWPOBTcDDdcf7lm4+aKAnRsS+wD7AIxHxrYh4oVJT62cRcUhnwm3Opk2wYUM2m3HcOFcQq1U78uq554Y+/6mnqtu7724dIHWHmTOrCd2NGwcuev0P/1CddjtrFpx22sjEJ7XD3ntn/UPI3ss3bco3HkmSVBAHH1wdnbB2Ldxxx8i87tKl1U+P99oLJk8emdfVoMqWxNoVWJPSdtXcVtU8PpA9K/efAuYCpwLvA2YBvZUkVy76Rg5B9s9qXyderSexnEqoblVbF+u++7Z//LHH4Hvfq+5/+MMwaVLn45LaZcKE6vt2SvB44cZMS5KkXETAccdV90dqlcLaelhOJSyMXMepRMRxQDM/gbeklHqAABotR9BM2qcvYbcBeHtKaUMlhp+Tjez6KFmCqz7Gs4GzAWbPnk1vb28TL9Wahx7ama1b92PNmtVMn76e3t76gWaj14oVs1izJss/3nnnc+yzz/KXH1u3bt1234+bb66ev2HDSnp7n0BVjdpMgytOm81mzZrdAfjxj59j8uTq70JKcPnlc3nuuakAzJ27noiHySvs4rRZOdhetfZnzZpsRY8f/vBRXve6xit62GaSJI0yJ5wA3/52tn377dmIrKlTO/uaFnUvpLwnW90GHNjEeRsq96uA6RERdaOxptc8PpC+cTy39iWwAFJKj0fE/cD/avSklNIVwBUACxYsSD09PU2E25qXXoKxY1czbdp0DjlkOj09e7f9NcoqJV7+R3zXXafT01PNgPf29lL//fif/6lOxzzqqOn09PhmU6tRm2lwRWmznXeG227Ltrds6f+7cNtt8PTT2c9+BFx00XTmzcvvfaQobVYWtlfVww/D8kp+dtq06QzULLaZJEmjzL77ZlMTHngAtmzJamOdfHJnX9Oi7oWUaxKrkkwaYq2tfhYDE4ED6F8Xq68W1mDrbT4CvMjAI7kGKJXceStXVrct6t5fbWH3ZqYTPvlkddvphOomtdMJlyzJ6lmOH58lwS+9tPrY29/u31iVlysUSpKkAZ1wQpbEgmyVwk4msbZtyzrdfRyJVRhlq4n1E+Al4PS64+8Hfp1SWjrQE1NKm4EfA2+OiJ36jldqYb0KuKv94TantiaWSaz+rIklZaZOhT0rlf22bKn+Tb322uqCBlOnwlln5ROf1A6uUChJkgZ0zDHZEvQAixf3H8HQbsuXV1eZmTEDpk8f/HyNmFIlsVJKzwCXAJ+JiE9GRE9EXAYcA/xJ7bmVVQfri0t9DtgJ+HFEvD0i3g3cAKwBLiUnJrEGVj8Sa7uS/jW2bIEVK7LtCNhjj87GJo20V7+6uv3AA9kozquvrh4780zYZZeRj0tql333rS5u8sQTI7eCtiRJKoFp0+Cww6r7nSzw7lTCwipVEqviAuBC4Hzgp8CbgPeklK6vO28sddMlU0r3kiW8EnAN8P/IpiW+KaX0dIfjHlD96oSqmjy5upLpli2wbt3A565YUU1yzZqVrXQldZPaJNb998Pll8PGjdn+/vt3viyA1GkTJ8Lu2foFbNtWrY8lSZIEZFMK+yxaNPgoh+FwZcLCyruwe8tSSlvJklgXDnFezwDH/ws4uv2R7ThHYg1uxozqPzLPPTfwIhROJVS3q62Ldeut2aIsfc47D8aOHfmYpHabM6c6RfbRR7MErSRJEgBHHAFTpsCGDdk/gPfdBwcdNPTzWmUSq7DKOBKrq2zZAmsqK4hH9K8BpUyzdbFMYqnb/cZvVKda1SawjjoK/lfD9VWl8rEuliRJGtDEiVnnt8/Che1/jZT6Tye0qHuhmMTKWW2dp113hXGlGxvXec2uUGgSS91u0qTtR6VMmADnnJNPPFInuEKhJEkaVO2UwptuykaGtNNzz8Hzz2fbU6ZUV1dSIZjEyplTCYdWm8RatWrg80xiaTSonVIIcNppMHt2PrFIneBILEmSNKjXvhZ22y3bXrsW7ryzvdevHYV1wAHVqRAqBJNYOTOJNTRHYklVBx5Y3d5tNzj11PxikTph332r28uXt//DVUmSVHIRcPzx1f12TymsrYflVMLCMYmVs5Urq9smsRprpibW1q3VQsDgiE91r2OOyUaq7LQTfPrTWVkAqZtMmVL9cHXLFnjyyXzjkSRJBVSbxLrttv4FY4erdiSWRd0LxwpMOTvqqGzU0E03Leeoo6bnHU4hNTMS65lnskRW3/mTJnU+LikPO+0Ef/d32bYjm9Wt5szJ3tchq4tVOzpLkiSJOXOyVY8efDD71OuWW+Btb2vPtV2ZsNAciZWz3XbLVgk98sjneM1r8o6mmJqpieVUQo0mESaw1N2siyVJkoZUW+C9XVMK162rTvEZN277VZWUO5NYKrxmRmKZxJKk7uEKhZIkaUjHHgtjKimNe+7pX19mRy1ZUt2eMydLZKlQTGKp8HbeGcaPz7ZffDG71TOJJUndw5FYkiRpSNOmwetfX91ftGj416yth2VR90IyiaXCi+hf3L3RlEKTWJLUPWprYD32GGzbll8skiSpwGqnFC5aBCkN73rWwyo8k1gqhaGmFJrEkqTuMXVq9X1/8+b2zA6QJEld6E1vypY2Bli+HO6/f3jXcyRW4ZnEUikMVtw9pf5LsO+558jEJEnqHOtiSZKkIU2cCEcdVd0fToH3zZv7dzoOOGDHr6WOMYmlUqidTlg/EuvZZ7P3G8imRe+008jFJUnqDOtiSZKkphx/fHX7pptgy5Ydu86yZbB1a7a9xx7+Y1lQJrFUCoMlsZxKKEndx5FYkiSpKYccArNmZdsvvAD/9V87dh2nEpaCSSyVwmA1sWqTWE4llKTu4EgsSZLUlAg47rjq/o5OKawt6m4Sq7BMYqkUBquJVVsPy5FYktQd6kdiDXexIUmS1MVqVym87TZYt671a9SOxHJlwsIyiaVSaHYklkksSeoOu+yS1TkE2LQJnn4633gkSVKB7bdfdfTU5s3Q29va81OCJUuq+47EKiyTWCoFa2JJ0uhjXSxJktS02gLvixa19twnnoAXX8y2p03r/w+oCsUklkph+vRsqjNktfr6FpxIySSWJHUr62JJkqSmHXts9Z/GX/0KVqxo/rm19bDmzateR4VjEkulMGZMlsjq01cXa/Vq2Lgx2955Z5g6deRjkyR1hiOxJElS03bdFV7/+ur+jTc2/1yLupeGSSyVRqO6WPWjsEyYS1L3cCSWJElqSW2B94ULm18ZxqLupWESS6XRqC6WUwklqXu5QqEkSWrJkUfC5MnZ9uOPwwMPNPc8R2KVhkkslUYzI7EkSd1j+vTqNPENG2DlynzjkSRJBTdxIrzlLdX9Zgq8r1pVrVczcaL/WBacSSyVRm0Sq+89xiSWJHWvCOtiSZKkFtVOKbzppuqqYAOpn0o4xjRJkfndUWkMNRJrzz1HNh5JUudZF0uSJLXkkENg5sxse80auOuuwc+vX5lQhWYSS6VRXxMrJUdiSVK3cySWJElqyZgxcNxx1f2FCwc/3yRWqZjEUmnUj8TasGEs69dn+5MmZbVTJEndxZFYkiSpZbVTCm+9lZf/cWzEou6lYhJLpVFfE2vlyokv7++1V1Y7RZLUXVyhUJIktWz//aujqjZvhltuaXzehg2wfHm2PWZM9jwVmkkslUbtdMJVq+CZZ/onsSRJ3WfmTJgyJdteuxZWr843HkmSVBK1o7EGmlK4ZEl1e84cmDChszFp2ExiqTTGj68utZ4SLFu208uPmcSSpO7kCoXFFhGfjIjrI+KpiEgR8fkBzruy8nj97a9GOGRJ0mhxzDHV6Tp33w1PP739OU4lLB2TWCqV2imFjzxiEkuSRgPrYhXaB4HdgB80ce6zwBvrbpd0LjRJ0qg2YwYsWFDdv/HG7c956KHqtkXdS8EklkqlNom1YsWkl7dNYklS93IkVqHNTykdDpzXxLkvpZTuqLv5HZUkdU79lML64pquTFg6JrFUKrVJrFomsSSpezkSq7hSStvyjkGSpAEdeWS2lD3AY4/Bgw++/FBs3QpLl1bPNYlVCiaxVCq1xd37TJiQFf6VJHUnR2J1jd0iYmVEbImIByPiUxExNu+gJEldbNIkeMtbqvs1Bd4nrlgBW7ZkO7NnVwswq9BMYqlUGiWx9tijWq9PktR9Zs+GiZUFadesgXXrxuUbkHbEL4E/BN4DnAzcAnwFuDzPoCRJo0DtlMKbbno5cTX5iSeqxy3qXhr2AlUqjaYTOpVQkrpb3wqFfTMAnn56Yr4BdamIOA5Y1MSpt6SUelq5dkqpfhXCGyJiHfDxiLgopfRQ/XMi4mzgbIDZs2fT29vbyks2bd26dR27dreyzVpnm7XG9mqdbTaIbduYv20b4154AdasYekVV/DCQQcx85FHWL1mDQArNm/madtvSEX4OTOJpVIxiSVJo9N++1WTWLULe6itbgMObOK8DW16ve8AHwcWANslsVJKVwBXACxYsCD19PS06WX76+3tpVPX7la2Wetss9bYXq2zzYbw4INwzTUATF+5Enp6WH7ppUyfNi07dvLJHHjEEXlGWApF+DkziaVSMYklSaNTbV2sp582idUJKaUNwP0j+JJ9xQDSoGdJkjRcJ5zwchKLW2+F9euz6YR9Rd8t6l4a1sRSqTSqiWUSS5K6X+0KhY7E6hqnkSWw7so7EElSl5s7N7sBvPQSXHMNYzZuzPanToVZs/KLTS1xJJZKZcqULFne934DJrEkaTRwJFYxRcQCYD+qH4weFBGnVLZvSCltiIg5wFXAPwMPAxOBdwJnAJenlJaMaNCSpNHphBPgm9/Mtv/lX6rHX/lKVworEUdiqXRqpxSOGwe77ZZfLJKkkbHHHjB+fLb9wgvjWLs233j0snOBa4HKHA3eXdm/Fuj7C70WWAV8CvgR8C/AIcDHgI+OZLCSpFHsuOOqyapNm6rHnUpYKiaxVDq1Sazdd4exY/OLRZI0MsaMgX33re4/9lh+sagqpXRGSikGuC2rnLMqpfTbKaU5KaVJKaXJKaVDU0qXppS25fwlSJJGixkz4HWv2/74K1858rFoh5nEUunU1sVyKqEkjR61dbGWLcsrCkmSVFrHH7/9MUdilYpJLJVO7Ugsk1iSNHrU1sV69NH84pAkSSX15jfDxInV/QkTYJ998otHLTOJpdI59NDq9mGH5ReHJGlkORJLkiQNy+TJ8Ja3VPfnzrU+TcmYxFLpvPGNcPHFcM45S0xiSdIo4kgsSZI0bG9/e3XbfyhLZ1zeAUitisjq8a1du86VUCVpFNlzz2wWwIsvPs1v/uZ0UnJFbEmS1KKDD4aLLmL5okVMP+20vKNRi0xiSZKkUhg3Dr7wBejtXUFPz6vzDkeSJJXVYYfx3IYN/etjqRScTihJkiRJkqTCK10SKyLGRMRnImJZRGyMiLsj4l1NPndsRHwiIn4dEesj4qmI+H5EvKbTcUuSJEmSJGnHlS6JBXwR+DxwKXAScAdwbUS8tcnnXgz8AHg7cD5wAHBzROzdkWglSZIkSZI0bKWqiRURuwF/BHw1pXRx5fDNETEP+CpwwxCXOAO4JqX02Zpr/gq4D/gt4PK2By1JkiRJkqRhK9tIrBOBCcDVdcevBg6OiP2HeP4E4IW6Y2sq92VrC0mSJEmSpFGjbImb+cAm4OG644sr9wcN8fxvAO+PiHdExCsiYm7l2HLgmrZGKkmSJEmSpLYp1XRCYFdgTUop1R1fVfP4gFJKfxoRm4DvUU3gPQj0pJRWNXpORJwNnA0we/Zsent7dzD0wa1bt65j1+5WtlnrbLPW2Wats81aY3u1zjaTJEkanXJNYkXEccCiJk69JaXUAwRQn8CicryZ1zsH+CxwIXAzMBP4NLAwIt6cUnqy/jkppSuAKwAWLFiQenp6mnmplvX29tKpa3cr26x1tlnrbLPW2Watsb1aZ5tJkiSNTnmPxLoNOLCJ8zZU7lcB0yMi6kZjTa95vKGI2BW4BPiLlNLnao7fBCwD/hj4RPOhS5IkSZIkaaTkmsRKKW0A7m/hKYuBicAB9K+L1VcL695BnvsblefeVRfDqohYQnPJNEmSJEmSJOWgbIXdfwK8BJxed/z9wK9TSksHee6Kyv1htQcrI7TmAU+0K0hJkiRJkiS1V97TCVuSUnomIi4BPhMRa4FfAO8FjgHeUXtuRPwMmJNSmld57rKI+FfgjyNiG3ALMAP432QjtC4bua9EkiRJkiRJrShVEqviAmAdcD6wO/AA8J6U0vV1541l+6/vvcAfAu+r3L9Algg7MqX0804GLUmSJEmSpB1XuiRWSmkr2eqCFw5xXk+DYxuAL1ZukiRJkiRJKomy1cSSJEmSJEnSKGQSS5IkSZIkSYVnEkuSJEmSJEmFFymlvGMojYh4Fni0Q5efCazs0LW7lW3WOtusdbZZ62yz1theretkm81JKc3q0LW1g+yDFY5t1jrbrDW2V+tss9bZZq3LvQ9mEqsgIuLnKaUFecdRJrZZ62yz1tlmrbPNWmN7tc42Uzv589Q626x1tllrbK/W2Wats81aV4Q2czqhJEmSJEmSCs8kliRJkiRJkgrPJFZxXJF3ACVkm7XONmudbdY626w1tlfrbDO1kz9PrbPNWmebtcb2ap1t1jrbrHW5t5k1sSRJkiRJklR4jsSSJEmSJElS4ZnEylFE7BMR10XE8xHxQkR8LyL2zTuuooqIUyLiuxHxaES8GBEPRMRXImJq3rGVSUT8JCJSRFyYdyxFFhFvjYh/j4h1ld/Pn0fEMXnHVVQR8aaIWBgRz1Ta6xcRcVbecRVBROwdEV+PiNsjYkPl92+/BudNioi/iIinKu9xt0fEW0Y+4vw102YRsSAiroiI+yvnPBYR346I/fOJWmViH6w19sGGz/5X8+yDNc/+1+Dsg7WuDH0wk1g5iYgpwE3Aq4HfAz4AvBK4OSJ2yjO2AvsjYCvwJ8BvApcB5wCLIsKf5SZExPuA1+YdR9FFxIeAHwL/DbwTeDdwLTAlz7iKKiJeA9wIjAc+CLwLuAv424g4J8/YCmIe8B5gNfAfg5z3t2Tt96fA24CngJ9GxCEdj7B4mmmzU4H5wF8DJwGfBg4Ffh4R+4xEkCon+2A7xD7YMNj/ap59sObZ/2qKfbDWFb8PllLylsMNOJ+sMzCv5tj+wBbgk3nHV8QbMKvBsd8FEnBM3vEV/QZMA1YA76u02YV5x1TEG7Af8CLw8bxjKcsN+DLwErBz3fE7gNvzji/vGzCmZvsPKr9/+9Wd89rK8TNrjo0DHgB+lPfXUNA2a/Q3YQ6wDfhC3l+Dt+Le7IPtUJvZB9vxtrP/1Xxb2Qdrrb3sfw3dRvbBOtNmufbB/OQkPycDd6SUHu47kFJaCtwKvCO3qAospfRsg8N3Ve73GslYSurPgcUppe/kHUjBnUX2BvzNvAMpkQnAZrKOZ601OOKXlNK2Jk47mawNr6l53hbgn4ETI2Jih8IrpGbarNHfhJTSo8Cz+DdBg7MP1iL7YMNi/6t59sFaY/9rCPbBWleGPpg/3PmZD/y6wfHFwEEjHEuZHVW5vy/XKAouIo4k+8T0I3nHUgJHAvcDp0bEkojYEhEPR8RH8w6swK6s3P91ROwZEdMi4oPAscAl+YVVKvOBpSmlDXXHF5N1UueNfEjlExEHArvh3wQNzj5Ye9gHG4L9r5bZB2vNlZV7+1/DYx+sDUayDzau0y+gAe1KNs+03ipg+gjHUkoRsRfwBeDGlNLP846nqCJiPHA5cHFK6YG84ymBPSu3vyCr/bGErB7DpRExLqX0tTyDK6KU0q8jogf4PtWO+mbgwymlf84tsHIZ7G9C3+MaRESMI/v0/lmy2hbSQOyDDZN9sKHZ/9oh9sFaYP+rbeyDDdNI98FMYuUrNTgWIx5FCUXEzmRFH7cAZ+YcTtF9CpgMfCnvQEpiDDAVOCOl9L3KsZsqq3J8JiL+OlUmfisTEa8Evkv2idWHyYa1vwP4ZkRsTCl9O8/4SiLwb8JwXQocAfxWSqlRZ1Sq5e/bDrIP1jT7X62zD9YC+19tYx9s+Ea0D2YSKz+raZzVnU7jTLAqImIS8CNgLnBUSml5ziEVVmW58AvIivJNrJvTPTEipgFrU0pbcwmwmJ4jW6VqUd3xhWQrMu0BPDnSQRXcl8k++XtbSmlz5djPImIG8LWI+E6TNQlGs1XAvg2OT695XAOIiK8AZwO/l1JamHc8Kjz7YDvIPlhz7H/tMPtgrbH/1R72wYYhjz6YNbHys5hs/m29g4B7RziW0qgMzf4ucBjw1pTSPTmHVHRzgUnA1WQd874bZMtlrwYOzie0wlo8wPG+T2PsDGzvYODumg5Un/8CZpDNj9fgFgP7R0T9EuIHka089PD2TxFARFxAtrTz+Smlq/KOR6VgH2wH2Adrif2vHWMfrDX2v9rDPtgOyqsPZhIrPz8C3hARc/sOVIbKvqnymOpExBjg22TFCt+RUroj55DK4JfA0Q1ukHWsjsY35nrfr9yfWHf8RGB5SmnFCMdTBiuAQyJiQt3xw4GN+AlWM34EjCer/QG8XF/gvcDClNKmvAIrsoj4GHAhcEFK6et5x6PSsA/WIvtgLbP/tWPsg7XG/ld72AfbAXn2wZxOmJ9vAecCP4yIz5LNw/0i8DhZEUht72/I3ly+BKyPiDfUPLbcIe3bSymtAXrrj0cEwKMppe0eEzcANwOXR8RM4BHgFOAErP0xkEuBa4HrI+IbZDUZTgbeB1ySUnopz+CKICJOqWy+rnJ/UkQ8CzybUrolpfTLiLgG+KvKaIelwDnA/sDpIx9x/oZqs4g4Ffgr4CdkNVNq/ya8kFJyRI0GYh+sdfbBWmD/a4fZB2uN/a8m2AdrXdH7YGFtvPxU5stfAhxPNkz2Z8DHU0rL8oyrqCJiGTBngIf/hC/FegAACahJREFULKX0+ZGLptwiIgFfSil9Nu9YiigiXgF8hazjNJ1sueevppT+KdfACiwiTiIrYjufbArFEuAK4HJrfrz8O9fILSmlnso5fQWATwOmAXcDnxqt/+wM1WYRcSXwe4Od05HA1BXsg7XGPlh72P8amn2w1tj/Gpp9sNYVvQ9mEkuSJEmSJEmFZ00sSZIkSZIkFZ5JLEmSJEmSJBWeSSxJkiRJkiQVnkksSZIkSZIkFZ5JLEmSJEmSJBWeSSxJkiRJkiQVnkksSRrlIuKMiEgR0ZN3LJIkSaOFfTCpdSaxpC4RET2VP4K1t3UR8d8RcX5EjM07xpEWEdMi4vN5dQwi4srK92FNRMxo8Hhfx+WUPOKTJEnDZx9se/bBJHWKSSyp+3wH+ADwu8AXgSnAXwGX5RlUTqYBnwN6co5jF+CzOccgSZI6yz5YlX0wSR1hEkvqPr9IKV2dUroqpXQRcDjwJPAHETG7HS8QEWMjYko7rlVmETG1yVN/DnwkIvbrXDTl0UK7SZJUJvbBRoh9sB1jH0zdwCSW1OVSSi8AtwMBzAWIiD0j4i8j4pcRsToiNkbEvRHxqfoh7zXDrY+LiP8TEUuAjcB7Ko+fEBHXRMQjEfFiZdj2wog4qj6WiOiNiGURsV9EfL9y7urKkO+dI2JMRPxJRCytxPSLiHhTg+tERJxTGaa/ISLWRsTNEXF0zTk9wNLK7udqhvcvq7vWeyPiPyvX2BARdzYaWl557pURcWzl/HXA9U1+Gz4NjCf7VHZQg9VG6Gu/umPLKsdfGxE3VqYvPBMRF0fEuIiYVNl+otKm/x4RBw7w8uMqQ/8fjYhNEfGriDh1gDgXVL6HKyvnPhARF0TEuEYxR8TciLguIlYBLwzVDpIklZ19MMA+mH0wqc3GDX2KpDKLiADmVXZXVu5fA/wO8H1gCdkf95OAr5J1sj7U4FIXV877FtkfwAcqx88AdgX+EVgO7AX8AfCziDg6pfQfddfZCbgJ+HeyjsXrgbOAScBzZJ9afr3yWn8EXB8Rc1JKa2uucRXwPuA64O+BicDpwKKI+J2U0o+A+4BPAJdUvs7vVZ67rqZtLgQuAH4C/B9gG/BO4NqIODel9Dd1sS8A3lVpg39o0EYDuRv4J+D0iLg4pXR3C89txt7AIuAasjY5AfhDYCswH5hM9r2dSdamP4iIA1NK2+qucxHZ9+cyIAFnAt+JiEkppSv7ToqIt5K16cPAXwKrgDcCXwAOAd5dd92dgVuAW8nae7d2fNGSJBWZfTD7YNgHk9ovpeTNm7cuuJHVHEjAn5L9oZxF1lH6VuX47TXnTgaiwTWuIvuju0fNsTMqz38AmNLgOTs1ODabrLN2Q93x3sq1/rju+PfIOi8/B8bXHD+5cv6Hao69s3Ls7LprjKs8f2nf1wbsVzn38w1iPLTy2JcbPPYDsk7i1JpjqXI7roXvyZWV58ysxLIJ+EmDtj2lwbGeBtfrBZbVHVtWOf/ddcf/u9KmP6z9XgMfq5x/YoPXfBTYpeb4LpVjq4DJlWOTgBVkHeBxda/5ifrYa77nF+b9O+LNmzdv3rx14oZ9MPtg/Y/bB/PmrYM3pxNK3efPgGeBZ8g+fToL+BHw230npJReTCklgIiYEBG7RsRM4Kdk04wXNLjuZSmlDfUHU0rr+7Yrw9FnkHXC7iT7RK/eVrJP+Wr9B9lQ+2+mlDbXHQd4Zc2x9wNryT7Jmtl3Iysgej1ZR6X2/IGcTvaH/R9qr1O51o+AqWSfbNW6O6V0YxPX3k5KaRnwDeDEiDhmR64xiCdSStfWHftPsjb9et/3uqJRm/a5LKX0fN9OZfubwHSqhVmPJ+sg/z0wra7dbqicc0KDa1/cwtcjSVIZ2QezDwb2waSOcjqh1H2uAK4l6xysBx5MKa2qPaEyZ/7TZKvnzCP7Q1treoPrPtjoxSLiAOBLwIlknZhaaftn8FRKaWPdsdWV+6W1B1NKq7OR+NQujXwgWefm6UbxVMweKN666wRw/xDXqTXUNYdyIVmH9qKIOGyY16q1tMGxhm1ac3y75abJhv/Xu7dyP7dy31fL4e8Giae+3Z5NKa0Z5HxJkrqBfTD7YGAfTOook1hS93moiU+q/i9wHtn8/S+RfWK4mWx490U0XvRhu08AI2JnsiHNO5EtIX0P2Sd024DPAI0+7do6SFwDPRZ1288Cpw1ynV8P8ljtdRJZHYqBXndx3f52bdCKlNJzEfHnZB2p9wx02iCXGOg9e7htOthr15/Xt//HwC8HuPaTdfvDajdJkkrCPph9sGYesw8mDYNJLGl0+gDw7ymlfqueRMS8Ac4fyLHAnsBZKaW/r7vWhcMLcUAPAb8B3JFSWjfEuYN1Rh4CfhN4LKXU6NOvTrkE+AhZx/WiBo/3fWK7a4PH9ifr6HbKQWTD+Gv1fer3SOX+ocr9+h0d1i9J0ihmH8w+WCP2waQmWRNLGp22UvfpTkTsRFYUstXr0OBaJ9C4FkM7/CPZe9dXGj0YEbXDqPs6WI06I1dV7r8cdUtaV67TkdVbKjUt/gw4APhgg1P6hssfVxfP+8g6q510TkTsUvOauwAfBtaQrWwDWc2OZ4BPR8R27RoRkyNiaofjlCSprOyD2QdrxD6Y1CRHYkmj03XAhyLiGuBGsvnzZ5Etr9yK/yRbJeUvI2I/suWdDyH7lPEe4OA2xfuylNJ1EfH3wLkRcSjwr2Sr8OxNVgR0HpXaAZWh4w8Dp0bEErIaDutTStenlO6KiM+RdWZ+GRHXkg3B3gN4HfBWYEK746/4W+CTZEtb1399D0TEjWTfnyAbLn4I2YpAD5Mte90pK4E7I+LvyDrFZwL7An/QV1A2pbQ+In6XbPWgByrnPkxWi+PVZMuGv5NsRRxJktSffTD7YI3YB5OaZBJLGp0+SVY34T3AO4DHyYqR3kXWoWpKSmlNRJwI/DlZfYdxZMsKvxX4fTrQgaq87lkRcTNwNlndhwlkHblfVPZrnU42fPzLwBSy5Yqvr1znCxHx32RLHn+crK7EM2T1HM7vROyV190aEZ8hW9a6kQ+QrR50emX7P4CjgcvIVv7plE8BbwbOJetUPwScnlL6p9qTUko/jYjXkxWmfT/ZUuKrgSVktT5+1cEYJUkqM/tg2AdrwD6Y1KTov+qnJEmSJEmSVDzWxJIkSZIkSVLhmcSSJEmSJElS4ZnEkiRJkiRJUuGZxJIkSZIkSVLhmcSSJEmSJElS4ZnEkiRJkiRJUuGZxJIkSZIkSVLhmcSSJEmSJElS4ZnEkiRJkiRJUuGZxJIkSZIkSVLh/X+jmjIAZeQFhgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(20,8))\n", "\n", "plt.subplot(1, 2, 1)\n", "plt.plot(beta_2,c='b',alpha=0.75,lw=3)\n", "plt.title('Reduced Simulations (I = 10)',fontsize=20); plt.grid()\n", "plt.tick_params(axis='both', which='major', labelsize=16)\n", "plt.ylabel('Coefficient',fontsize=18); plt.xlabel('Parameter Number',fontsize=18)\n", "\n", "plt.subplot(1, 2, 2)\n", "plt.plot(beta_1,c='r',alpha=0.75,lw=3)\n", "plt.title('Full Simulations (I = 506)',fontsize=20); plt.grid()\n", "plt.tick_params(axis='both', which='major', labelsize=16)\n", "plt.ylabel('Coefficient',fontsize=18); plt.xlabel('Parameter Number',fontsize=18)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "Pe-NId7sj3m2", "nbpages": { "level": 2, "link": "[5.1.5 Ridge Regression with SKLearn](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.5-Ridge-Regression-with-SKLearn)", "section": "5.1.5 Ridge Regression with SKLearn" } }, "source": [ "## 5.1.5 Ridge Regression with SKLearn" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": {}, "colab_type": "code", "id": "3fqnYPYZj_NN", "nbpages": { "level": 2, "link": "[5.1.5 Ridge Regression with SKLearn](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.5-Ridge-Regression-with-SKLearn)", "section": "5.1.5 Ridge Regression with SKLearn" } }, "outputs": [], "source": [ "X,Y = load_boston(return_X_y=True)\n", "Lambdas = [0.01,0.1,0.15,0.2,0.5,1,10,20]\n", "x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state=5)\n", "k_folds = 25\n", "ridge = RidgeCV(alphas=Lambdas,cv=k_folds,normalize=False)\n", "regression = ridge.fit(x_train,y_train)\n", "y_hat = regression.predict(x_test)\n", "beta_sklearn = regression.coef_" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "iK7gBj2zmuJ2", "nbpages": { "level": 2, "link": "[5.1.5 Ridge Regression with SKLearn](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.01-Contributed-Example.html#5.1.5-Ridge-Regression-with-SKLearn)", "section": "5.1.5 Ridge Regression with SKLearn" } }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [5.0 Regression Approximations to Estimate Sensitivities](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.00-Regression-Approximations-to-Estimate-Sensitivities.html) | [Contents](toc.html) | [5.2 Lasso Regression](https://ndcbe.github.io/cbe67701-uncertainty-quantification/05.02-Contributed-Example.html)

\"Open

\"Download\"" ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "05.01-Contributed-Example.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }