{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "*This notebook contains material from [cbe67701-uncertainty-quantification](https://ndcbe.github.io/cbe67701-uncertainty-quantification);\n", "content is available [on Github](https://github.com/ndcbe/cbe67701-uncertainty-quantification.git).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [3.0 Input Parameter Distributions](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.00-Input-Parameter-Distributions.html) | [Contents](toc.html) | [3.2 Principal Component Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.02-Contributed-Example.html)

\"Open

\"Download\"" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "VMGtqa5Yxtzu", "nbpages": { "level": 1, "link": "[3.1 Copulas ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1-Copulas)", "section": "3.1 Copulas " } }, "source": [ "# 3.1 Copulas " ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "62S8Y1Txxtzv", "nbpages": { "level": 1, "link": "[3.1 Copulas ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1-Copulas)", "section": "3.1 Copulas " } }, "source": [ "Created by Krishnendu Mukherjee (kmukherj@nd.edu)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "colab_type": "code", "id": "lc1_WU9Txtz3", "nbpages": { "level": 1, "link": "[3.1 Copulas ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1-Copulas)", "section": "3.1 Copulas " }, "outputId": "1deec55c-d001-41c7-9736-bef32b58ea2a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: copulas in /anaconda3/lib/python3.7/site-packages (0.3.0)\n", "Requirement already satisfied: scipy<1.3,>=1.2 in /anaconda3/lib/python3.7/site-packages (from copulas) (1.2.1)\n", "Requirement already satisfied: pandas<0.25,>=0.22.0 in /anaconda3/lib/python3.7/site-packages (from copulas) (0.24.2)\n", "Requirement already satisfied: docutils<0.15,>=0.10 in /anaconda3/lib/python3.7/site-packages (from copulas) (0.14)\n", "Requirement already satisfied: numpy<1.17,>=1.13.1 in /anaconda3/lib/python3.7/site-packages (from copulas) (1.16.2)\n", "Requirement already satisfied: exrex<0.11,>=0.10.5 in /anaconda3/lib/python3.7/site-packages (from copulas) (0.10.5)\n", "Requirement already satisfied: boto3<1.10,>=1.7.47 in /anaconda3/lib/python3.7/site-packages (from copulas) (1.9.253)\n", "Requirement already satisfied: matplotlib<4,>=2.2.2 in /anaconda3/lib/python3.7/site-packages (from copulas) (3.0.3)\n", "Requirement already satisfied: pytz>=2011k in /anaconda3/lib/python3.7/site-packages (from pandas<0.25,>=0.22.0->copulas) (2018.9)\n", "Requirement already satisfied: python-dateutil>=2.5.0 in /anaconda3/lib/python3.7/site-packages (from pandas<0.25,>=0.22.0->copulas) (2.8.0)\n", "Requirement already satisfied: s3transfer<0.3.0,>=0.2.0 in /anaconda3/lib/python3.7/site-packages (from boto3<1.10,>=1.7.47->copulas) (0.2.1)\n", "Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /anaconda3/lib/python3.7/site-packages (from boto3<1.10,>=1.7.47->copulas) (0.10.0)\n", "Requirement already satisfied: botocore<1.13.0,>=1.12.253 in /anaconda3/lib/python3.7/site-packages (from boto3<1.10,>=1.7.47->copulas) (1.12.253)\n", "Requirement already satisfied: cycler>=0.10 in /anaconda3/lib/python3.7/site-packages (from matplotlib<4,>=2.2.2->copulas) (0.10.0)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /anaconda3/lib/python3.7/site-packages (from matplotlib<4,>=2.2.2->copulas) (1.0.1)\n", "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /anaconda3/lib/python3.7/site-packages (from matplotlib<4,>=2.2.2->copulas) (2.3.1)\n", "Requirement already satisfied: six>=1.5 in /anaconda3/lib/python3.7/site-packages (from python-dateutil>=2.5.0->pandas<0.25,>=0.22.0->copulas) (1.12.0)\n", "Requirement already satisfied: urllib3<1.26,>=1.20; python_version >= \"3.4\" in /anaconda3/lib/python3.7/site-packages (from botocore<1.13.0,>=1.12.253->boto3<1.10,>=1.7.47->copulas) (1.24.1)\n", "Requirement already satisfied: setuptools in /anaconda3/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib<4,>=2.2.2->copulas) (40.8.0)\n" ] } ], "source": [ "## installing copula library via pip\n", "!pip install copulas" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[3.1 Copulas ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1-Copulas)", "section": "3.1 Copulas " } }, "source": [ "**Warning**: If you run this notebook on Colab, you must select **Runtime --> Restart and Run All**. This is because the package `copulas` uses a different version of `pandas` and other packages already available on Colab." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": {}, "colab_type": "code", "id": "oqhFA5S-yp2R", "nbpages": { "level": 1, "link": "[3.1 Copulas ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1-Copulas)", "section": "3.1 Copulas " } }, "outputs": [], "source": [ "## import all needed Python libraries here\n", "import numpy as np\n", "import pandas as pd\n", "from scipy import stats\n", "import random\n", "from copulas import random_seed\n", "import matplotlib.pyplot as plt\n", "# essential function for generating Normal copula and visualization\n", "from copulas.multivariate import GaussianMultivariate\n", "from copulas.visualization import compare_3d\n", "from mpl_toolkits import mplot3d" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "Y7gRcSFD1mbI", "nbpages": { "level": 2, "link": "[3.1.1 Definition ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1.1-Definition)", "section": "3.1.1 Definition " } }, "source": [ "## 3.1.1 Definition ##\n", "Copulas can help to \"link\" Cumulative distribution function (CDF) to Joint distribution for any number of input parameters. \n", "\n", " $$ F_{XY} = C(F_X (x), F_Y (y)) $$\n", "\n", "Here, C is the copula function which takes marginal CDF for each variable and creates a joint CDF. \n", "\n", "\n", "* Very useful in finance and insurance industries for modeling risk distribution.\n", "* They allow one to easily model and estimate the distribution of random vectors by estimating marginals and copulae separately.\n", "\n", "\n", "## Normal Copula ##\n", "One of the simplest Copula in the Normal/Gaussian copula:\n", "\n", "$$ C_N (u,v) = \\Phi_R (\\Phi^{-1}(u), \\Phi^{-1}(v)) $$\n", "\n", "Where, $u$ and $v$ are the random variables, $R$ the correlation matrix and $C_N$ is the normal copula. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": {}, "colab_type": "code", "id": "qo9zJB2z18zg", "nbpages": { "level": 2, "link": "[3.1.1 Definition ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1.1-Definition)", "section": "3.1.1 Definition " } }, "outputs": [], "source": [ "## https://pypi.org/project/copulas/#:~:text=Copulas%20is%20a%20Python%20library,following%20the%20same%20statistical%20properties. \n", "## Defining A trivariate correlated distribution, 2 beta and 1 Normal \n", "def sample_trivariate_xyz(size=1000, seed=42):\n", " \"\"\"Sample from three dimensional toy dataset.\n", " The output is a DataFrame containing three columns:\n", " * ``x``: Beta distribution with a=0.1 and b=0.1\n", " * ``y``: Beta distribution with a=0.1 and b=0.5\n", " * ``z``: Normal distribution + 10 times ``y``\n", " Args:\n", " size (int):\n", " Amount of samples to generate. Defaults to 1000.\n", " seed (int):\n", " Random seed to use. Defaults to 42.\n", " Retruns:\n", " pandas.DataFrame:\n", " DataFrame with three columns, ``x``, ``y`` and ``z``.\n", " \"\"\"\n", " with random_seed(seed):\n", " x = stats.beta.rvs(a=0.1, b=0.1, size=size)\n", " y = stats.beta.rvs(a=0.1, b=0.5, size=size)\n", " return pd.DataFrame({\n", " 'x': x,\n", " 'y': y,\n", " 'z': np.random.normal(size=size) + y*10\n", " })\n", " \n", "# Defining a function for 3 dimensional plot for visualization, \n", "# followed by a comparision plot\n", "\n", "def scatter_3d(data, title=\"Original dataset\", columns=None, fig=None, position=None):\n", " \"\"\"Plot 3 dimensional data in a scatter plot.\"\"\"\n", " fig = fig or plt.figure()\n", " position = position or 111\n", "\n", " ax = fig.add_subplot(position, projection='3d')\n", " ax.scatter(*(\n", " data[column]\n", " for column in columns or data.columns\n", " ))\n", " ax.set_xlabel('X',Fontsize=\"10\")\n", " ax.set_ylabel('Y',Fontsize=\"10\")\n", " ax.set_zlabel('Z',Fontsize=\"10\")\n", " \n", " if title:\n", " ax.set_title(title,Fontsize=\"20\")\n", " ax.title.set_position([.5, 1.05])\n", "\n", " return ax\n", "def scatter_3d_2(data, title=\"Syntheic dataset\", columns=None, fig=None, position=None):\n", " \"\"\"Plot 3 dimensional data in a scatter plot.\"\"\"\n", " fig = fig or plt.figure()\n", " position = position or 111\n", "\n", " ax = fig.add_subplot(position, projection='3d')\n", " ax.scatter(*(\n", " data[column]\n", " for column in columns or data.columns\n", " ))\n", " ax.set_xlabel('X',Fontsize=\"10\")\n", " ax.set_ylabel('Y',Fontsize=\"10\")\n", " ax.set_zlabel('Z',Fontsize=\"10\")\n", " \n", " if title:\n", " ax.set_title(title,Fontsize=\"20\")\n", " ax.title.set_position([.5, 1.05])\n", "\n", " return ax\n", "\n", "# defining another trivariate distribution for which outputs age, income and health \n", "# expectancy \n", "def sample_trivariate_age_income_health(size=100, seed=42):\n", " \"\"\"Sample from a bivariate toy dataset.\n", " This dataset contains two columns which correspond to the simulated age and\n", " income which are positively correlated with outliers.\n", " Args:\n", " size (int):\n", " Amount of samples to generate. Defaults to 100.\n", " seed (int):\n", " Random seed to use. Defaults to 42.\n", " Retruns:\n", " pandas.DataFrame:\n", " DataFrame with two columns, ``age`` and ``income``.\n", " \"\"\"\n", " with random_seed(seed):\n", " age = stats.norm.rvs(25, 15.0, size=size)\n", " income = 2.3*(age**2) \n", " health_expec = abs(age) + 2*np.log(income) \n", " return pd.DataFrame({\n", " \"age\": age,\n", " \"income\": income,\n", " \"health_expec\" : health_expec\n", " })" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 297 }, "colab_type": "code", "id": "txAg9VxV2E4P", "nbpages": { "level": 2, "link": "[3.1.1 Definition ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1.1-Definition)", "section": "3.1.1 Definition " }, "outputId": "75f1532e-bdc2-4440-d157-ed601bc561a2" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEHCAYAAAANnZUmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXmcHddZ5/09VXX3rfdNUqvVau2SLVmyZWXD2ZxAEoeEkBCWxCRsAwGGgQwZXja/M5DkwwzrO0yAQGICCYTwQhZCANtxHMeLZEe2Zcvaet/Xu+9VdeaP6rq+ffve7r69SbLr+/n0p6W6dU+dqq761XOe8zzPEVJKHBwcHBy2B+V6d8DBwcHhlYQjug4ODg7biCO6Dg4ODtuII7oODg4O24gjug4ODg7biCO6Dg4ODtuII7ovc4QQUgjx8Ca087AQYtvjC4UQPYvn8NlNam9TroeDw3pxRPcGQQhxSgjxGSHEgBAiK4RICCEuCCF+Twix43r3z+ElNvtFsJXcTH19paBd7w680hFCCOATwH8FdOA/gH8A3MCrgF8BflYI8UEp5ZfWcYhDQGYTuvoBwL8J7Tg4vKJxRPf68xtYgjsEvF1K+UL5h0KIHwD+Bvg7IcSbpZTfrKdxKeWlzeiklHJkM9pxcHil47gXriNCiB4s0S0C91QKLoCU8h+BXwJU4P8IIZSy79+7OHS8Vwjx1kW/a7zc91rLhymE6Fx0Z8wsujOeEUJ8UAhx1+J3frti/2U+3fJ9hRDHhRD/IoSICSEyQohvCSFeVeW4XUKI3xRCfEcIMSWEKAghJoQQnxdCHKrvClZHCOEWQvyGEKJfCJEXQgwKIf6HEMJTY/8192nxugwu/veDi+dv/9xbdvyPCCG+LoQYXuzDghDiASHE99bowy1CiC8IIYYW958VQnxXCPGHQghXxb6aEOJnhRBPLLqhMkKI84vHLL8/Vu2rw/bjWLrXlx/H+ht8UUp5YYX9Po0lzgeA7wEqrd33AG8F/hX4FNCz0kGFEG3AY4v7PbL47w7gT4F/r/McAE5hWeuPL/a1G/gB4EEhxHEp5eWyfV8HfGzxHP4RSAH7Fs/hHiHEq6WUz66jD0DJXfNF4J1AP/D/YblqPgQcq/G1evr0MNAA/CLwLPDPZe08s/i7CfgjrOv6H8As0Am8A/i6EOInpZSfLuvzLcCTgAS+giWUYaAP+Fng17FezCwK8FeBtwCXgc8DOeD1wJ8Ap4Efq6OvDtuNlNL5uU4/wINYD9pPrmHfv13c99fLtt27uM0E3lrjexJ4uGLbXy5u/2TF9luB/OJnv13x2cPW7bJk212L+0rg3orPfnpx+59WbG8DQlX6eSuW2P1rxfaexXY+u8Zr+sOL+z8OeMu2N2GJcLXrsal9AjzAzirbI8DzwALgK9v+vxbbe2eV7zQCStn/f3tx3z8B1LLtatnf9Z1r7avzs/0/jnvh+tK5+Ht0Dfva+3RV+ezLUspvrOWAQgg38H4gDvyP8s+kZc399VraqeA7UsrPVmz7K6yJwTsqjjEjpUxWNrB47IeA11cOp+vkxxd//5qUMlfW/gLw36t9YbP7JKXMSynHqmyPY12XRuD2Kl/NVvlOVEppAiy6Dj4CTAG/JKU0yvYzgF/GEtgfWWtfHbYfx71wfRGLv9cS/7rSvmfrOOYBwAc8VU1ogEeBn6ijPYCnKjdIKYtCiGksgVmCEOJtwM9guSVaWH4ftgCTdfbB5jYsy//RKp89XOtLm90nIcQR4KNYrotOwFuxS3kY4N9juQD+WQjxJeABrBdZf8V39gPNwFXg1y1PyjKyWBErDjcojuheXyaBg1g+0NXYWfadSqbqOGZk8fd0jc9rbV+JWI3tOtawt4QQ4hew/J1RLH/nCFZImwS+H2tIX3XCa41EgAUpZbHKZ1Wv02b3SQhxJ5aFrGG5kL4CJLBeBsex/M2l9qSUZ4UQrwX+Hyw/8o8ttnMZuE9K+YXFXZsXf+8DfmuFLgTX2leH7ccR3evLo1gTIG8C/qLWTkIIFct/CvCdKrvUkymWWPzdXuPzWts3jBBCA+7DEr/bpJSTFZ+f2YTDxIEmIYSrivB2bFOffh1rNPF6KeXDFe39NyzRXYKU8nHg7YsRFiexJkZ/Hvi8EGJWSvnA4rkB/JOU8t3r6JfDDYDj072+fBYwgHctDkdr8SEsX+5l4FsbPOYlrCHoLUKIUJXPX7PB9leiBWs2/bEq4hbEcg1slO9i3dfVzuOuTeqT7UtVq3wGVtTBQqXgLvI9Nb4DlPzBj0kpfxP4hcXNtkhfwhpV3FmHj3m1vjpsM47oXkeklAPA7wIu4CtCiMOV+wghvh9r6GsAP2tPqmzgmAUsH2IEyyIrP9atWJlnW8UM1rD95KKg2cd1YZ1jyyYc4zOLv39HCFHyowohmqg43w30KYo1uqjlFhrCsrZvKd8ohPgwVqgXFdtfK4SIVG7npVFHBkBKqWNFLXQCfyyE8FVpq7PiPlqtrw7bjONeuP78NhAA/gvwrBDi34AXsIT4VVhxl1ng/VLKhzbpmB8D3gD8VyHEaax40k7gvcDXsfyYGxL3akgpTSHEHy8e/4IQ4stYMbSvxwrp+ubivzfCF4D3AfcAzy8ew4XlKz0H7N1on6SUKSHEk8BrhRB/C1zBeil+RUr5HPCHWOL6qBDii1hugVNY1veXFvtSzi8DdwsriWUAK0ztCPC9WKL552X7/ncsH/PPAO8QQjwEjGOFve0DXo3lG764xr46bDfXO2bN+bF+sEKr7scKjM9iPXjPA/+TKjGfi9+5lyoxshX7LItLXdy+Y/F4s4vHewb4IJYgSOA/V+z/MLXjdH+7xrGHgKGKbRrWC+bi4nGngM8Bu7HcLRLoKdu/hzrjTLFE8zexBCy/2I/fwZq8qhanW1efFr/Th5WkMI/1glrydwDeDjwBJLFcAv+OFcmw7G8G3I1loV/EEug0livpj4HdVc5PYE22PYgV81vAEt5HgV8DdtXTV+dne3/E4h/FwQEAIcTvYD24b5VS/tv17o+Dw8sNR3RfoQghuqSUExXbjmG5GgrADlmWXODg4LA5OD7dVy5PCSGuYbkw0lj+wLdhTa7+jCO4Dg5bg2PpvkIRQvwW1oRZDxDC8js+AfxPWT3UycHBYRNwRNfBwcFhG3HidB0cHBy2EUd0HRwcHLYRR3QdHBwcthFHdB0cHBy2EUd0HRwcHLYRR3QdHBwcthFHdB0cHBy2EUd0HRwcHLYRR3QdHBwcthFHdB0cHBy2EUd0HRwcHLaR1aqMOYUZHBwcHOpH1PrAsXQdHBwcthFHdB0cHBy2EUd0HRwcHLYRR3QdHBwcthFHdB0cHBy2EUd0HRwcHLYRR3QdHBwcthFHdB0cHBy2EUd0HRwcHLYRR3QdHBwcthFHdB0cHBy2EUd0HRwcHLYRR3QdHBwctpHVqow5ONRESolpmuTzeXRdR9M0FEVBVVUURUFRFISoWWzJweEViZByxeqNTmlHh2VIKTEMA13Xl/zb/qxcaG0Rtn8cMXZ4hVDzBndE12HNVIqtEAIhBLquo+s6iqIs27/8Z3h4mLa2Nvx+vyPGDi93at7IjnvBYVWklOi6ztjYGKFQiGAwuExgq2GLsk2hUAAofVfXdYrF4pLvOGLs8HLHEV2Hmthia7sO4vE4Ho9n3QIohFjifqhsxx512WJcua+qqiW/sS3Ojhg73Gw4ouuwDNM0l/hpbYtVURSquaM2S/hWE+NK14aUckXL2BFkhxsRR3QdSpimia7rGIYBLHcP2EK3Xtb7/bWKceV3kskkzc3Njhg73FA4ovsKx57kKhaLmKYJLBdbm1qW7lrZqGhXa6/8t419jMuXL3Py5Mll37Gt43JXhSPGDtuFI7qvUOwYW13XVxVbGyFEad/1sNmiu9pxbD9wOfZ5G4ZRmtizKXdT2NaxI8YOm40juq8wKsXWFpW1CEst0cxkMmQyGfyBAP3zeUYWsoR8Gid2RvC71SotXT9qnWu5GFfGGlfzGTsRFQ7rxRHdVwi1YmzrEY5K90IymaS/v598Po/P5+OpkQQXZouEPCpSdfHsgJf3nOikMRzC5XJtm6W7HtYjxk54m8N6cET3ZY4ttgsLCyQSCXbu3LmmGNtq2O6FWCxGf38/Ukp6e3uJRCIUCgW+OTPGbQddCGmlBo8upLk4NElYDJVCzzKZDNlslkAgQCAQwOVybfIZby4ribHtCy8UCggh6O/vZ+/evY4YO6yII7ovU+wYW9tC03WdVCq17gdfSkkmk2Fubo5gMEhfXx+RSASgLNrB+tFUFU3zE9YV9vZ2sKvRB8CVK1dwu91IKZmeniadTqPrOi6XqyTCN7MYx+NxJ/HDYVUc0X2ZUZnQUD5bv56hvZSSubk5BgYGME2T9vZ29u/fv2QfW4BOdUf4zkCUkEclWzRpDrhpD3lK+2maRjAYpKWlZcn3C4UC6XSadDq9qWJ8PcRsrYkf5dji6yR+vDJwRPdlQq2EBhtFUeqKPLCt0cHBQUKhEEePHiUWiy0TjHJOdkcIejRGo1lCXo1bd4Zxay+5Mmr5dN1uN263m8bGxiXbNyLG2+07Xu14TuKHg40jujc5qyU02Kw13Ms0TSYnJxkeHqaxsZHjx4/j81nugXg8vqK4CCE42BHkYEew5uf1iOFGxNjn820ovG27WG/iRzVBdsT45sAR3ZuQehIabFazdE3TZHx8nJGREVpaWjh58iQej2fJPiu1IaUkWzTQFIFL3bra+JmCwXf640wn83RFvLyqtxOvywpLKxfj2dlZstksZ8+eLbk1/H4/gUCAYDC46T7jysiGjbKaGJumyeDgID6fj9bW1tK+TuLHjY8jujcR60losKklmHb1sPHxcdrb27njjjtqClLNON2Cwdefn2EyUUAV8Oq9TRzuCC7r10ZDxnRT8k/PTjGdyBP2anx3NM58usgPnOhAEWKJZWyaJslkklOnTpXEOJPJMDs7y9DQEMViEU3Tlrkp3G73uvq22aJbi3IxllKWLF27D07ix42PI7o3ARtJaLCpFN1iscjIyAiTk5Ps2LGD06dPo2kr3w61RPPb1+aZSuTpDHsZnEvzRw8NcrQrxGv2NnFiV3iZUKyXWKa4eBzLAve7VUaiGZI5nYivtuVay01RLBaXWMYbEePtEt3KY5aH/9UTa1yeseckfmwvjujewNgxtrOzswA0Njau2zqxRbdQKDA8PMzMzAw7d+7kzJkzy1Jla1HLLzwWzdLsdzGTzDO8kMPnVnG7FM4Oxwh4VA60B0vf34joKuIl14rVFwlSoCrrEwiXy0VDQwMNDQ1Ltq9HjK+H6Jqmua66xjZO4sf1wRHdG5DK7LFUKgVAU1PTutu0h9hPPfUU3d3dnDlzpu4kiVoFbxr9LuZTeebSBZL5IrGMjlsT9Lb4GY/lSqK7URr9Lo50hrgwkcStCvKGye3dDQQ9m3sbr0eMfT4f+XyeaDS6ITdFPaxVdGtRT+KHTS6Xw+Px4PP5HDFeJ47o3kBUJjSUT4ysFKq1EplMhsHBwVLg/pkzZ9b9gNSyVO/Y6edLT80xOJtnIl6gu8mHRxU8N57kQFtg1e/Xc/y7D7XS3eRjIV2gLeRhX1n71fbfTFYS41gsRiKR2DKfcTU2Krq1WEmMJyYmaGpqWva5YxmvHUd0bwBqJTTYqKpKLperq81UKsXAwACZTIbe3l4OHz7M448/vqGHwJAwFi/imknRGfFiFrJcvNLP5ek0rV4/EaVARs0zOZdnel4h6FFRC2lSKR9+v3+J6BYNc11RDqoiONIZWnW/7YzTdblchEIhfD7fksSRetwUdm2Ketgq0a2FEALDMNA0bYlLaq2JH44YWziiex1ZLaHBpp7EhkQiwcDAAIVCgd7eXpqbmzflBs8XDf75whzXJlJE5ofJJWO8qktl2GjA8IdRhElcGngCHpo9GtI0SWTzzCcyDA8Pk06nSeUKFND4ygvz5KRGS9jP9x7tpCXkWb0DNzjVfLqb4TNeSYy3W3TtY1bOAWwk8aM8tO2VElHhiO51YK0JDTaqqpb2rYVdhAagt7d32Uz9RnlhIsH4Qhq/zKFkJYFwA6OKn6Ip6Qp7MEyDloCLc8NxGgIaUkJLwEOgsYV9+1t45No8z85NcXE6S1cD9IQNpmdm+fN/m+CuXRqRYAC3149w+2iKBGkMBW6qh6+eibSVxDiTyZBKpZibm1smxpVxxtdDdA3DqGvitfy3zVoSP6pZxjfT/bASjuhuE+tJaLCpZelKKVlYWGBgYABN05YUodlMYrEY51+4RDZdpNHnYffu3aTyOtF0gfFYjstTSVwKjC5kyRsGoNEW9ACSZF7n/Fic4YUsEZ+GWxOkTRXVH+ZAm5upRJ79R9pJpzN87cIUiUycYiHP4QaTngYXfr+fYDBYsvw2sjDmVrIZ0Qsul4tIJLLsb2iLcTqdZn5+npGREQqFArlcjv7+fkKh0BKf8VZen3pEtxZrSfzI5/Ol7cVikXg8Tnt7+8si8cMR3S1mIwkNNpWWrpSS2dnZUkbSoUOHCAY3J0KgnGg0Sn9/P6qqcsfhXqZemMPMxtFNSTRTACHIFAwCboXxeI6rs2m8LpV4RidXMGkPu+kMe5lOFIj4XGR0BWXx3JN5nbBPAynxuVT+fSRDJBxiZ1sjRcNkPlXkDQfbcckiqVSKaDTK2NgY+XweVVWXifFWi81qbGXIWC0xfuqpp+jo6CCXyy0RY1VVq07gbUb/NkN0a1FLjLPZLPPz87S2tq6a+GEbNeFweEv6uBk4ortF2JNjiUSiNIm00RjbyiI0x44dw+/3b3q/bevZ5XJx4MABQiFr4iprwFfOxphP5bm9u5GLU0nuOtBC/2yKKzMpQl6VJr8bj0shUzAJejR2NngBuDabxqUK9jS6uBIvksq7mEsVeE1fMy5VIZnT6YhYvl2XqiCBjC7Z2RAqHd/GrsubSqWWiE25T3S7ay9cr+SIhoaGZS4GXddLPuPNFuPr4dLQdb1k3VZSHmsM8G//9m88++yz/O7v/u629rEeHNHdZMpjbHVd5/nnn+f06dMbfiBTqRSPP/44jY2NnDhxAq/Xu0k9tpBSMj8/z8DAAB6Pp6r1fMuOCOp+L7fdtpf5VIHvjsZI5cAwJImsTl63suVURWBKyb62IN1NPlpDHmZTBYank4DgncfaOdIVIuJz0eh3IaUk7NVIZIsEPC7mUnmimSK1Hm1N0wiHw8usmUqfaCaT4ezZs9tSr7cyO2y7qHZMTdOqWsabJcbb/XJZybquNGTi8fiWuNg2E0d0N4lqy+FomlZK210PhmGUitAYhsGdd965rAjNevpZ3p/yerk+n48jR44QCFSPfbVnni9NJXno8hzpfJGvPjfJQroISBAwHs3S2xagr8XP+092IoTA71Z529E2+iMm+VyWWw60LemDEIK7D7fytQvTPHx1jnhGp7vJy1cuzPCeE520BKvHthYNE0156aErH4bbAnPbbbfVrErmdrtLImMXxFktFXql63qjsxlifD3O07Z010I8Hl82QXmj4YjuBqmV0LARdF1ndHSU8fFxOjs7OXnyJM8999yGBdd2U9gFzWdnZxkYGCAYDNZ0VaTzOo9cnWMynqPFryETOs9MjRP2qmSLkpxuogoI+VwIIFs0cSnwX97YS3Pwpf66VIXmgIuUzFd9CTUH3JzsbmA0muWO3Q24VIWFdIFvX1vgXcc7luybzOn84zOTDC9k8WoK77q1g/0rZL1Vq70gpVwixhMTE6TTaQzDwOPxLBPj1fyYG3m5Xm/WKsajo6NkMhmefvrpLfMZV6Ne0d29e/eW9GOzcER3nayW0LAeKovQ3HnnnSVreTP8k4qilGo5DA4OEg6HufXWW0v1cisxTclXnptkJpEn4nNxYTLJ+f4M/qCKpigMz6cpGiYSazLMlOBzqdy6I0JXQ/U2VyKnm4S8rlLShN+tEs/py/b7p2enGIvm2BHxki0YfPG7k/yn1+2mObD2bC8hBB6PB4/HsyS9WkpJPp8viY0tNKZp4vV6l4lxZcGZ7WSrrc5qYnz27FluvfXWkhtnYWGB0dHRLZ3g1HV9zQaHY+m+DFlrQkM9FAoFhoaGmJ2dZdeuXcuK0NSqeVAPdrjauXPn1uwXTuR0puJ5OiPWfpmCSdGEBp+LsWiOTNHEJQQFU7CQLuBSFRp8Lt50sKVqe6ulAXeGPeiGSV43camC2XSRO3Yvtb4MUzI4n6FrsdKYz60SzRaZTRbqEt1aCCHwer14vV6am5tL26WU5HI5K8ljcQIvk8kgpcTn85VeaOl0uvT/lxu2NV/Lp25PcKbT6apiXP7CqkeM7Sy4tZBIJBzRfblQb0LDWsjlcgwODhKNRtm9ezd9fX2b/rCapsnU1BRDQ9aKvMePH69josFyH+iGiaYqFAwTBcne1iBXZ9IoQuDxqjT5YTaZpz2s8p9e3U5fs6fqbP5qorujwctbj7TxrasLFHWTW3eEOLNnaZKHqgjCXo10wSDo0TClxJSWVbyVCCHw+Xz4fL4la7xJKclms0xNTRGNRhkcHCSbzQIsERo7omIzreEbaUILak9wlotxtdC/8mtULQ67HvdCIpFwJtJuZjaS0GBjl0MsF1O7CE0ikWDPnj0cPHhw0x8g0zSZmJhgeHi4tBLEiy++WHPWXkpJPKsjkTT4XFyZTvL3T40zEs3w3FicozvCKELBqwmuzqQxEfg1CIgCexrdHO9s4IdubUQz8rz44otLQrjs4abt916JI50hjnSGMKVEqXFN3n28k785O0Yyr2OacLqngV2NmxvNsVaEEPj9/pLQ9Pb2Atb1z2azpFIpkskkU1NTZLNZhBDL/KFer7fuv//1mNCqlgK8FtYixhMz8wzNDaOaBdoCS9OhbYFeC/F4fNOzMTcbR3SrsBkJDTZ2YoOiKKUiNNlslj179nD48OEtEVs74qG1tZXbb7+9VNmq5uoRhsnXLkxzcTKBANpCHh65Ng9SWrVqBaRzOj/x6m6++M0ZLiYyUMzgEgoNkTCa38ubDrewszPMXLpIc5OgPexBSGNJ1EAsFqNQKJBKpUpCXGuiqpbgAuxu8vGR7+lhJlnA71bZ0XB9BLecavVobdEoxzCMktDE43EmJibI5XJL9l/LEPx6xAVvdmKELcYx3cWfPjtHpqBgmB7euL+Jd+9rIJPJEI1GicVivPDCC1VrU1Raxo5P9ybDDvuyRaK7u3vDbgRVVYlGo4yPj6PrOr29vVVL420UO7xsdHSUtra2qsvu1BLd86Nxnp9IlBIZHrk2z2wyx6FOyzJRszrpgoHbyKAXdAy9wKEdzWQNyBUMGgMunhmN8ddPjqEqgqBHY39bgPfc1kVjWY2BaDTK7OyslUacSpFOpxkbGyOdTmOaJj6fb4llvJJvNOJzrbhaxHazVhFUVZVQaHnCh33fVRuCVxPj6xEtsVXZaP/7kSESOR2/S8XtFjxweYHbe5o42tUJQDKZ5OjRoyiKUvUaKYpCPB7nscceQ0rJ1NQUu3btWtf1+dCHPsTXvvY12traeP755wH46Ec/yle/+lXcbjd79+7lM5/5zIaE3RFdlsfYGobBwsLChkNPotEoiUSCwcFBDhw4sOE3cLUH2zAMRkdHGRsbo7Ozc9U1zqqJ7nQyh9+tltp2q4JU3uDqTApNEWjCJJvMszAjyaPR2BDB53URAK6mUzw/liBdMIjnCgjgcGeYgfkM37o6x/ff2rnk+EApaqByoiqbzZYmqmZmZpb5Rm0xXstwfLstwY1maqmqWnMIXh62NTw8TLFYLJX7HBsbK12XzU74qGQrRFdKyYXxJPFcEUUIFCFoCbqZS72U6mv7dIUQVa+R/QxcuXKFZDLJz/3czzE2NsY999zDfffdV1d/7r33Xj7ykY/wgQ98oLTtzW9+Mx//+MfRNI1f/dVf5eMf/zif/OQn133Or2jRrZbQYFc4qqx+VE+b5Wm0kUiEvXv3bti5b09C2UJSHsvb1dVVCi9biVqWbnvIyzMjCZr8Vvu5oklBNxiL6hi6CQJ+4fU9nDjexzeufIudbSEm43lMKdFUBY8KOV1gmAIpTa7MptgR8TGfLmKYck3L6di+Ub/fX1rdFiwxs8OTyofjtSzA68VWiXytGNpUKsWlS5cQQjAzM0MqlSotQ18eshUIBNad8FGJ7SbbTK7NZkgXDAQCt6ZQ0E2mEnm6KlxGq1Xh6+np4ad/+qf5/Oc/z1e/+lWAdYVZvu51r2NoaGjJtrvvvrv07zvvvJMvfelLdbdbzitSdFeLsdU0bdVSitXarFaE5sUXX6y7rWrYvmHTNBkZGWFiYmJJLO9aqCW6x3dFGI1meWE8TsG04lS9wqAowetWUVWFy7NWEfW9EYV5IdjfHqJomMSzRVQkM8kCIFGFQEOQzht4XcoSwZ1JFXl0JMu14gxHOoLsbl69boSiKASDwWUpyZX1F2wL0E759fl8pb/xZonOSmy3Za2qKh6Phx07dizZbid8pFIpJicnqyZ82D/1Wq3rnUhbifl0ga6IlSae0617M+LT2NO8jjjvXG5Jgs9WhO391V/9Fe973/s21MYrSnSrie1Gi4bbPqShoSHC4fCyzK611MJdC0II+vv7mZ+fr3tBSZta5+VSFQ53Bjk/OEM0FiOWkZiKi942L8piRbD+mTQjCxm8muA1fc3MJAt4NMHxnRE++/gwHpeKVjDIFAyaAm52Nno51f2SO2U2mefrl6Lk0zpKMs/AXIZ7jrXR3bS+gj21ZsRt0UkkEuTzeZ599tmS6FRO3m3mQ7nd0QS13BkrZd/ZfvTx8fGSH7084cOu2VvrvtoK90JXxIumKtayTkKQzBXpavCta1WRWCy2pdXFfud3fgdN0/iRH/mRDbXzihDdehMa1mKx2CFZIyMjNDU11Uw22Kjo2qv32qEw61lQ0qaa6EopGZmc4dMPXKbR7+Lk/l24J9J86+o8mYKBIqxIApcq+KfzE8xO6sx4orzlcBu7FgXT71H4wpMjjMdzHGgN0h52o2lKaWIO4MpsGlURhNxKaQLs+cnUukW3FrboBINBFhYWOHHiRCnLzBadhYUF0uk0Uspl/uKNxNLeqD7k8uy7Wgkf9nU9FBJiAAAgAElEQVSxs+/sSc1yMd4K0e1u8vGhMzu5/8lxTFPSEvTwi3f1LDnPtV7XrYxcuP/++/na177Ggw8+uOG/88tadLcioaEySuDUqVMr+hLXK7rlWWrd3d20trbS3t6+IeusXHTtqmL9/f2kpZvmlha6W6wZ9ePdLq7MpFEV8LpUIl4XRdNkZ6MPPaoQ9rl46PIcP3Z6F4oiONAe4mNv6ePqTJrRaA6vS+FYV5hA2Sq9akVihClZ99Lp9VKeZVae2GDH0trDcTuWVlGUJemsa8mg2u4qYyuJriklL0wkSeR0djR46anhxlkt4cMW47GpWf7jWoLxhEFHSOOeYznaG0MEg8FNSfh4zd4mxmI5nhyMEfCoxLM6nYsu7HrrLmxFYsQ3vvENPvnJT/Ktb31rU0qpvuxEdzMSGsrbqpy4mpiYoKOjY8UogXLqFd18Ps/Q0BDz8/NLstTi8fiG6y/Yqarz8/Ncu3YNn8/H0aNHkZqHZ749RK5o4HWpZAsGr93XTLPfRTJvoCkCQ0rcmmXl+FwqsUyRomHiUaxtihAc7AhxsKP6opEH24N8d2ie+ayOlipgmJJbd1zfQtOrxdJWK55ePkllL5sDN060hJSSzz4xxpODMezufOD0Tl7Vu/aEgfJJzeaWFv7/hwYZKYLiyjKQgi9ezPCBW8SGI0xsvnR+kgcuzdEUcDOfLvK/Hhzgt9+2nx0NXnRdX7N1HYvFNmzpvv/97+fhhx9mbm6OnTt3ct999/Hxj3+cfD7Pm9/8ZsCaTPvUpz617mO8bER3MxMa4CWr0DRNhoeHmZ6eZseOHZw+fbquiRlVVZcsPVKL8pTgnp4e9u3bt+ShsgVzvUgpyWQyzM7O0tDQwNGjR5eIzTuOdfC1C1PEMkU8msKPnt5FV8RL0ZAUdIMvPj1BpmC5Z+ZSeVpDbtyasuwYta53g9/F9x9r5dvPJ9nVGWJfq5/WigUpZ5J5JuJ5fC6FvtbAtlnCldSKpbXDt1KpVGnS1C4RaZrmkpTWrVpdwaaW6A7OZzk7FKMjbFnmBd3k8+fGuaOnAW0d13MhXWRgLkNH2E0ymScScBMtCHzNnexbLGpkR5jYvvTyhI+1LLf0yNUF3KqCaVp1lacSeS5Pp9jR4K2r7sJmuBe+8IUvLNv24Q9/eENtVnLTi64d9mUYBs888wy33HLLprgRFEXh8uXLRKNRuru71+1L1TSNdDpd8/NsNsvg4CDxeJyenp6aKcGqqq7L0rVD2K5du4aUko6ODvbv329NbD09zlwqz+HOEK/pa+FnXreHTMEg5NVwawpzqTwTsRyj0SyqIrg0lSKTMen1uXjTQasmbqFQYHBwkOnp6arD8nKLJ+LTONLi4mgVq+vqTIrPn5so1VI42BHkh052rVt4t8LyrBa+ZY+qrl27VsoGLJ+kKheczZy8qyW62aKBWnb/u1SBbkoKuom2jvoUqiKQgOSlECwT0CoMgmoRJiuNGOz7ZDQtuDSdQl8MLdzV6EMR4Fl8oddbd+FGz0aDm1h0q8XY5vN5TNPcUIiQbXEmEglaW1s5ePDghoPeq1mo5fUXent7OXTo0IoiUU9EBSwVW9uNEI/HyefzJLJFPv2dIS6MJ9ANyTdemObqdJqfeG0PvsUHc3TBWihyaCHDyHwGv1sj4FbI5kxu2RHCLQyuXBlgdnaWnp4eenp6ME2zNDGTTCaZnJxcElPrdrspFAql0K5yvnphhpBXLfmBL02lGJjLsK+tekH1GwUhBG63G5/PRzAYLMUYV1Yls1eygI0NxW1qTTDtbPDi0gTxbJGgR2MuVWBvqx+fa333cINP48yeBh7tXyCfMVB0nTt7m2kPuSkaJv9xaY6rM2naQh7edrSNsLfMj7/CiCGTyRBPJPmLx8dodBlMpEwKwJWpIie6/PSGrIiLen26nZ2dq+94nbnpRLdWQgNYKwfYS1bXSyaTYWBggGQyyZ49eygWizQ3N2/YMqkU3UwmY01epdP09vauuf7CWn3Dttj29/fj9XqXuBGSySSmaTIWy/LcWAK3ptDg1yjoJl9/YZq339JBR8RLLFPkU48MksrrTCXyhL0aQwtZXIogkTb5rX96ljvbDO451VsaARQKhSU+0ra2tlKf7BTXhYUF8vk8Fy5cKA3LbeGJprJ0RMpiLIUgr2/fGmcbpdKyrjVJtdJQvFyIbX9xrXujlqUb8bn4pTf08tknxphLFTjSFeIDp3duKCLjh2/fwd7WAGdf6OdYbwevO9iBEIK/PTvG40MxQh6Vy9Mprs6k+NW7+1CEVfP48YEobk3lB090cLI7wuB8lmzRYFejj3A4jOLxEy1MMJ4CwxQoCvg0hXccjJCMzTM1PkImk0FRFIrF4qrLLd0MdRfgJhRdwzAoFotVi4avJ5MslUrR399PLpejt7eXI0eOIIQgGo2uOyutHFssy4vd9Pb20tLSUteDsJpPt1JsDx8+vGy4Z1vLCtYqvo1+68YVwhpGxrJFGvwu/vbsCKMLGSI+jXi2yEK6QNGQaKqJT5EoCuQCnSjBljW9lOwUV7fbTSKR4JZbblmyckMqlaLdleOFoRiNHjCEhi403HqIbFZblyW43azVnbHSULy8Vm/5YpvlQmxnmK0ULbG7ycdvfd++TTkvsF6AZ/Y04k+4OLi3CU0RZIsGTw7H6Ax7UIQg7HUxncgzvJDl4mSSBy/P0x50UzQkf/HYKA9cnuPKTBpFgFdT+eib95It6IzHcuimde2KhgRpovjD7N/fDsDY2BimaRIKhVZcbsmeD9mI6Faru7CwsMD73vc+hoaG6Onp4Ytf/OKGq5jddKJrr3dfDdvSXQvxeJyBgYGaRWg2kgpcTi6XY2FhgVwux969e9dd7KaWT3ctYmtji27Yq5Iu6Dw1EiPsUWkMuOmKeIn4XDzWv8B3+hcwTMnlmQxBl2A4mkNB4gu48Hs0GsMhVEXZkCVauXLDT3Tu4F8vznJxMolXldy124+mZ7l2ba4UxmULjy0+1zPtt5KN+pBr1V4oFoul+OKpqSlSqVSpRKbH4ylFVKxlSaGNUp4GLBZ/pLT+IaVEIlEEPDOWIOLVKJoSj0shHdN5bCDKoY4girBe7p9+bIRbd4RxKQo53cDyGkPekJwdivG9RyzR1XUdv99PY2NjzeWWEokEf/Znf8b58+d58skn2bdvH2fOnOHXfu3X6jq/anUXPvGJT/DGN76Rj33sY3ziE5/gE5/4xIbqLsBNKLorsRahjEaj9Pf3oygKvb29Nd+MG01qSCQS9Pf3UygU8Hg83HHHHetuy+5PeRREPWJroygKqVyRP/nGFXwulWzeIJrVAcHr9rVwcTLBw5fn8Ls1Gn0awiwwFcvS6lcJ+31omopbT+NVraLhtqW8VlYqYu51qbzr1g7edWtH1c/LLcG5uTmGhoZKvmFbiLdLfKqxVSFjLperquAMDg5imibFYnHJkkK2b7l88m6z+lWeBux1qXzPvmYeujyHz6WS0032tPjZ3eQjli3y1HAcTbHqKfhcCupiko2UklimyPMTSS5NpUgXlj9jj1yLMpvM0xry1PTpVr60//qv/5p3vetdfO5znyvF0tdLtboLX/7yl3n44YcB+OAHP8hdd93liG45tUS3fHlxt9vNgQMHljn319rWasTjcfr7+zFNk7179xIKhXj66afrbqcS20pdj9iWtzGwUGAyUaS3xU9Ps5/ZZJ7JRI5sweC7I3EG59L4FINLYwv4PR46msL87F17CHpcPHhphoHRLL0tft5yuI2mOpfHWW3liJWoZQna6a2pVGpJmUiPx0M2m2V2dnZLVm2oZDvTgG3XWjAYXOI7r1apLZPJLCmcbgtytdCt1ah0afzgbZ10Rbxcm03THvbw+v3NzKYKjMdyaApIAam8jiFVdkQ8FAyTmUSewfksqgIT8RyVYyVFgClNYlmd1pCn7pCxxsZGvF4vO3furOvcajE9PV2anOvs7GRmZmbDbd50orvSjVLpXpBSMjMzw+DgIIFAYMXlxSvRNG1N8bU2sViM/v5+APbu3VuyoO2Jv41iF0E/d+4cHo+nLrG1SeZNXpzLk8iZpAsmAbeVCKEpCk0BF/l0kmgiTlTRaI5ESBUM2v1ubt/dhM+tclt3A989n+bA/q41X8dyNiK6tXC73TQ1NS1bXDKRSHD58uVlmWaVk1XrcVFIKckWTdyasiT29XpnpK1Uqc3OLovFYstq9VZO3q0VRQhe29fEa/teuvYX4yk8msqhzhCpvJVGntdNfvj2HXzp/BTj8RyaIhDCSrLJFAx0ExTArYFuQtjroi1k/V3qSY4oFosbXjF7O7jpRHclbKEsL0ITiURWXPF2pbZWiq+1sd0VqqrS19e3LA1xo9aVbdlevXoV0zQ5ceJE3WILEMsU+fvz08ykdAwDnhuP0xX2EssWafULHr0wiKF60BUvjQE3PrdKW8hDe9jDXCpfqrOg1lgkcysEdb3Yab8ej4c9e/aUtldOVpVXJrNdE5M5lTwuOiM+eluWp3xGM0U+f26cyXgOl6bwnhOdHOkM3TAZadVQFGXFZI90Os3s7Owyl015cSB78m41WoLuRd+uoMnvIp3X8XpdvOVQK2880MIffXOQb1ycxZTWBG7Ao5LJGximJbhNfhf/4x37S/U51hoytlX3Xnt7O5OTk3R2djI5OblkZLFebjrRXa2u5sLCAtPT0ysWoVkLqqqu6F6wh/gul2tN7op6KXcj2OIRi8XWJbgAl6asXPz5rEF72I8RzTEVz3AgYpI0XajhCEGXxmwuTbPfzV0HWnBrKpPxLAXjpRt6I+J6vYV5JRdFMpnkH5+Z4vHhJKahIyW8cY+P1/U1lcTH5/Px909PMJOyVkjOFQ3+7qkJfvH1e7Z9JYeNFk2H2rV6yyuSTUxMlMpDZrNZ+vv7V6zUtrvJx3tOdPKl706iKgJNFfzyG/YgFosmvf/UDh65tsBssoCuCnyaSk+jn9fua+SuvhZ6W/1LKozVW5pzs/8G99xzD/fffz8f+9jHuP/++3nnO9+54TZvOtGF5Q+vYRiMjY0xPDyMqqpL1gVbL9Vq6pb7hj0eT6lm7mZjF6IpdyMkEgnm5+frakc3TC5Np0hki0wmcixkdPKGJCxMTKOAW1VxhxrRsgYtQQ8F3aA95GYkmmU2VSDic6EIZcnS5htZDv56i24t3G43BS3AxSjs39mCIgRF3eDphRxv8PpfClXKZDl/rUhnyE3cdON2uTFMK32ZG9jSXSvJnM6Xzk9yZSZNk9/F+052cXDXrtLxzp07RyQSWbIEPbBs8u4N+5tLmYzHd4YJea3Qw4jPRTxb5M0HW3jg0hxCCCI+jb7WAD92x66qKzqv9TxzudyGXQvV6i587GMf473vfS9/+Zd/SXd3N//wD/+woWPATSq6NuVFaDo7O7n11lsZHBzclFCi8ok0KSVzc3MMDAzg8/nq8g3XQzWxtVktTlc3TJ4cjDIazdIe9nC6p5GvXpji0lQSl6qQyOlMxdLk8gYZPYequQl6NWJZg7xukisY6FLS6HeRyOmcH43xmr3NvOOWDhrKohSqLfljzxYLIQiFQiumu96IoguQ083ScjEALk21MqoiTTR0WuFLUkq+GbuGXtRRhUE6k2EhkWfwcpyIZt0rDQ0NJQHayiiKjYpuPGvVVPC6VPa3WXUuPv/UOP2zGVpDblJ5nT//zggffVMvEZ8LKSWaptHS0lKzUlsymWRkfJI/OZdgLitRVIVvXpnjL74zTEfYy6nuCC9MpdEUQVPARdGQvGZvE4c6giRyxaqiC2uzXjejwli1ugsADz744IbareSmFF27xqxdhObOO+9EVdVSiulmoGkaxWKRmZkZBgYGCAaDywqUr5Vqy7CXs5LY2qxWe+Gfn53k/EiMoFfj+YkE50fipAo6Oxt8JFIp0ul5AqpAugWm24ueLZIuGDT63eR1g+cnkuxvD1CQ8Oq+Zryayqv2NtMZWb5sii2cpmkyNjbG6OhoaeLGrskKlPLr7Z/tWMFhvbSHPAQ9KvPpAhGvxkK6yI4GH2HfS322srN28tknRkkZCqam8f137OIth1q5cOECjY2N6LrO+Pg4mUwGwzCWLLa5WaUQob46s5UML2T5f79+hVzRxJSS4zsj/PxdPVybSdMR8SxaoFayw2Q8T8TnqllLtzIL8cJ4gpx6je42F5enUijCJJU3EMUsX3w6RXdIoSXoYi5hMpPWuTabxu/W6Gn28aEzu3jN3qYqPV6dmyUbDW5S0bX9SpVFaDYrocF2I8RiMfx+/7om4sopX4a9nLWIbWUb1UjldJ4bS7Cz0XqgG/3w4mSSTDbLuSvj5EyF5pCP7tYAd/vjXMqHeeTqPDsavHjdCi7Vg0fT6WrwMZvKMx7Lkc7rnNrdwL6KeQMhRMmyHRoaor29ndOnT5eqvNlCUL62WTQaZXR0lEKhQDab5erVq0tmza9HXG0lfrfKz75uN184N8FkMs++tgA/dLJr2VLwu5t8/NIbeplLFfC7FdpDnlKBpYaGhiX3iV1/wQ5ps0sh2lEGlYke9YjoRur3/vmjwxQMk6aAZcF+dzTO0yMxXKpCQZd4XAJTSgxT4l2s2bDWAuaLuRLWWnuGVQ60aEiaGhsYTsVx+7xkTEk8n6OgSwIuSbFQYHimwP95KEuHtpP2pkjdxYESicSW1NLdCm5K0T18+HBVq28j/kZ4aemdwcHB0gN05MiRjXQVeEkw7XCcesTWZqWCN+VnLCVksxmiC3NMpKCAhqYqDEVzpAqS1x8R/Pyr9xLPFhlayJDM67QE3HRFPAzOpwl7XCCtEnsvTCa4rbuhVMLRjgO9ePEi7e3tS3znlSOMWumuTz75JC0tLaRSqSUVucqLwFRWJ1sv9X6/I+zll97Yu+p+Ya+2pLALVE+OKK+/UB7CVV59a2FhYVnKb7kY1xK6jbgXZpKF0lBeCKuKWCyr84O3dfL5c1ZSgSnh9t0Rdjf5Sn1ey/H2twVoC3mYSuRRFcgWTTrCHpDWdSsYkgKQ0yWGhLwpkAjypqSYNHhuPMmhTLJ0X+RyudJI0463rtaPWCzmiO5WstkTFqZplkLMGhsbue222/B6vTz22GOb0r4tuusRW5uVfLohr0ZnxMt3rs4gihn8bpX9O9vRFnKMx3OoQtAUcGOYkhfndV7nVjGkJOJ1EfCoJHMGihAc7gihKgKXqtDV4COaKZApGLhUwezsLP39/Ugp6evro6ura13XQlGUqhlW2WyWVCq1rDpZpQit5qKwY2hNY3uL5dQTMlar+pad8ptKpZZEDdglIsuFZyOie7gzyBNDMVoDLqvuAdDb7OdIV4i2kIfJRI6QR2NfW2DJyGUlS1dKyb88P8O/vDCDYUp6m330NHu5NpvBrSq8MJWkPehmb6uP58eTi6tEQ16XCKyXvM+l8MQ0vOuMVd40l8tx8eLFUt2FWkXTi8XiphQw3y5uStHdLMrXOWtububkyZNbElyt6zrPPfccfr9/XUkNsHLg/bcvjnL+6ghGAQzNR3PIj8/jZnB+AVUIdrX4EECmaKLLAqm8QV9rEN2UpPM6BztcGKZJwOOiNei2Vo8oWkkT2WSMyxcG8Pv9HD9+nLGxsZppmeulPKi/PA6yvGh4ed2BShGyU13j2SJfeGqCsWgWgeR4uMgt6+5VfWxGnG6tlF/bRVEuPJlMhitXrhAKhaouKSSlJJk3ME1JxKct6dtPvKqbZE7nhckUqiL44J07OdJlvQB2NHjZ0bA8zHI198JDV+b53Nlxwl4VCQzMZ/nlN+5hX1uA//bly2iKoMHvYmg+R6po0hl2M5koYCBBgM+tcnxniFTBsJZyEpQWFG1tbV2W7GGPFOLxOL/3e7/HY489hhCC4eFhjh07xoc//OENTXb/wR/8AZ/+9KcRQnDs2DE+85nPrDv8tJKbUnRXqzu72g1iF5seGRmhtbV11XXO1otdzzaXy23IOqxFPB7n2rVr/PPFLPt2tBIJ+pFS8sClWdyq4FBniPOjca5Mpehs8LKnJUC3L0vAo6IqgraQB7emkC0apPI6dx9q5VtXF4hlixTzebqVKNOTS8tD1lvXdyPUKhpeKUJ2+b8HxmAur9DZ4KdoCh4aLvDqRN4a3m4xW5UcUctFcfbsWXbt2kU6nV7iM9c0DV8gwLdGdZ6bscqcHuoM8eN37sTrsp6JkFfjN79vf2kUs5aVd6s9U2eHotz/5DjZokG+aOLRlNIxckWTJwZjhLwuCoZJ16KQqwJemEwS8blo9GlEszqqIjjWFSRdNEuRFFA7RrfSdfWpT32K3//932fnzp0cO3aM559/fkOTtuPj4/zxH/8xFy9exOfz8d73vpe/+7u/49577113m+XclKK7EvZkWjXRrVxUcrV1zlaLOqiFLba2G2F8fLyu9MrVSCQSpZUg+vr6aJqeIrCYwVMwTHJFA5eq4tFgT5OPRFbnxK4G3n5LB4mhOEGPxpsOtvLApVkAFAXefrSDnpYAQUXn4pVreEOCIwePLBsCX+9Y21oipOs6Xxq5RHPAsoLy+TyFQoFHn77A8V0NSwribEW67nZnpAkhalYle/jFSc6NT9Polhj5NI+9GKUYn+Hth5uXJHrUCtGqRrnoJnI6n3l8lH9+dooGn0ZL0M1oLItHU4n4NEwJc6kCjw9GmU0VyOtm6fpkiyaqoiCwxNOnKeQNyyo/3BHi3jt3Vj3masTjcU6dOsUdd9yx4eJSYN1P2WwWl8tFJpPZVIPpZSe6dv2FcjeBYRiMjo4yNjZGZ2fnmheVtAV8rVawnUHmdruXuBGqJVqsB8MwOH/+PIZh0NfXV/Jhndqd49vX5mkOWPGVErg6myLg1vC4NLSiyRsPtnC0K8wjA5LJeI7OBi8//qrdpPI6Ia8GxRzPPPMMuq5z/FBfTf/YSqK73cJTjqZpdDQEyBZ1msMuCsUi87k5jh3so9Ftpf+OjIyUUrsrw9nqjR6o5Hqeezkul4toUaMxFKAlaN23/pxO3q0QDodL67vZvtHyQjjl16HyfGwBzBQMfu0rl7g0lSKZN8gUDRCC7kYfg/MZppMF5lJ5UnmDRF5ncC6NIQWFoknIp5FaXKG4I+QmWTDwNHpQheB/vfsQIe/SZ/J6LdWzY8cOfuVXfoXu7m58Ph933303d99996a0DTep6K50c5eHjdnJE+Pj43R1dXHnnXfWNexYq+iWpwRXy1LbaJnIVCpVclMcPXp0WRHlNx5sJa8bPHR5FpeqcmpXA89NJNANExPJnmY/wwtZ9rTk+bvLRbyTVzGRvPlgG3f1hhi4cpVMJsO+ffuWFI6pxna6F+rlB050cP8TY0zF8xR0g2OtLvZ3RBBC0NzcXNqvMpzNLgBTT/RAJTeK6AK0hT3kii9Zl6m8wbEd4aqJDZXX4anxDA+Mmhgo3L4ryAdP76QpEiqN+J4bTzCdsGJ3U3kDTYGpRJ6+Fj+37YrwvYdb+d+PDFPQTVyaiubWSOWK5HSDe/a109vi5zsDC/TPZYn4XEzFc/Q0+7g4leL23Q1LQvSu1/Lr0WiUL3/5y6Uoph/8wR/kb/7mb/jRH/3RTWn/phTdldA0rRRmMjExUUqeWI+PZzWxXE1s19pOLdLpNP39/WSzWfr6+shkMlXf5omcziNX5xmezyIBw5R0N/noaQ7g0RQMKVGF4AvnxsgUJT0RL/lCkX944hrZScH3nNi/5pUsrrd7YSV2Nfr4z2/Yw0yygDAKJKdHqp5TrXC28uiB8nA2O811pXC2G0l0X93byOXpFBcnUwhhTY697cjyQi2V1+HydIpvnr9KJKQiMHlyNAP6IG/YYUWXeDwexvJ+ikWdxoCLOU0hVzQwpHXP/cxrdnOoM8hnnxwnkdPRFLEYTyxQFYW3Hm6lNeThtu4ID7w4xz8+M4nXpaAI+NyT48wkC7zjWHupf7qur9ktZ5d13AweeOAB9uzZU3Jfvfvd7+axxx57ZYturZu7WCySSCSYnJxkz549nDlzZkOB97WSLdYqtjZrXYbdxl5HLZPJsHfvXpqbm0s1VO3QnUS2yLXZNFJKrkynuDSVoj3kRlUEU4k8Q/NZupv8JLJFxmI5Am6N58YTBDTJwvz8Yq66nx19e2ltbV69U4vUsnQNw9iSegD1EvRoBD0a2awgNVOfCNaKHqgVzlY+LL+RXkQuVeEnX93NVCKPYUo6wp41TZa9OJVCSvAvLg7armqM5gUnTx6hv7/fWu9NqvzjiynmElkimokwJfua3Hz49jAdngKFfJ7vO9zKpx4dxlwM3wOrPsXXX5jhA6d34nOp7G8PEPG56IxYbkDdlDxwaY7vPdJWKpdpZ/Sthc0U3e7ubp544gkymQw+n48HH3yQU6dObUrbcJOKbiV2WvDMzAyBQIA9e/awe/fuDbdbKbr1iq3NWi3dbDZbWhxz7969y6xPu51E3uAvvj1MImclJAzOpTBME23xwYr4XBiL6Z3fuDhNo99FLJ1nYj6Bqhvc2uAi3NDIVCJPa7C+mf3K2gvl/nK7r+X+0lAodEMtq1Mvawlnm56eJpvNcu7cObxe77K03+vxIlKEoCtSX4hTxOdCIktWe65olMLHbIu/q7GRP3hfhM+dHWc+VeTErhBv2Rcml3mpVu8hJcdruwQPjxoIaWX77W8P8PDVBY52hTnZHUEulnYs9Xfxt7TX/6E+90I+n99Q1mg5p0+f5j3veQ+33XYbmqZx4sQJfuqnfmpT2oabXHQLhQJDQ0PMzs7S3d3NmTNnSg/AZmCLbrnYHjx4sO4yjquJru0OicfjK64QbFuZTw7GyRR0djVaN9lCusBYLE8yV0QiGI9laQt5uDydwu9SiSh5kvOznNwZ5Mkhg6ShkUoV+L4j7extrS+W0XYv2DHOw8PDdHZ20nv4OFenk7g0hdaQgpHPEI1GGRkZKdVoDYVCpSH8VkURbBeV4WyJRIJTp06Rz+dLLgp7wpwwtKoAACAASURBVKoy7Xe9xdNtVrKqTSlJ5nRcqlJXdALAmT0NPHRljsG5DAJwaQofPG1FE5RHEnSEvXz0TXuXfjn80jMxk8zDeD9uVxTDMGnwgFZMs5A1eeLCFRqKTXg9PsIumIznCHg0Elmd1/U1raus41aMMu677z7uu+++TW8XbmLRvXz5MvPz8+zevZu+vr7SA7xZ9RfAenuOj48TCoXWJbY2tUQ3n88zMDBANBqlt7eXQ4cOrRqDbJommYKBu+zm3Nlo+RiTuSJjMWuCoq81wKOXJ5lP5XjLgSa6u3dTNCWHU2l+6Y17iAR8pULR9SCEIJFI8MQTT9DS0sIdd9zBVErnDx+6RrZgrbfWFnLzke/pKS1zYp+rbRUODw+XiuKUW4UbFaPrjV083ev1LpmwKk/7LS+eXr4Evf17LS+iWv7jVF7nzx4dZmDOMjreeriVtx9tW7Ov2etS+Y237uPZ8QR53Syl9NrnsNaX5GceHyWa1WkLeYhmiiSK0OUNENQkx/d3EokopNNp3tZt8vBginhacluLl5ONeebm5ggGg3g8nrpWjYDNz1TdKm5K0RVC0Nrayr59+5bdCC6Xa8Oia1u2uq7T1tbGgQMHNtRe5YugUCgwODjI/Pw8PT09HDx4cE03jC3ehztDPD0Sw5vXEUKQzhv81Gt3c3Umzf2PD5PO5Xn8Shq3SyVWUDg3VeR2j1VV7LYOL60BF746BdcuAnTt2jU0TSulSgP8ywXLtdDVYIn/eDTHuZE4d+17yVdsLyLodrtL9SzsZWRqidFWx9ZuF7XSfsvXdxsdHV0SzlaKp/UH8Hk9S86/lu/8H747Sf9sho6wB0PC15+fYU+zn6NdazcW3JrC7buXT9aulgZczmg0R8SnEfJq5Iop4tkiM8kC77ylnTN9rShC0NLSwu7dcPrE8gyz8fFx8vk8uVyOoaEhwuHwipXq7JHUzcJNKboAzc3NVYcVdknG9VDpRshkMiSTyY12tSSWxWKRoaEhZmZm6OnpqfrSqEUyp/PkeJ5HZ8e5ZXcL7znRxSPX5gB41/Eu2oIePvfoNYq5DLqhkDVVirog4FGZTRUwTMl7T+6gOJOvO+QrFotx9epVPB4PPT095P4ve+8dJtdd3/u/TptethdpV6tdrVbSqluWLVuuATcMppjEXEwgJIRLGuamADckP3KfXLCBFBzqL3kCBnIJ/OwE3MDGGBdwk2xZvWzX9jo7vZz6+2P2jGZ2Z1azRTLyzft5/EjW7p6ZM3vO+3y+n+/7836n0wUjkQnVwCnnub1JAsnM+XvYxWJk7Ghtm4xss+z5S3S/339J3WjFUCzfzSagsZko//TcID3TaVySye1tDrY3VeSqwGIP6d7pJJUeBUEQkAUQRYHhcGpJpFsKSxlUaKl20zURp9rnpLPRx2g4zceubeG69qolqUkOHjxIY2MjyWSSiYkJ+vr60HUdp9OZeyhZloWu6wuGRH6dccmSbinp0nLaC6V6tqqqrppVZCwW48CBA7neczil8+TJKTK6ya7mIOurS/v0JlWDrz3bx3NnElhCmh8fn+Gtm2v585s2IggwOTnJz186gamLBPx+JiYTGKaBhcT6GjeWBYYFW9cEODpdvs42FovR3d0NkPtcpqamcq0BG7ubAvzn62PU+GQMMysf2tywvESN/GjtfG2tvUSPxWLMzMwwMDCQuwHzq+I3auNqtWAT0CMvTzKlKmxc6yWpGjw9qbOjowLTVBkfH89dT/lythqPSN9MBpcizVkzmrkBicVgWRbRtD4Xl16cWA3DYDiicnhkBqcscs2GqoL21MmxGI8dn0Q3LC5vCRBKaEzFVUzL4t07G0oS7vlQTE2S/1B++OGH+e53v0soFOL9738/27dv533ve19BNt5SEQ6H+chHPsLx48cRBIFvfetbXHXVVcs+HoAgCO8GPguXMOmWwvxE4MUwOztLT09PyQ2ylQ416LrO2bNnGRsbA8j5/4YSKl94sptIWkMS4GenJvn4jW1sbihekfRPJzg6EkUUBIIeBUGSeLZrmivXOnHGx/D5fGzt3MwjT/VhWhYep0wkqWVn2C2LOr8zJ8MpZ7ghmUzmhjE2btxYcNEXs8+8vqOWjGbwq54ZHLLIb1/ZVDTUcSUotkS3b8BYLLZg48qOYJ+dnV1yyu0bDd20ODMZpzGQrWi9Tpm4ahCznGxsrqOqqgrLsti6dWtOzhaPx9kTSHJ6MEZXWECUJHat9ZFJJvjso+OoJlzfXsUtnbUF5BdL69z/TD9nJhMIwLt31vOunQ0LCLJ3Vufho91opgVzjmKfv2MzFR6F7skEX3yqF1kSEQWBUxMxPnZtC23VHpyySJV39fr08x/KH//4x9m/fz8PPPAAn/zkJzl69OiKh3fuuecebr31Vh566CFUVV1QZCwHlmX9CPgRXMKkW+qpWQ6pnI9sbSx3U84wDAYHBxkZGaGpqYl9+/Zx4MCBXAV28OwskZSWk+OEkxqPHR0vSbqmBUlNxymJgIVpGKTTKbqHJnn/9TvweDyMhlNIogiWRWPAiW6YcyTtwOuUuaGj5ryfTyaTobe3l0gkQnt7e9GBiWIrDEkUuLmzjhs3Vl7UKjP/Bpy/cWX3iKempujv7y9aFdvuZL9ukISs3jilmXgc0pxaxMI7p0awe7r5cjaA1lbYu8tgKJRAV9OEo3Huf34QwTKRMPnnkRkmJia4dWtdblXw3VeGOTMRp9aftf78j8PjtNZ42dVUuFx/ckAjbki4FZGg28F0QuP5nhB37KjnV70hQKAir/J9rivE/luXlwKxVITDYaqqqujs7KSzs3NFx4pGozz//PM88MADQLYFtNqbu5cs6ZbCYjdRuWRrY6mkm69ZXbt2bcnhDFU3EfPepiwJqIv4v7bWePA5ZLpCCUQyKCK01PjZt3NT7oaTJZGWSjdep4Rlwe7mIF2TCa7ZUM3OpiDb1mZvomIZZ3aveWpqitbW1kVVFL/OE2k2bB9et9tNR0cHkK2K58u5bHey+QqKN7oqFgSBD+9r4hu/PEs0rWNaFle1VtJRl5X3LRbV41IkNtYHgAD/8bqB0+Wm3u/EAuIplSPTJtenUkxPT5NMJnnlTAZRkkiljFzMev90AockoJkWG2u9qLrJ6VkTnTQiApKUps7nIKFm7w1FErHyrPRNy0KWVvYwW8o1tpqDEX19fdTW1vLhD3+YI0eOsGfPHu6///5Vy0QUBEF505FuMSyVbG2US7r5WWGNjY3nHTve2RTkiROTzCZVFElkNqnxtm0NJb9/ZjaK20ziFC10RERFYce6SrY2njuPWp+DrY0Bjo1GcDtk4hmdd+xo4L2XrS04Vn6la1fko6OjrFu3jn379p23Ui1VKS81auZiV5iLybnsUMX8qjjfs3c1s83Kxfa1AT77tg6Gwin8TpmOPENxy7LK2tRyKiI2dwmAJYgEfdnNUBubZ7o5NRYlrpqkYkniqsEPXuohoQvIkkiF28GedUFkAUwEJEFA001CSY0967Iqhxs7qnmue4apeAYBAQuL27fWEklpiIKQNVRaIpZqdrNaG2m6rnPo0CG+8pWvcOWVV3LPPfdw33338bd/+7ercnzgby9Z0l3sBrCrOdtv9kINNeT78tpZYeVcKOuqPHziLRt4/Ng4Kc3k7dsbuKZ94Siu3Vs9MhKjIhDg9jqLtG7h9ngR53K58s/5rr1raR3wMBHNsLbCxeUtC5/+NmkODQ0xODiYMwIqd2f6jap0Vd1EEChrnHUpkCRpgUXi/Gwze+Amf5f9YoRt1gec1BfxAi43lHJ/WxU/OzXNeDSDIIAkCLx3V2PB93z4qmb+8AfHGY2qYFlIooiGSFt1Np1iJqHyzJlJfLKFKRiEM2Ca4JEkVDWDZXlYW+Hib27v4JmuGTTDZG9LBc90z3BiLKv8uWZDFf/t8oV5c4thKRrdSCTCunXryj72YmhqaqKpqYkrr7wSgPe+973cd999q3JsQRBuAO68ZEl3MViWxcGDB3E6nSsaaih1YedPY5Xjy1sMG+t8fOIt7UW/lk6n6enpIR6P097ejlkpc/rQKKKo4ZQMJEksGI6woUgi+zeU9lGwLItEIsHo6Chr1qxZ1vsuRrqpVIqenh5isRh+v7+AlObfOMVsAxeDZph8/9VRXuwNgSBw8+Ya3r2rYUk38FKxmGdv/uhvb29vLskik8kwOTl5Uaricj0uKj0K/+v2Dl7oC5HRTHY3BxdscAqCgEMW2VzvRZnz7ZiIqZgIKIpC0JvdOM3ocWqCPqLTSUzTJKMb/NXDJ3lfh0xHdVZXfeNaLz5fgJ/1RDk2GqMx4MACnuueYX2Vm/1LSPo1DKPsB1o4HGbHjtXJCGloaKC5uZkzZ86wadMmnn766RX3iQEEQagEvg28/5Il3WIXtd1GyGQybNu2reCGWQ1YlsXY2BgDAwNUV1cXBDOW+/OL3Yz2hFo4HKatrY2tW7dmN0tUg1qfg+6xBPG0isct8vvXlO8tYVkW09PT9PT0IAgC69evX7Y3RX57IX/IY8OGDbS2tpJKpXLGMPF4PBc6mW8MsxRjnJ+dmuJXPSEaAk4sC356cor6gHPZUd0rQakki1QqxeHDh0kkErmqON8Qx47UWa2qeCmfX6VH4e3b6kt+PakaOORzm2BBt8FETEUzLGTRIp4xeEtHJVYsw8P9GdKayZqgi/XVbqJpgxNpF3dub8s9jMbGxnjldAg9ZTJryCiyAoZA13iYq9sqy34YvVFeugBf+cpXuPvuu1FVlba2Nr797W+vxmE/BtQB37hkSTcf83u2Z8+eXdUdR8uycuLsqqqqZWWp2a2KUhM1/f39TE9PF51Q8zgk3rG9kS8Mh1B1kxqHxAt9IToa/Pici/8KZ2dn6e7uxuVysXPnTqamplbkvGa3bvr6+hgbG2P9+vV0dHTk5FvFSCl/2iiVSvHaa68VTJ35/f6SU2enxuP4nXK2shXALYtzG4QXn3SLwe4VOxyOAm2oXRXHYrGCfLdybCLPh9V0c2sMOvE5ZWaTGgGXjCBAc6WLpGqQ0gx2NwV49/Za/vpH46T1rJHOTFKj0qOgSCJp3URRFCoqKnLEtzs6zK/6Zgl6ZFRVJZ1IYyVmOXhwuqBFYz+Uiq22luqlu5qku2vXLl599dVVOx6AZVn3AvfCJa5esMlWluWCNsJq+S/Y0y4vvfRSQUrwcmC/p/wLydbxjo+P09LSwpVXXpmTAs3HKwMhmipdKAGoqwswPJvi+EiEfW3F2wmxWIyuri5EUSxIsViJCblpmkxMTBAKhaisrCzoBZfq8wqCkEsnqK+vJxKJsGPHDkzTzPVM870Y5vdM63xOeqaSuc2YtGFSW6bg/2JtfBV7rcWq4vOlHhdry+RjNUnXrUj84bUtfObRM/RMJaj1ObjvnZtprfHkkoLvefAYh6f0bL/XMJFEgd7pBE0Vbn5z98IN4HfsaKBvJsV4NINpiVy+oY4PXNOCQxZzG5e2gmS+nC8/4XcpPd3VUi9cDFyypJvJZDh79mzRnu1K/Rcsy8pFjhuGwe7du5fdF7YhiCKHBsOolkRDwIkrE8rpeK+4ch8/OT7B8y+fRBJFbt9Wz3Ubq3M3ciKjc3w0wlQ0g1/QqKvLyswy+kLyTCaTdHd3o6oqGzduXFABiKJYMDyS1gzOTMTRTYv2Wm9RExzLspicnKS3t5eKigoCgcCyJ37snm6xEdj8qTP7hlyra4iqSf9EEkmSaKnx8Rsd5fv/XgyUS/CL2UTaD6D8tkypqng1SVczTL57YAS/U2Zt0EUso/PPLwzyhXdtweeUeOToOCPhDCLZxF5gTh6WlbXd0rmwhRdwyXz65g2MhNNIYtZi0g6bLLVxOX/0OxwOZ31FEonzGiJFo9H/It2LAZfLxa5du4p+bbn+C7apS29vL16vl507d3L69OkV9+JM0+InvRkGEkO5wLt3b6/lN6/JVopPn57kqdNTNAZcGBY8eGiESo/CjqYgGc3ggZcGCSV1RsIqpq4iuGME3TIbas+N2qbTaXp7e4nFYrnBhmLIr3QTGZ37f9HLaCSNKIDXKfOJ39hAfeBcNR8Kheju7sbr9XLZZZchiiJHjhwpeuyVJk+Umjq7bEeCk8Mh0ukUlWKGE0cO5apDe+NuKdE6q42VVtWyLBcsz+1jlqqKAdxud65XvJzztkd/J2MZxiLp3LhwtexgNJLhocNjNFe4GY1kcCsioihgmBYOScQE3r6tjluLpFHYUCRx0dH2fBQb/bZbhD6fj0QiQSgUYnBwEFVVURQFn8+HIAhMTk6STqdXzUsXsg//yy+/nLVr1/LYY4+t2nFtXLKke76ctKWSru2g5Xa72b59+7mhg1VoVfTPJDgxmaZCNgh6vYTlAN98NczzI8dor/NxdiaJ15Gdl09rWYnamYk4O5qCDISyy7TdTUGCToGu0RCj4SQfu3YLTZVuNE2jr6+PmZmZRb14beST7kt9IUYjaZoqshfsVDzDo8fG+cj+9QXtia1bt+baE7qur0gytlRyEgSByoCP/Z2FXg52dRiLxXLROpZl5TbtVisMtBxciFZGqapY0zR6e3tzckU7Umi+X28pUxyAlGbwlWf7OToSQzNMQkmdoFtBFgUiKY3+mSQ/eHU0azSOhaobrPFLTCWzksWtjT7+6Pr1q3q+86Hreu6hWsqdrbu7m6985SsMDQ2xd+9eOjo6eN/73se73vWuFb32/fffz5YtW4hGoys6TilcsqQLpasmOza5HNh9YdtycDVDJe0NuIOHexAsi8rKSmZVgWNjEZIZnRd6NV7oDVHrc2BYFh6HNGfVqNM6VyVkb+jsua6r9KBkYjiDAdZXuejt7c31g8t1LMsn3eic2bUNtyIxHU1x7NgxUqkUHR0dC9oTxSba8s+3HPJZDZ1vsepwftBiNBrlwIEDCzbtVtsU52L2jxVFyfU/bXXO/M1K2xqxVNDmg4fGODwco97vwDQtQgmNgZkkAZfM4GyKgEvGJYsMzqZRdQO3LBAXBJqqPOxvq+S/z/VnLyQWczWzW1NXXnkl3//+97nuuus4cOBAzpxpJRgeHubxxx/nM5/5DP/wD/+w4uMVwyVNuqVQTnUaDofp6elBkqRV91/Il2gFg0HeetUunp84xmzaoDekktEMZFHEpYhopoVmZt3+TdPC65Sp8TkYiaQZj6RprnQTdCmMRdI4ZZhMGNzYbHDgwIFc6OZSlpf5pLup3sfTp6dIawYCJoMTs+yttWho2FwyqHKx9sAbHWyZvzPu92cTbLdu3Vow/js9PZ0zxfF6vQW64uW2kS72hN384Yj5m5U2SgVtvnLGRDYFVDVbVFS4ZWQpawPqlETq/Q4GQmkkMdsmqPSISMAnblzPvtaLoxopV71gD1HIssyWLVtW/Lqf+MQn+OIXv7gqlq6l8KYk3cWcxuwpNUEQ6OjoOO/44FJJ125TeDwedu7cmWtTfOiyap7oSdA9o+KUJQQh6yalGdkkCJcsUO1zUB9wsqHGSyipEcvoNARd/O7+dTzfNc3A2BQ7K1T2NDhoay1v+m0+8l3COhv93LWnkR+81Ec8meTGzfV84NrNKHJpEi9FmuWSzhsx0VbKKtKWdOUPOixH0nWxSNeyLJ7rCfHzI2EaKnXevy+wqINXsaBN0zR5MdrLy/2zqKrKYFhlPGGBAKIADkngzIQ2F9eTXXn5HDIZw0TVL97vrVzSXc0R4Mcee4y6ujr27NnDs88+uyrHLIZLmnSX4qkbjUbp6enBsiza29sLpDyLQZKkskjXNvpWFKVom6Ix6OLDe1zcvHMd//NHJ4mlNZKaiQBIgklKs3Cn9Lmq16C5yk2114FlWWjxMHWps3Ssr2Bmxk3Hxo1lvfdisNsDdk9Qmhrkk9evpbm5uayKeankklQNftkzQySts7WEi9qFwPmIvdQuerHNq/xlur15ld+euFik+x+Hx/nOK8MYmoowoXNo7BT3v3drTk5nWRbP94R4dTBC0CXzzh311PoL9eSiKPKhq9czHNXpn0kwlWZuvBo0HZJm9nMTAM0wqPdCOJk9v6aAfNHOtVzSXU2N7gsvvMAjjzzCT37yE9LpNNFolA984AP827/926oc38YlTbqlkC8Zi8Vi9PT0YBgG7e3tS/4Fna/SzTf63rRpU8mnrizLZDIZrmqr5i9v6+BvHj2FLAq4HBKGma0wPA6JtGoQTqi013p46EAfjtQMlzUH2LVrF263mxdffHFJ738+bBnOyy+/TG1t7bJGgefDsixGRkZyY7C55b0g8aWn+hgKp1FEgZ+dmua6ep0NGy5OxbScTbtSm1elYnX8fn/OnetC48FDY/idErog4nDIzMRVXh2McOOchO6x45P8n4MjuGQRzbB4dTDCfe/Met7mo9Kj8AfXreN/PHQSgax1aEaH/DNwKSKSKDCZMnCIJpUuka///CR3bhDQBQdVQR9VwXPKkdW29Cw3qSISiZRdQJ0P9957L/feey8Azz77LH/3d3+36oQLlzjplrqpJEkik8lw5MgRMpkM7e3tBXrQpcAmy/lIJBJ0d3ejaVpRPexMXGUmoVLjc1DldRRsyP3Gplp+dnJqzlwcnu2eIaPpqIY15zqm8uypMXbWO3D7AjTJ9exYBUlMKBTi9OnT6LrOFVdcsexBDxv5veuqqipaWlpIpVK5zZzj4ylODRk0BJwosowpSDxzNsOdV/16W0POR6lluq0pnp2dJRKJcODAgQLPXnvTbrUqQ8O0kKVseyjr5iVgmuc+y0ePTVDpVnKbXJPxDIeHo9zQUc1rg2F+dGQC07S4oaOaLz3Vy0xCQ5/7+fzfiDS3cYtl4XPKdFTJyLLM2aTJd/udpDQDy4xx+0aTbZWzBQ+h+QqKlaCcz201Sfdi4ZIm3WLITz3o7Ows6OMtB/MrXdvcJZlM0t7eXvT4L/TM8J2XB+cuGouP7F9Pq+8c6cqSyHUbq3n8+DhTsQwT0TTxtI5LObfJFQi4cfiCrKvx8mJfiLdsrl32zWvLvyRJoqOjg6GhoRUTbiQSoaurC6fTya5du3C5XKiqit/vz1WJmWAY39QATmd2ICOdSZHKaBw/fpxgMFiwifVGaWyXi/mOY4IgsHnz5qKevbYPQ76meDn9+Nu21vLjoxOgW2QsHZ9LYVdzfnuEbF8g9w/ZP46NRPnbn3ZjWqBIAr/sDRFL63gcErppkdLOqVEkAbzO7OpLM8Hnypqoi6LIVDyDYcHGuqzH7k/6Mlx+20Y6azwLlCNDQ0MFmtrzjXsvF6s9Amzjhhtu4IYbblj148IlTrr5JJRKpejt7SUej7NhwwZisdiKCRfOkW46naavr2/RVAXIpkB895VBKjwKTlkirRl868Wz/NVbmgqkZ1e1VfHosTEckoRDFBDF7HSQ1yGjmVb2dQ0DVTcKqpmlwH4AZTIZOjo6CAaDpNPpFcWZJJPJ3NRbfjul2PJ6Y50Xn0shrlm4HG5UXebKdTqbN2fd1eYb4+Sbifv9/ksmjt3uc5by7M13JxsbGyORSGAYxpK0tQC/s6+ZCrfCE4cHaKkP8jtXr6M6byPt7dvr+PdXR3HLIqphEXAr7GwK8L9/2sXQbBpRELDIDuuIQrZyViQRy7QQJYEar4NwUiM9l1jhcUj4nRKmqZHRLdK6SUMwW706ZBEBGI2kaavxlAyXtOOUEolEwbj3fOP45f6uLxTpXkhc0qQL5yaxotEoGzZsyDlzdXd3r0rT3zRNQqEQkUiEtra2kqkKsbTO06en6J9OEE7q1PqyF6dLkYikNJI69M6k+Y/HTxPL6FR7HfgdElWSysSszhq/g5mUgd+tMBnLMBFNYZgmhwaj1Pgd/OfrY7xnd+OC1y0GVVXp7e0lHA4veEAs13tBVVX6+vqYnZ3F4XBw+eWXn/dnKj0Kn7xpA//x+hjhlM717VW0SaFcCnD+stA0zZxD2ezsLIODg2ialluu21XixTYTLwfnu84W82GIxWIF2trFKkNJFLhzdyMbhAk6O1sXENUd2+sJuBQOng0TdMm8a2cDPqfEgbOR3M9bloVqWrgUAVkU0A0TE3jbllquaq3kgVeGmYhm8DgkfuuyRsajGV7qnqBKgR1r/bkCwLQsTMuissjYeD4cDgfV1dUFBZBpmrmHkB2rpGlaTk/t9Xpzm73nq4rD4TBr165d9Ht+3XBJk+709DSnTp0qOom1mKtXOdB1nf7+fiYmJhBFkauuuqrg+C/3hXj46BiWBTd0VPN81wxTcRVBsBicTSIJsKHORyyt4VKyy7XvH4tRXSkRdEkcHpgkFMvQucaPw+lCEkAUDaIpHYckokgS4ZTG1jUBgm6FR4+N5zLVSt3k+QY6ra2tC9zKYOmkm58u0drayqZNm3jppZfK/vk1QRd/csM5n4bTp8NFq2I7Nic/FiU/YseWdtm2iTYJF1MTXGws5+Gev2mXr63N9yCYXxna56zretHzFQSBGzuqcxtrANNxFZeSdQOz+7eyJFDrdyELoBomO9YG+KvbNvLNX57FtCy2NPjQTYvHT0zxmVvbubkuzpbNmxlLmPzdz/uYjmsYlsWNHdV0Ni499dl+6BYLGbUHPDRN47XXXsude6mqOBqNsnXr1iW/hzcSlzTpVldXs2/fvqIXvK3VXSrpGoaRS/Btbm5m7969HDlypOA1Dg+F+cbz/QRcMqIA33x+AFkU6FyTXWqndYPuiSSSJFDtdfLxG1v58aFh+sMaY4lZDENnQ42buClzaCyDYVrEM3p2MMLrYFdzkNPjMUJJlQqPA0kUcMkifdMJ2uZIM78Hmh8X1NTUlEsdLoZySdeyLEZHRxkYGFhyusRiWAo5LbZctxOAh4eHicfjAAX+tRezGl5NGVUxIyC7MrSNgBKJBK+99toCTXGxVUClR6HG60RAQDctdNPCrYh8466txDMGDlnMtgcEgWOjMYIuBUEQUKRsVdwzmaDVMpFlmdZqGaWImwAAIABJREFUmXvfuZmRcBqvQ6K5cum2lKWQ77/gdrtJJpNs27YtZ4JUrCp+6KGHGBoaYvPmzUuygiyGoaEhPvjBDzI+Po4oinz0ox/lnnvuWZVzm49LmnRL2SDC0oca7Aib4eHhApIxTXPBGPCBgVmcsojXKZNUDURBYDquMjSbJJRQCSU0RFHApUjcsbMen1Pipb4pEppFStcxgVdHUiiSSI1fxDAEgi4Zr0vmrVvqcMoiw7MpJmIZwMKysnE1tT4nUkLKyWnyfX5ra2vLigsqZzhhenqa7u5uKisrl2zUXg5WKq+SZbmomiDfMtD27j169GhBe2I5/rXnw4XWrs6vDCORCHv27CnYtMtfBczXFH/ujk389aNnCCU1/JLAp2/ewKGhKI8em0ASBd67u5Gbt9RS73fSN53EIZ8boKnxOTAj55b5AZdMoGHp1e1SkC8XK2WCpKoqu3fv5siRI/zwhz/kq1/9Kq2trTz00EPLek1Zlvn7v/97LrvsMmKxGHv27OGmm25aldSIBa+16ke8iFjsQl9sKi0f+dE7DQ0NC4grf4LLhkeRyOgmJ8dihJMaCVUjrZpEMxqqlo0+37Y2SGPAyb+/NMCN9RnGoxqWJaADhpndWHZIFrMJnWqfA48oEE7pjIaTVHqcVHkU0hVupmIqFhZbGv1c31HDsSND2eyqmRm6u7sJBAJLMlVf7DOLRqN0dXWhKErBNN1yMBnL8N1XhhkJZ2ipdvPbV6yl2uu4YBNp+cTU2NhILBZjaGiI1tbWosMO+e2Jle6ovxFBm6IolowUyh/9jcTi9Mwa3LZOYUN9FW31Fbw6lubbL4/idUhYWHz9+bP4nRK/v38df/OTLkIJFRPYuTbA1W2VHD7Ud1HbN+erWu2q+M477+TBBx/ka1/7GuvXr1+RMVVjYyONjdk9E7/fz5YtWxgZGfkv0l0KzlfpWpbF+Pg4/f391NTULGlI4KbOeh4+Oj7nhyCiG1mHUU23MC1wyQKxZJoj/VHimsDV7etQzUEUMeurm8HEsrKSnIAiklQNfE6Zlio3m+r9uB0S+9urmIln+OmJSWRRZGOdj399YYDugQQbR15lX7OX7du3r0o0dCqVoru7u0DlcD4sRjSqbvLlZ/qJpHSCLpkzE3H+6dkB/vq2jRd1DLhU1pmmabn2hN03XYkXwxtBuqWQbwSU0gw++aPT9E0nwNJRumb4s306jx8NoWcMdFNEkiUsE545Pcmnb+3gH+/spGcqiUsW2dTgQxYv/nktNTXCXvGsVhzSwMAAr7/+ei6ccrXxfx3p5huUV1RULCt6pz7g5Nr2KkzTRJFEuiazr+NUJFKqTlw16Z1JIwkQ8Cg80z2LxyERm2tT2PpdgHBawyGL1PkcNARdXNdRQ1uNl1/1TPPkySkagy5SqsGXnuqiQjbxSQajaQ9N6xvYvULCtW0hQ6HQojK4+ThfuORELMNsUqNuTsFR53MyGc0wE1dX9H5XC4qiFDVQL+XFkF8VOxyOBef960S6+Xji5NScQb2ZS4H48sEYhuUgaWrUeFyYpoGW0dBSMV577bXcw8fn8xGPGgskYBcDSyHdeDy+qu8xHo9z55138uUvf3nVPB3m45Im3aW0F+YblNtjteVi/o3V2Rjg0FAEjyLhUiRiaR1D17GsLJ2KApgIJDMGI+E0SS1b3ToVgUzGRBFFPA6RcErHJYvEVYNEJmt80zuV4OX+WYJuGVmAselZVFXD5fVQ5baQnU5+dnKSd+woT0JW7FwGBgYYGRmhpaWFjo6OJZGGvRk3f8lpb/C5ZBHTnNODzplfm1i4FJHYG2B4Uw4W82KwZV3Dw8OoqrrAKrLcSPSLgZmEyqPHJoilDcYjKWYSam7aTDMsZpM6lR6FWFqnW09S7XMQ8Dj5wHWb2FDrLYjTsdNCEokEx44dW3G2W7kodwTYvo5WLUVD07jzzju5++67ec973rMqxyyGS5p0YXHTG3t8Nz+cMd+gvFwUk5/d0FFD33SS57sm0TQNRQDDErLaRY+CppsIQnauPZHRyegGLT5IouBSRLavqaBrKk6tz4lBdlji7EySv3z4FD6HzImxKJqmUeGwqPR7kGUZl8uBIKgYloWyjGWfnWZsW/wtV5Ew/zO3E34ty0LTNIJOgevaK3i2O2T/BLdvqyPoVpj+NSXdYigl68qXsU1PTxONRnPytnJzzi4EQgmVP/j344SSKsz5Mut22oOVVaxYwGzyXDFS61UIp3T+8pEzXL+xio9e01Lw8LEsi4MHD9Le3n5eIyCPx7Mq56zr+pLu0dUgf8uy+L3f+z22bNnCn/7pn674eIvhkifdUlAUhXg8zmuvvYYoimzZsmXZOWfFQiVNQ6fVEeGQEccpS8RUC0kE2WKuz2uiGtlNtYxuEXApVLh0OhsqOHg2TGuNm9FoNibHrWQnf3qnEmxp8BGKxslkMqQMAUVxkIjqeBwyIhDJmJiqzkeuW7ekc7A33oLBIB6Ph7a2tmV9FnCOdG2ytSVoiqLk/u2uyxrZ1uhjKq5S53Owud6LqqoFP/NGamtXgvlWkePj46TTaSorKwum7PKTLOwWxYWcsvtF1wyhpEpgbmDBMExSqoFhWWh5Ahy7GIhnDGaTGo1BFxbwTNcM66s9vC0vhsdevZTqjdubdsPDwwXpHfm98aWec7nthdVcYbzwwgt873vfY/v27bkYsM9//vO87W1vW5Xj5+OSJ91ilW48Hqe3t5dkMsnu3btXbIiR3x+2hyaO9Y/zteMm04nseCRkx95lKVthmJaVHbOUBURRwOeU8TksKlwSFW6FsUgGj0NmMpZmU72fodkUgmWixWeZSojUV/hIqAab6v0kVJ27Ll/DbFKnb3icy1sq+Y1NCwMBiyHfd2HHjh14PB5efPHFRfuQ8bRO30wChyTSXutFlgrJURTFnEA/fwTWhl3tXLbemSNkXdcZGRlhZmaG2tpaDMPISfHsnxcE4ZIkYsuykCRpwdRZvh9BvsZ0JVN2i60SNMMsMK5xOyTiGQPTyvZz7a/lT5X7nFnPXIHsaO+ZiXgB6S621F/MCKjUOdv/eTyekudcLunGYrEVB8bauOaaay7aCuySJ9185JvdNDc3MzExsSoORHbmmt0HbW5u5mimhpnkGJk8Y2cLMAyLtGWyc20ABIGpeIaZhIrfJWGgMR7N8LHr1rOuykNKM5iMZegemSE6O0uTXyRQWYFbS5LRTRySSEuVm/FomrUVHm7pDNBfrZ13Rh+y49Hd3d2kUik2bdpU8DksthE2Hknzv396Jpdk0bkmwJ+9tb1AuynLMqdOnSIYDBIIBBb1SRAEgenpaXp7e3NWkrIs59oR+X8Cq0bEF7OFUeqzzPcjaGhoyH3vSqbsFlshXLm+ku++Mkw8k41h0gyL27bW8osz04iiSVo795mIAgTdMqpx7hw03cxNPdoot796vnO2PRjyjYDmJ33YRkB2GsT5EA6HLznfBXgTkK4gCAuScKurq9E0jeHh4RUf335yHz16lObmZvbt24eFwMGHX0E3itzYAoDFmkoXdX4XpmkxPJti6xo/6dkJrt7WyN4NdQiCQCQSQR8f5No6Bxv3X85wzOCff3WWoEtmNJKmo87HWDRNS5WHjrrsDu35Jso0TaO/v5/p6Wna29uprV3oTlZqIwzge68MEU/r1PqdWJbF8ZEIL/TOcENHTa4t0NnZmbM1nJmZYWBgAFVVczv9NhGrqprLn7OdyPLfA7Bgsi6//bBSIr5Ym1tLUS+UmrIr5dk7X8ZmHyMfY5E0P3xtlB8dGSeSyq7Igm6FD165lrdsquHISJSAU2JgJkUkbWABNV4H9/9mJ996aZixSBqA9lovb99WX3DspZJuqXO2WzL552wYRu6cx8fHicfjGIaBqqqMjY1RUVGxqBHQpWh2A28C0h0cHGRwcHCB/8JKU3zzp70kSaK9vT1nrDE8m8IhZ53BmMd/spid2knP2eWZVnYH/y2ba0mOx2ir95BKpejq6kLX9QKnrg4P3PuuTuIZnZm4ytBsCq9DYmdTMOeRWiooM3+ibt26dezbt6+sUWDTtAinNBRJxO+SGY+m8Tqzl4VNbpPRdO6ztEnPJgFbUG5ZVs5tPxQKcerUKXRdz5FGOBzObbaUIqjzEXF+RazreoGJT/7fLzZs68OVoNRSPX/Krr+/H03TUFWV/v5+fD4fQwmBTz3Sw2RMzV2KkpDVSs8mNVqq3Oxvq+KXPSGCHgWfS+a69io+dXM7oiBw7zs30zedRBSgrcZTEFRqv4cLtSFYrCVjb9z5fL4FIZv5Dx+Px3NJeunCm4B0GxoaWLNmTdFq7nxLTFU3efjIGCfGojQGXNx1eRNBt5zLObOnvcbGxgp+ThCg1u/EBLrH49gUKMy97q2dDSiyyFg0jWlmdb3feH6AaCTG3uET7Kiy6OjoKGo9mQ0CdFDpcdBet1B/KIriAimcPeRRX19f1iiwTbrxtM5Xnu2jdyoOCNy0pZbOBj+/6JrGJYtZfadh0FrtXtC3nQ9BEHA4HCSTSWZnZ9m8eTO1tbW5ZWU0Gi1YStvV8PkMa0oRMWQrpfwNvfx/s/+8GBt2F0qnO3/KDrKDLKdPn8br9RKLxfjSU+NEU/r8Zz+qYXJkJIogCPz5W9u4oqWC4XCa9dVu9rdV5t6vUxbZsshYr2EYF/VBZr+v+vr6gs80f6BlaGiIr371q7z88st4vV7+8R//kZ07d7J///5lG6c/8cQT3HPPPRiGwUc+8hE+/elPr8r5FMMlT7pOp3PZFe03nu/nua5pvE6ZE6MxDg+GuLlR45lhHU32sKvZja/e4MHjEUJJjWu2SNzSWUed34lbERkKpXA5RFTdxKOIyJLI7uYKohmde2/rJJTUODw0y48Pj+FBRTLS/KzfQUisZ2Iow9WODHX+pV0k+ZVuKBSiq6tryaPANun+8PVheqfi1PudmBb89MQEv79/PbNJlcPDEQTgNy9bw2XrKhYlFZv4bXOcK664InejFltW2jdQLBbj7NmzxOPxXH/PJuPFJFf2sfPJ4FzlbhKNRnN+FPkV8YXasFuMdDXD5PsHR3ixP0ylR+H3r25mQ+3yh1osy0JRFOrq6qirq0MVZ3E7IaXrBRtlgmlhphN884lDeDxurm2v5Zq2+mUZQL0RBvPzP8/5Ay1f//rXeeCBB+jr66OqqopHH310WYNOkD3HP/qjP+Kpp56iqamJvXv3cscdd1yQEWB4E5DucpHI6PyyZ4a6gBPTMDDTKXrGdUYibgJuFxVOiV+cmeJHh8eodgkoksUPXx0hPKdxnE1oyCJopoAoZNMgkprJibEYjUEXkihQ41U41DNGOhamsipAVPEQimscG40yGknz0xMTfPDKdVy9oarsSkkURVKpVE4Kt5xRYHsjrWcqQcApE05pJFWDtGowGk5wz42tpPXstN385eZ82IGcfr+fPXv2lCUPKjURZhPxyMhIztjc3mSx/ys1qi2KYq6HnEwmcxLBC71hB4uT7r+8MMhjxydxyyKj4TSf/PFpvn7XNuoDy6vI5lfuV7QEefLUFIokoBrnoncsYDAu8kivimmm+fGJWf5wh0JAKS5jK/X+3yjSLQeJRIJt27bxoQ99iA996EPLPs6BAwdob2/PySjf97738fDDD/8X6ZbCYmQlimLJi0YUBCzTJBqJZJejooOptIGQSeOKazRVuhkNpwglNSIukbYKGcHh4P5f9KCZEHTJOGSRoCwxFjOJqwaSICAIoJkmzx3tQ4mP41c8+CqqCATcHJ9IImCR0U36ppOkNYOvP9/HeDTNe3YvbJHMRzqdZnBwkGg0yq5duwr6f0uBXek2Vbj56YkJQgkVLMgYJqfG4rx7l4DHsfilYadHWJZFZ2fnij0gJEnKeQbYsHua0Wg0Nx1lJy7YJBwIBJBlmeHhYUZGRhYYzV+MDbvFSPep09P4nXI2hFSBcErj9eEot3aWJ/k7PhpjPJqhudLFpnrfAtL9kxtaSaomv+ydIZLSEBCo8iokVIO4qlPpdVPpdxFKaHQbtXzs6pacpCscDudidewpO5uI7d77xSbdpbRqotEo7e3tK35NW5Fko6mpiVdeeWXFxy2FS550F4OdCjz/oslkMvT39rLZl+FYWMbjVOidTOBSRLBAFgVOjcfQ5iqHUMokmlZxOzTSGogizKZU3LJEmqy1o0MWaPC7WBuQScRj9E8q3H39XrZocP8vehkJp0hq2fHflGoQcGe9eGu8Dn7VG+KGjlqqfcWrRFsbPDU1RUNDA06nc9mEC+dI97atdfyfA0PZfxSg3u/k5ESc6bi6ILrbhq2OsFMp7Gp1Oq4SygviXA2UMrvOD4Ts6ekhkUjgcrmoq6vLqVkWG1NdyoZd/qZlqQ27UkQxGklnFS6mgey0bzWh7GnCf31xkP88PJ77/w9f1cxbW90Fr+1xSNx9xVp2Nwf4zitDqLrFdEIlpWY1u4OhFPFM1lApltFz3gper7fklF1+thuA2+0mGo3i9XovOAEvpYecb3azEhTb+7mQypc3Nena+lq7z5Mvp2ptbeV//bfNPHlykqdOTtI9lcCtZIP6MpqZI1z7o9ctSKoWDkXK7Q6bFjgkifZaF7VeCY+ZRBRMhEAFgep6jowmaKp08xc3b6R3KsHBM0O8NBBlKGGRUs05P10nswkNzSjcClF1E0nIRpsPDQ3l5GqJRIL+/v4VfS72cINEVgfsdciIYnYybjquktSKqyNGRkYYHh6mpaWFjRs3opsWDx4a5bFj4wyGUtQHnATdCr9/TQuXr7swUh6bNADGxsbwer3s3LkToKA9kU6ncTgcBRXxcpQTsPiGXSkJ36PHJvjuK8NohsloXKXCJeNQJBoCTq5sPf9nMxpJ85+Hx/E4JCQxa0D+7ZeGuLx+fQEp/eLMNF/6eR+mZeXyzUTx3CCEYUEkpaLqJle3lU7Enj9lB9mHfU9PD5aVvQ7zJ84u1JTdUtJeVksy1tTUxNDQUO7/bU/tC4VLnnTPl02l63pBGkS+nMo0LQZmkvyyZ4akaqDpJk5ZoNKjEEnrSAAi2PeUaRWauCQ1AxHYUW2R0SySiodYxkI3dZ46NZkd3RUEfvfqdexsClIvp2j2Cfx/ZzIkVJ0NtT4iSZ06vzNX5U7GMvy/z/fTNxFB0JJ84PJ6rstTJCw34wzOeSR4PB5OnjyJy+PFI+rEUjpVfjehpEaFR6Ehr99ox6zbww179+7NvZdHjo7x2LEJzoZSSILARDRDpVvhX18YpLPBj8ex+lVRfqXd0dFRcNO53e5cEjFQoJzIr97yibgc5USpDTvLsgiHw0xPT1NVVZVTlUzGVL77yjB+p0SV14HHKRFO6ty1p5F372zA5zz/bRdJ6UiigDRXFcuigCgIRNM6vrn3Y1kW//TsAE5JxCGLKKLA2dl0jnHtO0MUBCo9MtdsKE26xSDLMg6Hg0AgkNsIXWziLH+4Y7mGOMu1dVwJ9u7dS3d3N/39/axdu5Yf/OAHfP/731/xcUvhkifdxSDLMqOjo8zOzhaNnHny5CTfeeks8bmxnIxhkTEsLHS8ikBCswp0uPY2hapbGFZ2+ixm6Dw3ZHDDpjoMyyKSyTAWSZNQda5YX4UAPHholM+uCSBJEpVukT0tQV7uCzMeSXNVWxV3XrYGRco+BP7xyVMMTc1S7XUg+6t4tM/g8k6LwNxvqpRO93zIl1E1NTXR1NREIpHgj30hvvXKGMPTYWpcFu/c6Gd0aBC/348oigwMDBQdbgA4MBDG78w+WGxbS3sDLprWVpV07figwcFB1q1bx8aNG897UxcLRbSjfmzlhD2EkK+c8Pv951VO6Lqe8yDeuXMnbrc791ALpXREIRsEaZom1R4FSRC4eXM1fmd5n0lzpQuHJGZdwizQTYvGgItqt4SWyb4Hw4KkZhCcI3HX3CrMnvkVhCxZNwRdbFymYmJ+T3exKTtb0mVLA+cb4pSTZbcU0o1Go6s2cfrVr36VW265BcMw+N3f/d0Lmrt2yZNusRvPljCNjo5SUVFRUrv60xPjRNILCSyWMVBKXBt+p0g6Y6CZIAKCKJDSLJ48MUFHvY+GoItIUsMC+qcTbG0MMBnPZC9MQ+BfDoYwFTd+l0QsbeB1ylR6HMTjcV4/cYazU3HaG2tyu/QT0QwTsUzOxGSple58U5p8va3P52NHu48vt6/LfW8ymcxJ0TKZDA6HA1EUGRkZyblP2e0an1OaiysC3ZgzZjcsgm6RKs/qLTnD4TBdXV1UVFQUVNrLQbGoH3syKhaLMTo6WhAJnz9hZxv6DA8PMzw8TFtbW66PbEOSJFpqfEiiSMawcCsS0bSGzyFR4ZIKPCfgXJ94Phn5nDK3dNby9ecHMCyQBIF1VQKWdW4jTRYFdq8NcHgkit8hk9KNnFezQHZlZlngkkX+8LqWZX1e5Wyk5U/ZlTLEWWzKLl+RUu4IMGTbSas1HPG2t73tgpjbFMMlT7pQ6Ho1PT1NT08PFRUVtLS0oChKyZt0MpopeUytBK+FEgZBl4gwZ3IjCqCRvcAHZ1PE1Ww1KQsCGd1kNJrK6Vz7ZzOE0zrt1VnS8jplfnZinG3uMMlEgk0b2qkZGMFARAEM08KwrILlqInAbFJD1c3clFoxLEa2pWCaJhMTE0xOTuZGiIHcpFkkEuHpI308czaNJUh01HpIpgxqvArD4TQOWaLKo/AnN7Qt+t7Khe0foes6W7duXZWUjGJYzKzGbk309fWRTqfRNA2fz0dbWxsVFcX1y5UeB5+8uZ2/+3kvs0kNv1PmM7d14Pd6FmzY2X+3idg2zwH44WujVHsd2eoVGJ5N8+pQnD1rzq04/vLWdr74VB9HRiI4JJGGgIOgWyGtmWiGiWpY3HvHZtpXqdJdChabsrM37Pr7+9F1PReymf85lHO9/rrK2RbDm4J04ZxnrtvtzhmUj42NkUqlSv7M1jV+Xh+OlvkKFiCAABkju3SzLHLaSAHIaAZYWf9SzciS5d6WSt69K9uUz4ZJzh3NtIhGY0RjKaqr17Jt61YEQeC3rxR54KVBSGWdym7bVk9jMHuT9U4l+Kdf9DIymeaRsWP8wXWtbF1T6G6/HLLNH25Yu3ZtwXADkLP1i+DlydEYHq8b0bJ4bTzNNc1O3FYGvV6gtUqhucaJz4yTTApLcs/Kh2EYDAwMMDU1lUu0uNjIX0ZnMhm6u7sRRZGWlhZ0XScajeZGVJ1OZ64aDgQCuFwu9qyr4Dsf3E0so2fN6Of1h8+3YZfRDKIpDRNyUkRVt/j3IyHWBOqwBU5Bt8Ln7tgEQPdkgj//0SkckoBTltENk7hqsraysC20FKz2RF8pRUo6nS7w6g2FQiiKskDGJub1sy9VvClI9/jx46iqSmdnZ0F0x/n8F3auDfJvjJT5KlnycMgCsiQgaIW2C7KYrVzDSQ2/S+YDVzZz9xXNOJVzN9fmBj+VThiYCGOoGZCdfOCaTaxpPJcAsXd9Jc2VbiZiGSrcCuuqsukWqm5y/y96EYBKZ1Z29LXn+vnCu7fid8kLqqdyyBbOPayCwSCXX375ojlxrw6GEQWBgGvue0SRGcPB/3N71n80k8kQjUZzN08qlUJRlAJCWkxBYFkWk5OT9PX1LSD/0+NxJmJZvWpbzYWpeOfD9rMYGxtjw4YNBXFGttwqv58ZjUYLzts+57SV7WeeTzmRT27feKEXkyzRWpx7sI9EVT779Djfaqij1u8s0BO313q4dkMlz/eE7BKBD1/VjFtZfjV4MXS6+Vl2tuqkoaEBVVVzbZ+ZmZlclt3ExATHjx8HsgMSqxnX8xd/8Rc8+uijOBwONmzYwLe//e1VN9V5U5Du5s2bi14Ytk63FF7sC5X8WjGIgGFA2jIRRAF57mYwzeyyP+CSmIiprPM6eHUwQiSt80fXt+VsEdPxCO9oUhm0/AieBnY0VRTdUW4IumgIFlYns0mVlGZQ73eSjGQJPhHLMB3P4HNKuSqpXEF//nBDuUt3j0PCyKswNMPEnbdZ5nQ6qa2tLejrlVIQzCfiRCLBmTNn8Hq9CybbvvfKEA8eGs2SlgUfvbaF2+e5Ya02QqEQ3d3d1NTUsHfv3pLEU6qfaZ93vu41v8oLBAL4fL7i9o2WxSNHJ2jwu5hJqsQz2SW3T8maKWmWyOsjcW7Z4lpQJX/8+nVc3VrBTEKjrcbL1jUr85u92MMRdqsBshuhxSYXe3p6OH78ONFolJtvvplUKsV9993HLbfcsuLXv+mmm7j33nuRZZlPfepT3HvvvXzhC19Y8XHz8aYgXUVRim4u2TrdUhgKJcs6vn1bWIAiCbgdUtaZS8xKdSQBMrpJOKXjdynsag4iCQI9kwlOjcdo8Vl0dXXhdrupDni4Y/9lSz7HgEtBFgXScxrazFxPOeCUFjiALYZSww3l4Lr2ap45M8PrwxEiSQ1ZEnjH9sXJr5iCwPZeiEaj9Pb2Mjs7i2VZVFdXEwgEcq5SoigyEk7z0KExgi4FSRTQDJN/+dVZbthYnXNDW03YfWTDMNixY8eScvTyUUo5EY/HiUajDA0NEY/HARaMOouShAAIItT5HKTUFBbgdjlQFBlNNXA5lNyDaX6feO+6cy0n+/ovtWF3PlzshI/z6XQlSWLTpk28//3v5/XXX+fxxx/HMIxF7/Ol4Oabb879fd++fTz00EOrctx8vClItxTRnK+9UO5Na9O5WwannH3qWyZolglYaIY1N0svsGNtINe/M02DE6e70CvPxQW9+OKL5329Q4NhTo3HqPY6+I1NtThkEbdD4iP71/PPvxognLEgqfKBK9YScEllb5LZo7L2cMNS+61VXgedjT4OD4fxOSUcisi/vDDI5gb/kkxcFEWhoqKCWCyW80moqqrKLSXzTXAmNSemoWFZAhbSnBeEQSyjryrpmqbJ4OAg4+PjF6yPnB+Pnv+6NhGPj4/T3d3NC8MZIimDVNRCFsApC6g/cww8AAAgAElEQVRGtgKOpXXq/U6uaju3OVXOhF2pDbtyLDEvZuhmuZKxfFtHSZIuSDX+rW99i7vuumvVj/umIN1SmJ8IPB8pdWnuZBkDLEvD41TOKc8RqAs4CLhk3rqljtPjcVIZjYlQmFRaZc+1W9i0rqHs13jkyBj//KuB3Ibbz09Pce+7OlEkkcvWBfn8HZv55atH8EoZ6swQk5M6gUCg5KbV/OGGK664YkUX6Et9s9QHXDjn1AkzCZWDZ8NLIl1bYVJXV1fwfopJuUanZ5GPdBGOp1AwSerZxIPU7CRhM5DT1FqWhWmRGyZYCuz8uPr6+gWbiBcaoigWBEE+0zXFd546gWZkO7maBX7J4jfbJUZTIvUBF7+1pxHZ0tEMgROjcdK6yeZ6HxUepeC4UHzDzt5oLWUAVKzHfLFQLumuJDXirW99K+Pj4wv+/XOf+xzvfOc7c3+XZZm77757Wa+xGN4UpLvYBkWxtoNhGAwODnJ2slzlwtzrALqZTVOVRaj0OtENE92wcDtkbt9ah5iOcmhwkjU1FXzo9h1MJzQefG2ENRUu9rUuvpQ3TYtvvXiWgEtGkbJ94DMTcQ4PhbmsOYhlWQRcEm+/dg+aphGNRnM+tclkMjf2at/EtoDf5XIVHW5YDpyySCyT97CaC+IsB4lEgq6uLmRZLuv9SJJEc30N977Hxb1PdjGT0GipdnLPNWtQJDWnqX1pROXxARMDgT3NAT5z2yaC3vOfq20mD+QGHFYK08q60T3TNY3fqfB7+9fR2VheX1VVVe77yckCRYwFhNLw/TMmTllnu2XQPTrL7OQY33gtxtlY1uHO7ZD5/B0dbFlb2rGuFJnmk7A9RAPZjVHTNHP2mBcjw65cne5KRoB//vOfL/r173znOzz22GM8/fTTF6TKf1OQbinM/8DsqaaBgQEaGxupCLiZSJeWlOVDJNvPVSSRpJoVoRumiSKLJDM6hqYyeOYIt29p4g9u2clUXOXPHjrOmYk4TlmkxufgrZvr2O2wUHWTI8MRVMNkS4M/ZxBjWBa6aSHnVWumaTIRSWOsyW662Be9w+GgpqamYBmsqirRaDSnSNA0Da/Xi6IohMPhRSvicvE7VzXz+Se7SScMLAtqfA5u7Fh8Kb7Y6G452Nzg44EP7kabixPPx5HhCD995SRup4RgmRw8G+GzDx3kfZuUosMNkP1Mz549y8TEBBs3bixqJr9cfO+VYb5/cBiXLDJspPnUj0/y1bu201JVOlLc9jZ46sgAE4lzRUK+KEozLTTV4MBgnIFZjfdfsZZRVaUmIGGaWXnZl544xUe3SsiyXLZJPFBwXdnvZ2Jigv7+flpaWhAEoajnxIUg4nK9Fy5UVM8TTzzBF77wBZ577rklxcAvBW9q0rVhWRZTU1P09vZSVVXF3r17cTgcNAWmOTNZHumaQFq3SOvZKsAji5gWpDIapmHyW50+rti7GafDgW5afPFn3XRNxgk4JTQTImmN53umaWwx+Z8/PsHATHYTz61IfO6dnbRUZ6NSrlxfycv9s/icEgMzSVKqwZd/0cerZ8N8+taNKNI5wgwnNR4+Ok44qbG3JcgVLUGi0SgzMzNs2rSJ2trasiripRDxVW1VfOFdnbwyMIvHIXHzltqCZe38z9027Cl3dLcUBEHAIS382ZPjMQwLXI7se6iUTYZVgSuu2FMw3NDb25tbuiaTSWpqalat+s/HT09M4FEkHLKIS8muig4MhEuSbiwW4/Tp09n+ZEUTHmUI1Sjd9rIsSOsmv+oJgWUhSSKSJOIXJTKiyFVX7SnYqBwYGCCRSJRtEp9Opzl9+jSyLC9QkSzFiW25RFzuxt2FIt0//uM/JpPJcNNNNwHZzbRvfvObq/oabwrSXexGNgyDAwcO4PF4ckMTNlJltHTzo6vzkVINZNEg4BS5Y/caDoVMfvDAYVwOiVs76wj//+ydeZhddX3/X2e7+507e2bLzCSZJRtZJxBEIKWINkVEFEFaI1WrUrH4AymLinGpUKS2VdxaaS0qAgKCUHZJBDSZhEDINpk1M8ns+93v2X9/nHtvZpKZZLIRiLyfh+cJs91z7j3ncz7fz/e9JHSnK0sfWlw18SsmLx0waY1FqMz3opk27YMxPv2LN1i3ejZXN1Rw48U1/PTlfTyze4CUbuJxOVLbp3YPUuB38Q9r5gAQTRn8v0d2MRRVEUWBZ3b18b5yiytXVU2aSx6pIz7eQrywNHjUJXOm287Ly5uRdHcoqvKbN3oZjeucMyeXi+sPD9ScCrleF6JwUMGkGo5P8ERxAxyMuQGYM2cOqVSK3bt3ZwM1J1LYjjfyBcAlOdadh37tUBiGkQ1TnT9/PsFgkHZ9ELciUupyMRLXs2OGibABEZsCv4uBqIphWkiiQFw1aah1itDxmsSHw+Ejdv+nesPuWBCJRKiurj4pf2si2traTvrfPBRnRNGdCrFYjNbWVjRNY9GiRVNSo/K8R58dTad7UURQZImUCfdv7cWwnEDAynwfv93eh2qYWJbFUMzCtBwbyLhqMijbqJZFQjfRdIuUYRHXTO7fvJ/RmMoXLqzmi2uq2T+aIJw08CoiAgKaavDbN/v4xLmzCbgkXmkbYSimkeN2kiTcokTjqIebKiuPek7TFeIDg6Ns7hhFV7spcWn4PO5Jhdjj8YDguF1Nh2QySWtrK5ZlzZj/29Qf5dO/2E5cM3HLIq+2jzIW1/nYyvKj/u5f1hfy7O5BWgYd+pUiidxw0dzs9zPqtuHhYWpraw+7DmzbJplMEo1Gs6beqqri8XhIiD56kxLFeUHOqylCPkqKBjjjl7tfaCdl6Ng25PsVLqg9+JoTBSCVlZWYOaXc9VI3KcPi0sXFLJ8d4s3uCEVBN6ZlEVNN4qqZvQ7dskNZPKs8SCRl0NQfxe+WWVqew/XpB/JUOJJJ/ODgIDt37kQQBBRFoaenh0gkkv3sj2TdeCIbdicynninJgHDGVJ0J3ZEqVQqa2xdV1cHMO0S8pyqEP/XNHZcr5kyQbNMMs2IIoBpQcdwApcMLlFEt2xUw0YS0ptNtjObEwWbaNJANx2jaVkUGI1p/OaNXj5/fhWKLFEUdGHaNrYN4ykdw7AwLbjxkV1oukXPeNJxoApI5Ab96Z8zeHJHP0VBNw1VoSx1bSboj5n8yx8GSOomliVQU5zPly+qRk3ECIfDPNDYxVOtSSzgnAofXzi/gsK83GxHPLG41dTUzHhOqhkWNz26m5hqokgCumkzHFV55PW+GRVdlyzy3Y8sZFvXOEndYlFpkFk57uxIqaOjg7KyMlatWjXlzS0IAj6fD5/PN0ll9qfWQb7yVCumaWHbFnNDe/nHhgC5odAkue+h3fhF9UXkehX+2DFK0C3zwSUl5KXNfxKJBHv37sXtdrNy5Uq6xnX+4VfbSekWAjYbW4apLQ5Qme8lz6ewsjKXxWVBfrmlmwOjSSRRoG6WH0kUePC1XkTB8eeIJHVG4xo7eyKcewTP3EORmd2OjY2xYsUKgsHgJJP40dFRurq60DQNj8czaU48E5P4qTbsjjaeyMyPj1aII5HIu0X3dEPXdTo6OhgZGcmatQiCQE9Pz7S0sb9aUsYdz3Ye1+vZOCY3GRj2wa5YNcAQLBRJwC05HTE4IwnLhpBXJK46Bdsji/hcEpZtE1dNhmIaZble/vbs2bzQNMx4QsOwbFyySL5fYfuBMH4FCtwwKgj0x208HictwKOIPLmzH8Oyef1ALp8/v/qIXelE3N94AM2wKAo4Bat1MM6W/VH+cn4RLWGRZ7sGyQn4EAWb1/o0frG1n0vnOEor27bRNI3CwsJjNqbpHk8SVx2nMkEQkNKOZap5OOtkOrgkcVKxicTi7NzTTI5XYfny5cc8LhAEgXs2dCGIIn6XI7Hen7AY9ZRRFZInyX0njmUyEfMrKnNZUTm5o8x4SdTV1WVpcU+8uZ+UbuFVRMYSOrpps7MngiA457SrN8LqOfn8y4cXZj/HlG5yxX9uJeSRGU1n2wkC9IVV7nyulTs/tHBGKrSMk1xZWRkNDQ2TwjszyRITrRsz3ghTmcRPPPejxWfB1OOJjCglFApNcmKbriM+WV66pwNnRNG1LIvXXnuN2bNnU1dXN+mDP5JAIsd/YruT9jT/Bqcgq4bDtVRNE0lwviaLYJg2QY9MUrcQBScuG6DA70JPV/KKPC//+tFF3PrbPURVg6BbJt8Dw1EL2S1TmJ+DP2DSMZwg5JPRTItFZUFcaarZGwfC7B9NUl0ws3MciWlZ/1shPUIYSzoPq9f2jwNkQyr9HmiLCMyZM4eWlhY8Hg+FhYUkEgna29uPaUbsdzn5YZIgYJhW1pLw/QtmliE2EaZp8tAru7n/jTEkxUV1oczXq6H4OEa0Ywk965QmCAKWDVGNKWXOGb+JzHx8ou9CRnRRWlp6WLedeWiblsNaAec6kgTHP9erSLzWNT7pczQt5+kuChBJGsiic2xuWUQzLRo7x45YdHVdp6WlBU3TZkyTm+iNcKhJfObcBwcHj9kkPvO3BwcH2bdvH/PmzaO4uHhGHfHAwMC7ne7phCRJrF69esqb+mj+C6cKE4uwgGM4Laa/blgWZT4X5XlemgcSaT8Dm5pCX9ZRDGBZRYjr18zhf/7YSUBIIcsep/vypilmlk3IK/Op1bO5b3N3NnvL6RiFwyKAjoSlFTk83zREsSximDaWbVNf7GxCFQZcWbEGgKpbyKYzu62vr5/kGJXBTDfrZuW4uXxZCb/d3k8kZQA251Xnc90F1TM+9sycdNPONn7ZBHk5AdyyyIGxJHc+28q/Xbl4xn8rgyXlObxxIOz4TVg2ogALSw83VplqPq7rOiMjI3R2dqJpGrIsMzQ0RCqVynaFfr+fy5aU8OTOfmLpFRA4xTQDQRDQLZPnm4aoyvfyF3WO9LmhKpetXeOOf7Fl406vltSkRWAak/SJNLA5c+Ywa9asE+agTnfuGYVdRlkoCMIkmXNG0KKqKk1NTSiKMsls6Uhz4lQqxfe+9z0OHDhwQhuepxNnRNEF54Oayu7taP4LJwOSQHq+Ntl5DJyC65ZBM0EWwOOSwLZZXKRwUbnOd/tVwilnzDAWT9E5GKGu1HmCRyIRZqndnFMqsXM0iCmKvH9BiObBKK0DMUYTOoIA//jIbtyyyGhMpX5WgKhqkONVqMhzupi+cIondw6Q0EwurC1g+ezDjZ+vbignqpo07htDkQT+7tzZnFXuqKQuW1LC7/cO0z2edMjrtslnz53LivrZ0964x8KauKQ0QLW/iHFdZu6sHN4zd+aR9BmjHLfbTaBsHkrb/qxYI8+r0DoUx7CsY5pvA6z/63puf6KJXX1R3LLIrZfUsqDk6Mv2jE1md3c3NTU1vNSl8bM/7ccwNf5qvsVH52uMjjrFqGnUQtMNDNMxHRfTT2XDAlGw6RqJY9oC39/Qke1mf75uGbd9oJb/+dN+/tQxSsdwgqBbZiyhURhwc8mC4sOOKcPccLvdR3WSO1FM5aE7lUm8qqoYhkFxcTGlE1z2poMoimzfvp0bbriByy67jH379p3S8ziVEI7iS/mOMa3UNG3Kotvb24umadPSS+q/fmR1iiJOb2gOIKVvFEl0HMimCtKRBce8RETA45LQDIuVlc5GV+tgnIBLQBZhKKph2xbvKRVZUwZ+l0h1dTWzZs3CFkQswCNLvLh3iO8+30YkZWBYVnrm5XB+F5UGqZsV4JqGcoqCbgYiKv/48E6iqoEkCNjALZfUcH7N1Btdma7u0KJ3oHeAZ7a14c8J8d5F1U70kE85Lv+D17rGeW6PQ4+aHXLx3386QDhlMC9XYt18kcKA+6ijiUxC8tjYGPX19YRCId7sDvO1J5vJ9ToRQgnNxCWL/PLvjt1gKAPNtFDEmdlkRiIRmpubyc3NZe7cuWxsHeWrv9ub7WIFAT55TjkNVfl0jsT552db0U0bQQAhfQ2ReXjbU998Xlnk1Zvfm7Vr7BxJ8FrXOG5Z5PzaAnK9BwvRRGvKurq6YzI3OlVIJpM0NTXh8XgoKyvLbtpFIhEMw8Dn803qiD0eD6qqcvfdd7Nx40Z++tOfsmTJktN9GjPBtBfMGdPpZtIjDoUsy9mYkENxtA5YAMe6UDfRzak5u7Lg6OOn6nIzMGyQbZhfGmQ8oTEU08CGHd1hxpIGAbfk7GALNi5JYMewRUzwc8uacuKxKI9s2MYjLSopU2BuoZf3zM3H5xIZiTubdQjOrn++T+Gjy8v4i/pC9o8m2dUbYWvnONGUkQ2+TGgmv97aky26tm3zUsswWzvHKQy4+PCyUgomRKhnpLuKorDufSvpGNO5/XfNqIaFKAh88S/mTFvAp8LLrcOs/78WLNsxCooknTDMoEehK2rxWI+fH3x0wbSjiWAwiKZp9PT0UFlZSU1NTbYgLinP4eL5hby4dxhJdMy/b37fvGmPxbAsXmwaYt9IgrmFfi6eX3SYd8NUHNvD/k46NTcWi7FgwYIsN/jF5iF0087OhuOqzr1/6AK6Ju8HpPPMXKKIJKatQ+3DR1Q2jjDija4x3lPjrCCqC3xTzu2j0ShNTU1ZMdDpTljIxBz19PRMegBMnMtm6HuRSITx8XGef/55vvOd76DrOrW1tXzpS1+aFBv/TsUZU3Snw1QbaRkZaG9v7xF/VxScGzfHozCW0CexFQQcQ3Nnw0PEo0jEUjqqSTZexUxveOR7FeK6yUhcZSCqoUgC+0YSpNJdpWXbmJaz6VbglaielcNw0sDy5pEbLOB3r8YIBF3kCTYHwhrP7OonGtexLRvVch44blnEtqEo6OK+P3bx5M4BJFFgLK6hmTaSKOB3S0680IQT+c3rvTywtQeXJKBbNpv2jfHvH12MR7Lp6OggEolQW1tLbm4ummHxnWf3YAG5PgXVsPj+hn0sKAlSGJhZJtrPNx1AFMDnkompBlY6V82rCHgVkV29UURZnnI0MTg4SHt7e5ZwnynIEzviL66Zw/sXFhNO6swp8FEUdKObzgNiYkG1bZvvvtDOK20jiIKAbcOb3RFuft+8GY82DpXL1tfXT/rdXK8r2+8YpnXEFZNtg51ZYdggS8IkcUTmXyKwr70FcbgNv98/icalKAqmadLR0cH4+Phhpv6nC4lEgqamJgKBwFG9iTP0vby8PB544AFKS0v55je/STKZ5I033qCgoOAdX3jPmKI73Y0y0WnMtm36+vrYt28fpaWlrF69Gp7fMO3flCSBT51XzaaOEfb0RRlPGgiA3y3hkkSKgi4kQWBWjpugW2bb/nH60rlrGed+URRQZJGA4ERhuyQRr8uhjGm6hSI6NyQ43g6VRQEQBOKqwZ3PtTIcUxmKadQVB5BEgZJcmY7hOKLixkyp6KaNItkEXbA8X2PXzl08tEdHkSU0QSKSMkjqFgnNQBJF8nwKf3N2RfYcH9veT65XzjITRuIaL7zRTimjVFVVTWKDjCV0krpJXlr265ZFkrrJQESlMOCiN5ziey+20zWaZE6BjxsvnktJzmSOtGEdzL7K0KAyKxTDsvG7JKRpRgmRSIQlS5ZkHbmOtFlXmZODZCnc/Fgbr7SNIgrwiXNm8/nzHS+B3nCKP7WPku9TsqukV9pGWLe64rBjngoZzq3H40EsrmXrkEGyt5c3DjhZZR9fVc66cyp4fs8gUdXI+h8fCSvKc/C6JTa0jIBtIzJ59SQCC8uCXHnxCmSBbNZY5mGkqiq6rpOXl8ecOXOOKGp4K2DbNvv376evr4/58+fPmG2wbds2vvSlL3HllVfy8ssvZ9WMH/zgB0/l4b5lOGOK7nTIdLojIyOTEmUzF2TQ5VCBpkK+18W151Yyt9DHvzzbSjRlYKftA+cUeHEpEssqcnh4Wy9m2qhGkRzmgGnZaKaNbdnEVKdLNm2YP8tPx0gS0h2uJDpZbftGUuimTUozGY1pRFIG3rhKXDMZS+h0jiSYV+QnphqMxg2WlAepKvARSeqohsU9H1lITVGAp3b2Mfja3rTwIm1gjZM6oFs28wrcfHDxwc0W27YR0u2YbhjE4wlSqodV7z1cupvrc4pzUnP8bA+MJbEs+Pnm/dz+gTpue7yJ0biG3yWxpz/K7Y838ZO/WTppiX75slJ+sGEftm1i2TZuRUSWRFTDQhDg1vcfHBd0jST475dbGBwN875FJXz4nIZJD9ejbdbd8/sO/rBfRREAUeD+zfspD0p8cFkFmmEfxmEWBAHNcB4AB8aSRJIGVQXebDDozp4Itz/RRH84SZlf4F8+vIDHdo/z6Bu70xRBC58iokgiT+zoR5EEqgt8XHrWLB58rQddnWrifxBzivzcfMk8/u7+7TQPxBAFAb8iMq84gCKJ1BX7+fv3VmXfz0yHW1hYmB0BVVZWoqpqlj2h63p2TppZEbwVxTgWi9HU1JSVgc9kvJFKpbjzzjvZtGkT999//ymNQT+dOOOLbiqVYmxsDEmSWLp06WHOQfk+F1Ht8KobdAl858MLUSSBDc3DlOd5MPQkMVNCNyxkWeQjy0p5Ykc/8wr9JHSDlGZx3rx8VMOiYzhBz3gKn0skoVlIIoSTOindTVWOyHhCI+Bysawyl4Rm8aFlucwp8DEU04imDDa0jNA1mnK6QNumdzxFjkdCM21KclzZOWGeT2E0oeNzOR/lc3uGOET6jwUEvS7yPCJeW2Xr1q1ZH9fzKz082xJBtAx0y6Y4L8DasxcgyzKWbbOrN0pKNynP9fDo9j4kAdqHE+nO2fES3n4gzN3PtzIW1wilN3JyvSIjcZ2esSThpEFfxMk3+/DSEmRR4OldA3gUiU+eU0FUNRlP6iwsDWZTa1t7hvnCQ7vRLAG3W+EnW0bxBgf5q0VHT6rIFOLOF0dwKSayKGLbFknN5KVdByhKdSPKCiHFYCiq4/copAybqnwvJTkuvvFUM0/u7MfG8e79yceXUhhw8Q+/fpO4aqBIAr0Jgf/3RAf94RTqhDFAQrcQdEdpaNs2HcNxBiIqiUM/lCnQNZLAJUnc/8kVbGgZZiiqUlPkZ1X11CKAzMqtq6sry3HNIMMImDgnHRsbO0xhlhlPuN3uk2JjmBndDQ0NMX/+/Oyq5GjYunUrN954I1dddRUbN26ckdPYOxVnzJkdesFkFC4Z1dDSpUun/L3ZeV66xg8vuvk+mRebhtjRHaZ10AlFNC2BkFchljK4cF4+BX4F07Kzaau2bTMQ0fivv11KJGnwjw/vpDecwutyHLI03aRtKEZ1noe8nCDvmZfPP1xQPenYTcvm981DPLytF0kASRbRDAtDsBlNGFy9soyXWkZI6iZeRSKuGnhkkfz0kr9lMO4IMCasSwVgMGYQ8PhY21DF6vlFGIZBOBxmdbyTWKFKR1Qg1yvzoUU+kuFhBCPA3Ru72X4gjCjAYEzD75IJuNNRMoJAVZ4XWRIZiKo8s3sQG8hLGZTnerBtx6ry8R39vNA0lD4Ogb85u5xrVlVw2RJH7RRNGfxqazfdYylShkVFjkLnvg5+u2sUQ5ApDDldWUo3efC13klFd0dPhO9v6CCaMriovpBz5+Rz7x/2EUkZXFibjywKqIaN7HKOV5YlFs8t59xzq9A0jTtKRvnZpm46R5LM89l8uErk/g07eOSNcYdRIAgMRTW++PBO1i10YZgmHpec/byGYxqSJMCEonto2RIFZwQzhXfNYfClObaSKHDx/COLQzLjDa/Xe0Qa2MQ56aEKs0gkQjgczvpNZFKNM4X4SFLfqZDZvCssLKShoWFGngrJZJLvfOc7bN26lV/+8pcsWLBgxq/3TsUZU3QzyMiBR0dHs7ErmzZtmvbnCwIeIHzY1weiOmMJjcFoiu7xJGDjlgRnc00UaBmM01Cd51B70g5XKd3Cny5KIa/M4vIc9g7EcEsCUdUg1yvhdSvMyvVRV+zn4w3lky7qnvEk332hnaGoSlJ3mAmGpjvsB8Hh8r7YPMwVy0r43Y4BkrqORxa59f21eNIUohyPwkBERcShIplpFRzA1SvLWF6Rw8837ad3aJwSMcLFSyr5p+XLEUVxkg3kMzt6+FNLjIACtiCT1Exsy6Yo4CLokYhrJoZlk9ANwkkDn+IQ9EfiOrplkedzsaa2kBebhgm6ZSTR2XT81ZYe1i6aRa5PQTMsbvjNLrpGEogCvNo6xJ92tHHL+2spr/Aj9BzIvjcCAtYEdkrnSIJ/fGgnWtpl63/+tJ+fvtKJIomIAvyoL4pLclzHVN0kx6swO9fLxxscPweXy0XN7BLumn0w1UPTNH776K60kxdgO/zZvvEUeb4ACBPI+nb6/Z3GCQyc68SynLHJTHDONB3tRGQUbgMDA9TX1x+XKmuiwmy6VOOJUt+JDmxT0fcsy6Kjo4OxsbFj2rxrbGzky1/+Mtdccw0vvfTSGd3dTsQZc5a2bdPZ2ZnNADtUDjwd1tQX8cTOgcO+7pIFAm7Z8TzwJRmKqeiCQCqeIt8rkohHaTkwQIFPojesIglOQb5uQuf6yRUFvLizG90WKCnw41YkWgcT5HoN3uyJ8s/PtPL1S+vI8SjYts33XuwgnNSZleNhLKHRF9ZAEBAsGwtnk0s1LFyyxH2fWMZ4Qiffr2Rz2wA+fd5s7n6ujcGYhmWDIkF5rpe/XjyLi+YX8cUH36RvLIYiSciKi9I5bipFEdOyuX9LL0+m34vqAi+KS8Pvd6FqBgI6muHkeck4nNJoSieqmpiWjW7ZyJJIcdCFLIlcMr+IZbNzeLltOMsakEXnPYqqBrk+hZ29EXrGk/gUwVnySgI7xiT2RmXcioUiiUSSzhjDtGyuWHaQRP9K2whJ3UI3LVTDmuB7YTqcaQtU26bQ7yKSMigJurlv3VLub+zm8Tf7kEWRz5xXyYcn/M3RlMVw0k4zCQQEnH+7FYHvbxknrjlsC5fobHr+7fIiFs/O5+YnWkjpFh5FZElZkO7xFP0RNcs+yPFIWR/mE0E4HKa5uTmbUHwyzcOnSzce1kwAACAASURBVDWeWIinkjkLgkBnZyclJSWsXLlyxt3tt7/9bV5//XUeeOAB6uvrT9p5vBNwxhTdWCyGaZqsXr16yqF9phs9FBfUFuBTBBL65I5lToEfRXLifooCCsVBV7rgicRVnb64yWM7htA0A59ic16ll/llIar8ZjZcUVVV1v91PfdtGcBKm8hU5HmYne8oxXrHU/z3n/bTOZLEsGw6hxPUzXJmmnWzgqhGhMGoiihBjlvJzoUlQcCrSHhDh5/n+xcUE/IobGwZpn04QVHAxdnVeVxSn8eDr+ygfyxOWV4ASZYnLdmf3NnP42/2k+dTsIFdvTE03URzO+fslp3CcSDm0ODOKvGxslTh/jfGHdqbadEfToEAXlni/3YP8GzTIJIgEE0Z+N0SsZRBrs+VDvF0ViWapoNoO5JOAQbGUtz5bJtD48JmYWkQWRR434IiLllQhGo4G4uSIDiOaLZ9mAfGxNHKaEJ3ZqsjcT7/qx3sG0mk2QoG97zYTp5PYU1dIUNRlRt+s4vRmJaOZXLYA5Ik4JIlVEukNMdNOGXikgRuvKCMJQXwy21dJNNcsKRusacvwvk1+QzHdaQ0FTCSOnrBzfXI7O6LTvm9id67x2oodKJwu9243e7DNivD4XDWIN3lck2SOefk5ODz+aYswJs2beLmm2/mE5/4BPfcc89p5w+fDpwxRTcUCk1r3iHL8rQxIHHN5OzqPNoG4wxEVWfH2C2hyBL94SSGabN8di4fXVHG1q4xNMPi983D+N0yPpeEYVrs6ImwbczFkKESHW9FMRLZZVmhR+P2i8qIWS5+9HIXXtfBCzGSMnihaYg5hX4nQDKu4hsTqcjzYdmQ71MIuiVGEzqGZWOZEPTILJrCAyCDjDqtP6IiiwLLKnJYkpNi55vb8QcK8HgNpPT7IIqOycxAROVnr3YxENVI6CZlIQ8eWSCSsmkfTiAAOW4ZRXaYGZIgMKbamK4c8v1JIqqBbjjmJKYFIZeFaKikLIECv0LcgKa+JLIksHpuHqSJ8qm+/RQGXIymLATTJpIykATRmRsLAjHVIKVb/OQaR4G0pXOMbz/TmjXunjhumAqWDQI2CBBwyezodTLx3LKEV3EYE0/vGqR9KM5vXu+lL5wi6II5BS5GExZyWg79yy29KJKj5jMtg1HV4M6XevjL+QU83jQ5eSSq2Ty9ZwQga3IEB2e9Ux2xLIAsC5TlHn79Dg0N0dbWNqWZ0+lCPB6nvb2d8vJyKioqHI+IdFpFNBpl37592bSKYDDIrl27KCws5Omnn2b37t08+OCDWdvVP0ecMUX3SMj4L0xVdD2KhCiJeFwSZbleZFEgnNKpLvCyYnYuRUGnU1QkkUvPcuZ/G1pGcMnOxd8+nGA4phGQbcbGVfYHfXzniveS41WIx+NEIhES4RHUaJR6n8Yf+xzSvC061KtZOZ6spHNOgZ+hmIZHURmOOx1XOGngdYlUhzykdIuSoDvrqTAV9vRF+feX9uFTRCxT539fbSO8KJ9PX7SKOXGDx5vCaQctgaRmcfnSEm57Yg/jSUdSPJ5wxgjxdMR5/awAcdWgfThBfZEva1MZThlEUkZ2Qy2hmwzHnCV1KBgAbBTdJJwuyMVeG0GweX5XH+pIH1cuyeeclcs5a7nEz/7YRfdYCsOyaO6PZwuLWxYZjju85/GkzreebkEQIOCRHUtDSItLpvjMhbTdpu2MNSKqQcb/J6GZaIaFWxZo7Bzj+abB7ChgLAWWYFGa4yboVVhTV8T/bu5BEp2HZDzNQohrBk9NMZaaiInj3iM9HkRRoDLPxycm8KdVVaW5uRmAFStWvC3MXTLKu0QicZhD2VRpFYZhEI1G+fWvf83zzz/P+Pg4paWlfO973+NHP/rRaUkbfjvgz6boTuc0FvIqNMzOZWd3BK8iopk29cV+wkmDtYtnZalZE9FQlcsf20fI97s4MJpAtAxy3QqFJcUMRjU6R5MsrXBl42LKysoAWG6YVL+xn00do8i2QW5IpzOiYesyIylI6Dar5+SxYnaIh1/vozTkwTAtdvdFGY3rNFSG+Oz51dlNs6nw+oFxTNNENxKIokhJXpDmiIQkSczKkbjr8oX8ovEA4aTBefPymFfk56mdA1Tle2kbTmCYljNHlQRKQ27iqunMlYG4bpErS+lYFji/Jp+9/VFGEzrYNgG3gmk7wZuSKJA0bAoCHkbjOkG3h2Qqha6ZvNgjsmV4HP8ftrCiWOTS+Tnk1oXYFxP5zlAc3bSQRYGEZmV9cnvHU1iAP33uPpfksDfSxTdT1ByloEiuV3a8LCAbZz4RhmXjEUQ03UhzrJ2xhI3zoHMrEh9fVUF1gY8rlpXw2PZ+YukUZAHnBY2T5EzikWxuWuUjPj6MGAwyNjbGgQMHsr7QbwdkeO6VlZWHKe+mg6qq3HnnnezZs4fHHnuMmpoaEokEzc3Nf7YFF86gonuki+BI9o62bXPevDxeaRvG75LwuWQCHpnhmDbtrvPVDWVYhs4re3sQbYvFFXkU53qdYgTTOlopssQVq+bw4YZqXts/zjO7B4mMj7B/WEfARhJsdnUNER4bRbRELF3E7VJYWBKgOMfD+kvnT/l3U7rpzJ9Ng9joMPFEkoKiIIqsEE7qBFwHi3R1gY+vrT24cbGnL8J4QiMmCRQHFAQE4rqJSxTYN5zIsjPEtFXkeFIHBJZW5LCmroAVs0O82DxESrNYNjuHF5qGeWb3AKIgcFFdIfk+mQe3dpMwVaKGSEwH07aIaU50+LgpUlTi57JiN2VqhA/MtnmqPYlpCywv8/HRRSGe3NHHUExH1c1sOOVITE+LEZyZqy1AOGEgChBwS443hOiMWoxp+FoewWQklS7Yh3Slqmayps7xlLh+jeMvcdNju+kPq2lhy9TXxpEgAEG3RCQtkhAFxzZTADyBEOFwOJvj5vf7GRsbwzTNk5LifLzQdZ3W1lZUVWX58uUzCvK0bZtXX32VW265hc985jP8x3/8R3Z26/P5WL58+Uk5tk996lM89dRTFBcXs2vXrimP44YbbuDpp5/G5/Px85//nBUrjt/86GThjCm6cGTTm0PNbTLmyJZlUZXvZUl5iLZ0l9UfUfnrxcVZaexEaJrGvo4OFrkiXP6RxbzWr/Pwtl4Go44kd26hj9pZR97oaOwc4yevdOFzSXjSnfS8ogClIQ+aaRFOaCCaGKZBMpJkLGGQKyi0t7dnNyrcbjfhpM5/bOhgT18UTJ01JSZrFlexc1xiMKohCCouSeSaCcvWiTAtm4e39ZLQTVIJZ+0dcMv83bmz2XbAkTQ7zAOBgFvisqWlVOf7CHllzp2bhyyK5PtdfGxFOdGUwZd+s4u+SAqXJOJWJC6pDRDu20++VySiS4RTqmPSLToPJstyxNIvtozxuQtrKC0tpb6+nhtMk2g0xsh4hFt+10J/VEdLO7jFVZ245mTOiQIkDPC6BKf7tyHolhFFZ1Szuy+KbTtOYY5X72TEjKmX/W5ZRJYEXm0fJc/ryIRXVoaYneuhL6yekPee1y0TS48oKvO9aIaFgICgJxgfH2f58uWEQqEpzdFPJMX5eJCZJ1dXV1NSUjKj14rFYnz961+npaWFRx99lHnzpjccOlFce+21XH/99axbt27K7z/zzDO0trbS2tpKY2Mj1113HY2NjafseGaKM6roToeJne7ExNIMo8Eli3z+gio27xtjNK4zp8DL0orJnrMZm7ze3l6qq6uzS6yLc22Kg25aB+Pk+RXOm5t/VGeq5/cMEXTLBD0yEZ/CUFxDEJ3jUA2LqgI/umnTG04hyAqzCmU+d3EVflTC4TD79+93OKX7oGXUxC/qSIqbPwx5uDiYz52Xl9C4bxzVMFlWEZp2BtwxHGdHT5SFpUHG4joJ3cS24coVZWzvjjCnwJeNPk/pFqZpc+lZB3mdQ1E1rZBz88zuAXrGU+T7FSzLZiQa50cb2vnBNSs4e5WLl9uG+edn2pBFGEukC6AAlmUf9nCTJYm83BAvdyUZTglotkQq/XmphoVbAn9a8DCasgknHV9hjyySNCzHnlIUWF6Rw+9bRpy0hUMgAlPUYQQgzyejGjb3btyX7YJlSWA0rnGIFuKYYAPhhI7PJTkG5IaNZdlcU+sYkU+kgR1J4nyqC7GmaTQ3N2Pb9oznybZt88orr3Drrbfy2c9+lh/+8IenfIRwwQUX0NnZOe33n3jiCdatW4cgCKxevZrx8XH6+vpm5N97KnFGFd2jdbq2bWOaZrbYTrwo3LLEhbWFh/3uxIDDWbNmcfbZZ0+iuQiCwNKK0GFF+kgQRYcOBVAUdNMxnCCa1BlxSeimzafPq2RhaZBdPREMy2ZBaTDrk5qReiYSCe55/TX8ko1LcWGaBrGExsuvN3HxgmJWleYQDOYfkZKjmzZi2gLRSYewGUsaGJbNWeVB9o0kKPDJWDbENDMbA2NaNv+xoYMNzcPolk1ZyM3i0iAIzhxP03S8LgXcvqzseu2iEnZ0R3mhaSi95HeW/5Io8On3TE4wfqVthJ++0kXPeJJwUsdMjzdsnIKnW+D3eR1TGMnALQn8RaWLx5vjDhNAEnmtc5SUYeGSRFTbnsQiyARgToek5syxNdMmmPZd6AunsptvyRMY5uqmxRf/Yh4XzMtjR/M+ckSVc5cvOkyePhXeikI8MDBAR0cHc+fOnbGbVzQa5Y477qCjo4PHH398Wu/qtxo9PT3Mnj07+/8VFRX09PS8W3TfCsiyEyaoaRqiKGaD7o6GSCRCS0tLdg51snaQ/3pxMT/Y2IluaJi2zfySAA2VuSiSyOo5uZxV7hTwqTT3pmmyb98+RkZGKMsPENcFcryOuEKLqtRUliFJdtah37bt7A0YCoUmZVbNKfSR73MxElPxupxNqYUlQfJ8CuvOmc1ARGNL1xgC8KElJfxlvXOzv7h3iBf3DhFLGURVg75wiub+KDImikfB6/MTSRmcO3fy8d908TxKcjxs2jdKNGWwsDTABxbOoqHqoKpqd2+Ubz/Tgiw6jmyZTTBBdDbvvIpIUrcIJ3XHzhKRvznHKdpiWydet4xtWaRMHd2EgGyhSBA52Fw7D5spOlZFBEkS+fiqCrZ3R+gaSWBYNkndRDctLDihggtOtxuNRBls7+GceVWUlpaeUGd6sgqxqqrs3bsXSZJmnC5h2zZ/+MMfuO2227juuuv48Y9//LbaIJuqAXs7UO7O6KKbGSMEg0EGBwfZtm0bgiBkL7xQKDRlgmkmxl3TtGkzwE4Ey2fn8uWL57GpYxSXLHLx/KJJ2WjTnUt/fz+dnZ1UVFRQWb+E1cIIj7zRS9JwAh3Prs7jvPpSJFGgvNyRu2aiUsLhcDazKhMeGAqF+Mr7Kvn1G0McGEuxek4ef3dupaNOUiS+traOuOoowiYyJjqG4yQ104lNT3N9E5rJ0vIcYrpFyjD5q0XFrFs9e9I5KJLItefO5tpzJ399IrZ0jmGYtuPspTgeGCMJAxsBr8uh2SmSQDJN+1p3TgWWZfNK+yiG5YyOnOgmAVGwkWUJURERYrqzthAcRZnz5hxM+hAAtyLx6fdU8vFV5Tz4Wg8tAzEGIuq05vTHA9uGP3aM8vlPn3PK3L6OtRBblsXIyAi1tbWTTHOOhGg0yle/+lX279/P7373O6qqqk7JuZwIKioqOHDgoJS8u7s7yyQ6nTijim6meE7cJANHVZOxiTNNM2v00d7enlXU5OTkEAgECIfDjI+PM2/ePAoLC0/Zk3FhaZCFpTMr5uFwmJaWFoLBIA0NDXSHdb7xVDMp3VGLeWSRf7iwmpWVuYfZFUqSRCgUIhQ6OP4wDCPrsRAOD3JhTgJXoYucHJPY+AhiTk7W7GSqOJ6qfB+a6bzHJmAjEPDISLLEI9euPKH3JeCRJ7FGAh6FooCbhG4xHFORJUcZJooCsZTB73YMOAbwaaraWFzHIzk+GRV5fgZjGvGknt37cskiHkkgopp4FYGU4YweAgrEVJPvb9jHf77axb9/uN7hAJ/Q2UxGJpi0qqTgLfe6naoQRyIRmpqaAIdV0N7ezoEDB47YEdu2zcaNG7n99tu5/vrr+elPf/q26m4n4rLLLuPee+/l6quvprGxkVAodNpHC3CGFd2JxTYztz20aEqSdFhwnqqq7Nu3j+bmZlwul2NynV6eh0IhcnJyTosZh6qqtLW1kUqlJsXAPLStExsoDTnjjt6wo/U/tOBOB1mWDyOyZ6SdkUiE3t5eUqnUJPu/UCiULRQriyUqfCZNKRARcSuOT8X8WSeeUvD+hUU8vr2PgajDdHBJIl9dW8fy2SFuf2IvjZ1jWSVdUjdJ6iZFATduRUIWTCKqxRcuqGTNwnLyfQrf39DB/27uzv79lG6h6s6YYlbIQ1w1GIhqRNPkFgFHzvv5h5tO+FwOhYUj1Dh/Xj7jSX1SntlbCdu26enpobu7m9raWgoKDsYtTdcRb926Fcuy2Lp1K+FwmCeffJLKysojvMqpx8c//nE2btzI8PAwFRUVfOMb38iylD7/+c+zdu1ann76aWpqavD5fPzP//zPaT3eDM6YYEqAm2++mUAgQENDAytXriQYDB61Ux0dHaWtrY28vDyqq6tRFCXrQZopQpFIBNM0CQQC2SIcDAZP2RM+4yTV39/P3LlzKSoqmnQetz/RRDjp7IIDDEZVPrCwmI+vmpoadjyYaP+X+S+T4KooChWVldz/ZpSX28ZwyQJ1xcGsec+xYlPHKC80DeFWRK5cUUZRwM2GlmESmsmqqlzmFflRDZOv/W4vLzQNTfKvzajSAopDd9MR+e3nVpHncx4Qn/vVm7zaPooopsMeJ1zR+T6Z0cTU/O2TjYyAI98n43M5Rkr/fuXirH/wW4VkMsmePXsIBALU1NTMyPtAVVV+9rOf8eijj6LrOqZpkp+fz8MPPzypc34XkzBt4Tmjim5zczObN2+msbGR119/HU3TWLx4MStXrmTVqlUsWrQou0EwNjZGZ2cnkiRRW1s7rW9DBpblOGxlRhOxWCw7H84U4qnmw8cC27YZHh6mvb2dWbNmUVVVNWVhf+LNPh7e1kthwIVh2USSBrd9oHbG44pjRcaYur+/n8pKZ+abKcRR1cTt9VNRFCIvN5dAIHBMJiYbW4a567lWREHAtG08ssT3r1pMVf7B3XzLtrn5sT28cSDMQEQ97KJ0YpGcyPUVlbn820cXZT+Hz/7qTf6YLrrmMc4KJirdTgYEoDLfgyyJJFSTuUV+/utvpvZ5PtmwbTtLeTyW6JxwOMztt9/O4OAgP/nJT7JsgKGhIfLzj8yO+TPHn0fRPRSpVIrt27ezefNmtm7dyu7du1EUBUVRcLvdfPe732X+/PnH3bFOno2GSSQSWSPoTCGeKeMhFovR0tLi+LzW1BxR+WNaNo++0cuGlhHcstMdnjfv1MRrDw8P09bWRklJCZWVlYe9VxMfRpllKZDdqMvJyZnEmDgUn3/gzXTChnPzjsY1rmoo5zPnHdyYaR2Mcf1DO5FFge7xVDrI0/FXQHBGELpl84mzK7juwmr8roOjoFfaRvjCgzuzwZ/HgpNddAHKQh68LhHDspEFgSf/4ZyT/AqHIx6P09TURCgUYu7cuTMqlLZt88ILL3DHHXdw4403sm7dulO2snv22We54YYbME2Tz3zmM9x6662Tvr9//34++clPMj7uSNzvuusu1q5de0qO5STiz7PoHopHH32U9evXs3btWjweD6+99hpdXV1UVFSwatUqVq5cSUNDA3l5ecfdsaqqmh1LhMNhNE3D5/NlC9Ch82Fd17O2fXV1dZM2vE4nkskkzc3N2ZXATOSfGZimmfVgDYfDxONxJEmaNB/ObNB87ldv0hdOOVH3OFaMV64o47PvPVh0m/qj/L9HduORRTqGE1hpf+FM6nK+30VDVS7/+pGpM7We2tHP917qoD8dGjoTKGnTdWBKetmxwiOCaoFfgTyvTMqE1XPy+ZcrTl0O2ETD8/nz58/42hofH+e2225jdHSUn/zkJ1kmzKmAaZrU1dXxwgsvZO/DX//61yxcuDD7M5/97GdZvnw51113HXv27GHt2rVHFEW8TTBtATmjNtKOhtWrV7Nly5ZJowTLsujs7KSxsZGNGzdyzz33EI1GWbBgQbYIL126dMZFx+12U1xcnKXe2LZNIpEgEokwODhIW1tblsaWYVLMnTt3xiYipxqmadLZ2cnw8DC1tbWTNttmCkmSyM3NnbSEnZhKMTg4mN2gObdE5ifdKVJp/muuV2ZNbT6mZWfNz+cV+pkVdNE5FCWg2EQ1cImOWCLolnnP3Hxu+0DNtMdz6ZISLl1Swn1/6uLfft8xrW+ClB5RWLajSivN8fL5C6u47fE9DEUd1VvySDnqU0AAioMu3IrEcFRFEAVSJlQERd5fHGPz5s0EAoFJMTknY8meic4pKCiYseG5bds899xzrF+/ni9/+cv87d/+7SlnJmzZsoWamhrmzp0LwNVXX80TTzwxqehmxlngjDveDrSvE8GfVac7U+i6zs6dO2lsbKSxsZEdO3YgyzIrVqxgxYoVNDQ0UFtbe9w3x/DwMC0tLXg8HhRFOWIn+FZhovKurKyMioqKU37DqarKQ1u6+OnmvrQHgdNRemURv1vmQ0tL+NwFcxjo72dXayd/GPYxmHRy7f6irpC5RX7Kc6d+GI4lNLYfiKBIAg1VuVme8V3PtfLoG73EtcOLp0cWyfMr3P3hhaysdB4Ymmnxnu++6sQVHed5FvoVREGgOMfNj65egiwJhDxO1pplWcTj8ezqKCNoObQQz/SzsCwrK55ZsGDBjDnmY2Nj3HrrrUQiEX784x+/ZYXtkUce4dlnn+VnP/sZAL/4xS9obGzk3nvvzf5MX18fl1xyCWNjY8TjcV588UVWrjwxauJbgHc73WOBoijZAnvddddh2zbRaJTXXnuNxsZGvvWtb9HW1kZxcXG2G25oaGDWrFlHLJTJZJKWlhYAli1bNkn6mTGBDofD2U7Q7XZnxxITKVsnGxm7PUVRTqry7mhwu91sH9AoDHrxuySGYxr9kRQeBDySxcOvHSDS18V7Z7uomV3GqiV5BIPBo9L3ukYTfPGhnelCKVCR6+GHV5+F3y1z6/tr+cjyUjY0D/PLrd2MJ3S8skhprpfLl5VwQU0BcwsPMgoe3taDZTl5aEfxTJ8WX1wzB79b5sLagsN4zxmj74nF0bKs7Himu7ubWCwGMK2yMIMM77a4uHjGwZC2bfPMM8/wjW98g1tuuYVrrrnmLeXdzkQ19utf/5prr72Wm266iU2bNvGJT3yCXbt2vW35wUfDu0V3BsiwFC666CIuuugiwLlYent7s93wj3/84+ySPENZW7FiBT6fj0gkQldXF8lkctol+1Qm0BnK1vj4eNbkxu/3T5oPn8hSNCMpHh0dpa6u7rhCDk8UOV4Fw7QAKW0QLuBSJCcAVDAZdxWybNlcIpEI/f39tLa2Zscz03WC927cR0w1CbhlbNumazTBo2/0ZRVytcUBaosDfPb8asYTTpBmod815QOzYyiRTo1wkoWPBx9dUXZMqxZRFA8TtEyck2eUhaIoThL1xONxFi9ePOM4n9HRUW655RaSySTPP//8aREOzEQ1dt999/Hss88CcO6555JKpRgeHp6xeu7thneL7nFCEByp7RVXXMEVV1wBODdGU1MTjY2N/Pa3v+WrX/0qw8PDGIbBunXr+OAHP0hOTs6MXyMTFDhxPpxJo8gUoCN5K0wH27YZHByko6Mju3lxuubJ166ezY6eCKNxDcN0RgweNATRjcvtZnZh8DAz+EM7wWg0mu0YQ6EQfeNJlPQum3NeAgPRqTfRcn1H5hXPLwnw2zf7j7vgSiJ0jiSZU3h0Q5sj/p0p5uSGYdDX10dHRwcul2NYtGfPnuzDaDoao23b/N///R/f+ta3uP3227n66qtP2+e/atUqWltb2bdvH+Xl5Tz44IM88MADk36msrKS3//+91x77bU0NTWRSqXeNubux4N3Z7qnCLZtc+mll1JVVcXatWtpbm6msbGRvXv3EgqFstzhhoYGysvLj3upNNFbITMTzEh/M4U4I+kFhz7U3NyMx+OhpqbmLZejToX+SIo/tg7Rsb+Xlw+omKLjYVsYcPPvVy7KCh2OhEw0TCQS4b829bKhK4VXFhBEEd0SeN/8QrYeiKIaFu9bUMT1a+Yc1YITYGA8zvvu3YJpgSA4gzrLntmNIYsCuT6Ff3pfTdYS82TBNE3a2tqIxWIsWLAgO6rKjKkym5bxeBxFUcjJyWHLli3MmzeP//zP/8Q0TX74wx/O2EnsVOLpp5/mS1/6EqZp8qlPfYqvfOUr3HHHHTQ0NHDZZZexZ88e/v7v/z7Ljb/77ru55JJLTvdhHw3vUsZOB8Lh8GE0nYwAIjOW2LJlCz09PVRXV2dnwytWrCAUCh1395FhCmQKcTKZxO12Y5pm1sTn7aIkyvgU9/X1UVtbi8sf4s3uMIIgsGx2ziTO7UyhGiZ3PtvKH1pHwLZZWeZm8/4YkuAUQt0SuXRRPjf8Ze208+uMwdDOln18fbOOS5EAIR3vbhNL6iSPEPJbkd7g00yLb39wPu+tKZj+h48Ro6OjtLS0UFFRQXl5+VGvk4zE+9Zbb2XLli0YhkFdXR0XXXQRt91220k7rncxCe8W3bczLMuira0tW4S3bdtGIpFg0aJF2UK8ePHi49rgyhSPjo4O8vLysjaXhmHg9/uz3fDJoiodC8bHx2lubqawsJDq6uqT/vp6OjX4xy938pvXe8nxKNi2RUoz8CsCX1vtyfKoJy7JDcOgqakpuxr44m+a2NUXRRIdH+B8v5uv/lUtn/rFm9O+dpFfQRAFVswO8d0rFmXpbycCwzBoaWlBVVUWLFgwYxrj8PAwN910E4IgcO+991JcXJx1rFu9evUJH9e7mBLvFt13GjRNY/v27dlCvGvXLjweEVcV+gAAFP5JREFUD8uXL88W4rlz5x5xLBGLxWhubsbn8zFv3rxJo4TMfDjTDU9Ukk2cD5+KWV8mdyuVSlFfXz/jjZ/jxa+2dPNff+zK+kIkNJN5RT5+es3SST4b4XCYoaEhNE0jNzeXwsJCZ8Xh8nL3Cx28uHcY1TCZlePmuguqueN3e6cMp/TIIjddPJfKfB/vmZt/Ugru8PAwra2tVFXN3IPXtm0ef/xx7rrrLr72ta9x5ZVXntLZ7dGUZQAPP/ww69evd8z/ly49bH57BuHdovtOh23bjI+Ps3XrVhobG9m6dSsdHR2Ul5ezYsWKrKKusLCQ0dFR2tvbEQSB+vr6GW/eZXbIM4U4Ho8jy/Kk+bDb7T7uG9e2bfr6+ujq6mLOnDlHpdidLERSOp/71Q7Hucy2cckS//qRhSwuO/i+RCIR9u7dS0FBAVVVVSSTyUlmPz94I0V72InVGUuZmNb04ZSiANu/cuG0AaXHAl3XaW5uxjRN5s+fP+PVzuDgIDfddBOKovCDH/zglG88zURZ1traysc+9jFeeukl8vLyGBwcfMcyEGaAd4vumYjMPHTz5s1s2bKFLVu20NnZiW3bfOxjH2Pt2rUsW7bshIQWGau/TCFOpVJ4vd5J/hIzSRmIxWLs3buXQCDAvHnzZvQ7JxMx1eAPrSOohkVDZS6V+Y4q0TRN2tvbiUQizJ8/P2ufmbEGBcdw54J//SMeGUbixiSXs+nw5lcunDLY9FgwODhIe3s7c+fOpbi4eMbd7WOPPcbdd9/N+vXrueKKK96SB9umTZtYv349zz33HAB33nknwKSZ8T/90z9RV1fHZz7zmVN+PG8DvCuOOBMhiiJVVVVUVVVx1VVXcdVVV7F06VKuuuoq9uzZw4MPPsitt97qbEotW5YVctTX1894fnqo+XXG8jEcDjMyMkJHR0fW9nLifDgz9jBNk46ODsbHx4+p6z7ZCLhl/nrx5J36jJlPeXk5tbW1CIJAz3iKO57aS/tQnOKgm6+vrWdRWZCARyauzqzgugRo299HdUn+JObITKFpGnv37nVSiFeunDHDZGBggJtuugmv18uGDRve0s3SqfLIDk3ezQiDzjvvPEzTZP369XzgAx94y47x7YJ3fNE92hxJVVXWrVvHtm3bKCgo4KGHHnrbBOedbNx3333ZTu3888/nc5/7HLZtE4vF2LZtG42Njdx11120tLRQUFDAypUrWblyJWefffaMI7YFQcDr9eL1eikpKQGYJGXt6ekhGo0iCAKKohCLxSgtLWXlypVvGwVRJu3WsiyWLVuW3ZAyLZsvP7qb/qiK3yUxEtO4+bHdPPCpldx6SQ23Pj4zY/OigIxkJNm7d+8RzeAPxcRIppqamhmPBCzL4tFHH+Wee+7hm9/8JpdffvlbzrudibLMMAxaW1vZuHEj3d3dnH/++ezateu0iHJOJ97RRdc0Tb7whS9MmiNddtllk+ZI9913H3l5ebS1tfHggw9yyy238NBDD53Goz51yBTciRAEgWAwyJo1a1izZg1w8ObesmULmzdv5r777qO/v5+amposf3j58uUEAoEZ3byHSlkzDmWmaVJWVkY8HqexsTEbi5QZSxyLc9nJwMSZ8rx58w6bJ47ENQbTBRfA65LQDIu2oThr6gq5+X01/MvzraR0Z6Y7Xc/72QvnUldbnn3NqZSFGcZEZmVgmiZ79+5FUZQZB0MC9Pf3c+ONNxIMBtm4ceOkFIi3EjNRllVUVLB69WoURWHOnDnU19fT2trKqlWr3urDPa14RxfdmTgUPfHEE6xfvx6Aj370o1x//fWT5nV/jhAEgdLSUj70oQ/xoQ99CHAeYC0tLWzevDn7nmmaxllnnZUtxAsXLjxiMZiYeHFoDAxMjgTq7u5GVdVJxedUxiIlEgmamprw+/2sWrVqytfxu51ia1g2siikfXttQl7nZz+8rITtB8K83DaMZUM4qWNMYTo2cQNt4sogI0Q41Hluz549qKpKbm4u+fn5xOPxo1L4LMvi4Ycf5t/+7d/49re/zWWXXXZar+mZKMsuv/zyrI/C/2/v3IOqqtc+/l0b5ChnSwcST+hOriJsLuIFjBrNtGKktDoJr55eyDL0OKHFW+Qc6eJYYcQlRxlREcQiwBnmdGRehZOZEVmbm9gECCJ4wQ0Ocmkn6Obifs4ftNbZHDawYMO+wO8zw8xe+GOvh+3imd961vN8v7zoE/+3O5Uw66Qrpo6kvYZ/Et/W1mYywwGmgoWFBTw9PeHp6YlXXnkFQL/2Q0VFBRQKBQ4cOICqqipIpdIBIj+8sHldXR3a29thb2+PgIAAnaUEKysr2NvbC7fN2u1at2/fRn19/bjbIvGuFy0tLViwYMGwt7J/tLLE1uVOOFx0DT3ofxLytNxesNSRcBz2rF2A0ut/xj8uNuNScyfqbncN/Bw5wGWEkV+O44Rx7ebmZsyaNQsuLi6CFnNTU9OQLXwSiQS3bt3CG2+8ATs7OxQWFo5JfnO8sbS0RHJyMoKCgoTJMi8vrwGTZUFBQfj6668hl8thYWGB+Ph4o+3MjYlZJ10xdSQxaxi6mT59OgIDAxEYGAig/7Nsa2tDaWkpFAoFcnJy0NDQIJQwdu3aJTyQEgPHcbC2toa1tbUgtqLtRKGtqzAWWySVSoWamhrY29uL1pQNXTIHXg4zUd/ahT/P/AMCnP406Fz/uNgMxdUOaHT0jPnOtcFC2fBi4USEmzdvQqlUYsGCBYJJKm+JzqMtcnPt2jV8+umnqK6uRnt7O8LCwhAREWFS9dDg4OBBjg579uwRXnMch6SkJCQlJRk6NJPCrJOu2DpSY2MjZDIZ+vr6oFKpTGJnYI5wHIdZs2ZhzZo1WLNmDcrLy7F582Zs3rwZdnZ2OHfuHOLj49HZ2Qm5XC7siH19fUXXb/kEa2NjA5ms32hT2xbpypUrggA6r8T137ZIfX19qK+vR2dn56hUt3i85syE1xzdOrQdd3uhuNoB62kW6Oy+L/QFTZ8mwXRLye9KaUPDW+fY2NjA399/2BKCtshNc3Mzuru7ERAQgBdeeAG1tbXYtWsXkpKS4OjoOOR7MEwPs066YupI69atw/HjxxEYGIjc3FysWrVqzDvdkTolkpKScPToUVhaWsLe3h7p6emT+g9CLpejqKhI2J299NJLAPprt7wI/LFjx/DLL78IWr18fdjNzU102UCXZXx3d7fQP9zY2CjUhy0tLdHR0QFHR0e4u7uP+10NDXj9HzufB2ZMgwUH9A7RUkZEuH79+qitczQaDbKyspCcnIy9e/ciODjY6FNlQL/4eEhICEpLS7F06dIJi2cyYvbDESMpFKnVaoSFhaGiogJ2dnbIyckZU/FezMTNuXPnsGzZMlhbWyMlJQXffffdpO2UGA1EhN9++00QgS8pKREcj7Xrw2IHAHShVqtRXV2N3t5eSKVSdHV1Cbq7/G5YKpXq3bZGRPj7Py9Bca2/vNB+txcSjsODf+y3+dnoPxd/W+404Gc6Oztx6dIl2Nrajji6rU1TUxN27NgBBwcHJCYmTngpQcw1DvRbAT3zzDPo6elBcnIyS7q6YRNp+iJm4kabiooKREZG4vz58waL0ZwgIiiVShQXFwtuzW1tbXB3dxdE4BctWjRi/ZZ/n8bGxkG9rdq6uyqVSpC91NcWqadPg8+LG1HZdAfSP1jgdmcP1L0arFowC/8bIBO0Fnj/vdbW1lFZ52g0GmRmZiIlJQVxcXEICgoymakyAHjzzTfx5JNPIiEhAQkJCWNKukSE5cuXIyYmBmvWrAHQr8uQnp4uCJabOWwiTV/EdEpok5aWJlxMjMFwHAeZTAaZTIYXX3wRQP9Oq7q6GsXFxcjNzUVMTAyICL6+vsJu2MPDQ2j36ujoQH19PWbOnKmzDUzbgYH/vxsPWyQrS8kAi3hd8FoO9vb2oq1zgP7nEjt27MDDDz+M77//3qDu0GKu8YqKCjQ2NuLZZ59FQkLCmM/FcRwOHTqEkJAQPPHEE7h//z5iYmImS8IdFpZ0RTKaLojMzEyUlZWhsLBwosOaVFhYWMDHxwc+Pj547bXXhH7W8vJylJSUID4+HrW1tYLwzt27d5GSkgI3NzfRO8GJtkXSaDRoaGhAR0cH5HK5zoGVoX7u888/x+HDhxEfH4+nnnrK5KbKNBoNoqKikJGRMS7n8/b2xtq1axEXF4euri6Eh4fD1dV1XN7blGFJVyRiOiUA4JtvvsHHH3+MwsJCgxk8Tlb4ftYVK1ZgxYoVAIDKykqEhYXB1dUVc+bMQXR0NJqamuDs7DxABN7GxkZ00tJli3T37l2oVKpR2SL9+uuvqKmpgYODA5YuXSr6/I2Njdi+fTtcXFxQVFRkNH2Kka7xO3fuoLKyUphsvHXrFtatW4e8vLwx13U/+OADLF68GFZWVigrK9MrfnOB1XRFwqvtnz17FnPnzoW/vz+ysrLg5eUlrKmoqMD69etRUFCA+fPn631O9iR5MC0tLbhz586AHREvAs+rrZWXl0OtVg8SgdfHmmg4WySpVIqOjg7cu3cPcrl8gMvzcGg0GmRkZCA1NRWJiYlYvXq1UXvIxVzj2qxcuXLMNV1t3n//fUilUrzzzjt6vY+JwWq6+iJm4iY6OhqdnZ0ICQkB0G+ol5eXN6bzidGVAPp3H/v378eyZcv0/h3NgdmzZw/STJBIJHB3d4e7uzvCw8MB9LeU8SLwhw8fFkTgFy9eLCRiZ2dn0bVWPsFq11h7e3uhVCpRV1cnJPTa2toBgxxDJfobN24gMjIS7u7uOH/+vOgyxEQi5hqfCCQSicmIIRkCttM1UQz5JHkqwIvAl5SUCCLwfH83n4SXLFmCBx98UNRuk1fMunfvHjw9PTFjxgwQkTDKy3dMaNsi8T26J06cwLFjx5CYmKhX3/hkYffu3ZBKpXj77beNHcp4wna65oYhnyRPBTiOg62tLYKCghAUFATgPwI9CoUCRUVFSEpKgkqlgoeHhzDEsXDhQsyYMWPAe2lb53h4eAhJk+M4oT6sLW7Dy14eOnQIP/30E9RqNdauXYsbN26gt7fXJByZGYaDJV0TxdBPkqciEokETk5OcHJywoYNGwD0lwyqqqqgUCjw5ZdfIjo6GhKJBIsWLYKHhwfOnDmD8PBwBAUFiRpt5lXGsrKyUFNTg+PHj8Pf3x8///wzysrKJkxVzZzgVQCnCqy8YKKMVF5QqVRwdXUVaoG3bt2CnZ2dXk+SGYPhReD379+P5ORk+Pr6QqlUYvbs2cI0nb+//5B+b1evXsX27dvh4+OD2NjYCTfhZKPqJsPwEz3DfDGMRG9vLzk7O1NDQwN1d3eTr68vVVZWDrn+8ccfp9LSUgNGOHXQaDQUGxtLLS0twrFSqaSvvvqKdu7cSatWrSJvb296/vnn6cMPP6T8/HxqamqixMRE8vPzo8LCQtJoNBMeZ19fH7m4uFB9fb1wzVRVVQ1Y8+2331JXVxcRER08eJBCQ0MnPK4pypB5lSVdE+bUqVM0f/58cnFxoY8++oiIiN577z06efLkoLXjlXTz8/PJ3d2dXF1dae/evTrXnDhxgjw9PUkul9PGjRv1PudkoK+vj6qqqig9PZ22bt1Kjo6OFBISIiQ4Q/Djjz/S008/LRzHxsZSbGzskOsvXLhAjz76qCFCm4oMmVdZeYEhwGy0xw8ygjtJbm4uCgoKcPToUQDAF198geLiYiQnJ+tcHxkZiYceegjvvvuuIcOcKrDuBcbIiLE/Sk1Nxeuvvy4Ib7OEqxtjtIHp2kCxUXXTY+p0JDNGRFebmlKpHLDm8uXLuHz5Mh577DE88sgjU0KgxFwY7ah6Xl4eG1U3AmynyxAQs1NiNtqmixhR/4qKCmzduhUFBQXsLsVIsJ0uQ0Cs/dFzzz03yEabYXy0x3g9PT0RGhoqjPHy4+jao+p+fn4TNtrLGIbhnrIZ/Hkfw6iIaVPLz8+n8PBwIiK6ffs2yWQyam1t1eu8I3VMXL9+nVauXEl+fn7k4+NDp06d0ut8DIYBYC1jk5EbN26Qk5MTtbW1ERFRe3s7OTk50bVr18b8niO1qWk0GoqKiiJPT0/y9vam7OxsvX4HMb2lERERdPDgQSIiqqqqIkdHR73OyWAYAJZ0JytxcXEUERFBRERbtmwZti/TFBHTW7plyxb65JNPhPWBgYEGjdGQjLTrV6vVFBoaSq6urhQQEEBXr141fJAMMQyZV1lN18yJioqCQqHAvn378MMPP+Ctt94ydkijQkzHxO7du5GZmQmZTIbg4GAcOHDA0GEaBF7OMz8/H9XV1cjOzkZ1dfWANWlpabC1tcWVK1cQFRWFnTt3GilaxlhhSdfMmTZtGuLj4xEVFYV9+/aZnWIVieiYyM7OxqZNm3Dz5k2cPn0aYWFh0Gg0hgrRYGj3SVtZWQl90tqcPHkSL7/8MgBg/fr1OHv2rM7PkGG6sKQ7CcjPz4eDgwMqKyuNHcqoEdMxkZaWhtDQUABAYGAg1Go1WltbDRqnIRCz69deY2lpiQceeABtbW0GjZOhHyzpmjkXL17EmTNnoFAo8Nlnn6G5udnYIY0K7d7Snp4e5OTkDGpjmjdvHs6ePQsAuHTpEtRq9QCr9dHy6quvYvbs2fD29tb570SEHTt2wM3NDb6+vrhw4cKYzzUaxOz6xaxhmDYs6ZoxRIRt27Zh3759mDdvHqKjo81OfV9Mb2liYiJSU1OxcOFCbNy4ERkZGXolmk2bNg07SZefn4+6ujrU1dXhyJEj2LZt25jPNRrE9knza/r6+qBSqQY4GzNMn5EEbxgmDMdxWwCsJqL/+f3YAkAJgP8jIjZUPwwcxzkB+H8iGrTd5TjuMIDviCj79+NaACuJaEJvIziOswRwGcBqAEoApQD+SkRVWmteB+BDRH/jOG4DgL8QUehExsUYX9gYsBlDREcAHNE6vg9gifEimjTMBdCodXzz9+9NaNIloj6O4yIB/AuABYB0IqriOG4PgDIiygOQBuALjuOuAGgHsGEiY2KMPyzpMhiD0VW7MMgtIRGdBnD6v773vtZrNYAQQ8TCmBhYTZfBGMxNAA9rHcsANBkpFsYkgyVdBmMweQDCuX4eAaCa6HouY+rAyguMKQfHcdkAVgKYxXHcTQAfAJgGAER0CP2398EArgC4C+AV40TKmIyw7gUGg8EwIP8GxwtrfcwB2AMAAAAASUVORK5CYII=\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "## Sampling and visualizing the input tri-variate normal distribution dataset\n", "data = sample_trivariate_xyz()\n", "scatter_3d(data)\n", "# Tip: Any .csv can be used as input with pd.dataframe command" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 331 }, "colab_type": "code", "id": "_J_jztbc2J32", "nbpages": { "level": 2, "link": "[3.1.1 Definition ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1.1-Definition)", "section": "3.1.1 Definition " }, "outputId": "c44a6303-2092-4e62-c75e-e347a97097a5" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/anaconda3/lib/python3.7/site-packages/scipy/stats/_continuous_distns.py:515: RuntimeWarning: invalid value encountered in sqrt\n", " sk = 2*(b-a)*np.sqrt(a + b + 1) / (a + b + 2) / np.sqrt(a*b)\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEHCAYAAAANnZUmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXmYHGd5r32/1fs2PfsmaVbJ2i1bXmQbYxuDbbZ4IRBiOMHEIZBDyHo+TjhZCHBIDAkJXw4kQEIITk4Sh0AcsDHG4CADRrbkTbZlW8vsM5p9et+r6j1/VFerp6d7pntmNJLsuq9rrpaqq96qru761VPP+yxCSomFhYWFxcagnOsDsLCwsHgtYYmuhYWFxQZiia6FhYXFBmKJroWFhcUGYomuhYWFxQZiia6FhYXFBmKJrsWKCCGGhRDDZ3kfB4UQGx6/KIT4uhBCCiF6NnrfFq9NLNHdYIQQNiHErwohHhNCLAghckKIGSHE80KIrwohbj0Hx3ROBO/VxIV0Di+kY301Yj/XB/BaQghhAx4E3gyEge8C40Aj0A+8B9gBfOdcHeM55H2A91wfhIXF2cYS3Y3lTgzBPQpcL6WMFL8phPACB87FgZ1rpJSj5/oYLCw2Asu9sLFck3/9eqngAkgpk1LKH5n/F0L8Wt7f+PFygwkh2vPuiReKln0iv80NQoh3CiEOCyGSeVfGfUKITUXr9uQfM6/P/18W/R0ssz+vEOLPhRCjQoiMEOKUEOL3hBCiwvEdEEJ8UwgxJYTICiHGhBBfEUJ0llm34iOvEOJmIcQDeTdMJj/Ot4UQbyq3foUx3iSE+IkQIpE/F/8phNixzPrvF0J8SwgxKIRICSGiQojHhRD/rWS9qs6hEOINQoi/FUK8lB8rJYR4UQjxx0IId5n9B4QQf5RfJyqEiAkhBoQQ/yaEuKzM+iue61q/b4uzg2Xpbizz+deLqlz//wKfBT4ghPgTKaVW8v7dGN/hV8ps+2HgVgxXxWMYFvS7gX1CiEuklBkMF8cngfcD3fl/mwyXjOcAHgE6ge8BKnA78BnAXbItQohfBv4OyOSPYQzYBnwA+DkhxFXVWLdCiE8CHwfiwH/mx+nEuIH9N+CHVYzxTuDfgGz+dRK4FjgEPF9hsy8BLwE/zq/fBLwV+CchxHYp5R/l16v2HP4ehuvoZxhuJTfwOuATwA1CiDeZ32/+JvZw/jMeAr6Kcb63ADcAPwGeLvp81Z7rWr5vi7OFlNL626A/4FKMC18H/gl4B9C9wjZfBCTw9pLlAhgEEkCwaPkn8utHgb0l2/xL/r1fKFl+0PgpVDyG4fx2DwGeouWtGBdyGHAULb8o/zlPAZtKxroR0ID7VzoG4Ob8fgdLx8m/v7mKc+7HuNnlgMtL3vt8fnwJ9JS8119mLCfwaH6s0s+10jnsA0SZ5f87v/93Fy3bm192f5n1FaBhvc+19bdxf5Z7YQORUj6LYZ1N51+/BQwLIeaFEPcLIX6uzGZfyr9+qGT5zUAv8G+yjKsC+D9SyhdKlv1d/vXKVX0A+E0pZcr8j5RyBvg2EAS2F6333zEs49+SUk4UDyCl/C8Ma+znhBCBFfb3G/nX/1E6Tn6s8SqO+TaMicp/kVI+VfLeJ4By5w4p5UCZZVngrzGeLt5Yxb6Ltx2UecUr4f/Pv95S5r1U6QIppS6lDBUtWq9zbbFBWO6FDUZK+Q0hxP3AGzAecS/Nv94O3C6E+Efg/eYFKqU8JoT4MfAWIcQWKeVYfqgP5l+/XGFXpQIDxmMnQMMqDj0ipTxV5ZhX51+vF0JcUWabVsCGYaU9XeZ9k6swLL6HazzWYvbnXx8rfUNKGRFCPEfex1mMEKILwyXwRqAL8JSssql0m+UQQviA3wLuwPjcAYynlXLjvQQ8B9wphOjGuLH9FHgqL/zFrNe5ttggLNE9B0gpcxj+0UegEEr288DXMEKn7sfwX5r8DXAdho/uj4UQ7Rj+2ueklIcr7CZcZpmaf7Wt4rDLjVdpzKb860dXGNO/wvv1QKjYul4FwfzrdIX3p0oXCCH6gMMYN5KfYHxPEYxH9R7gLsBV7QEIIRzAf2E8YbyI4VeexXBTAPxx8XhSSk0IcSOGL/udGH59gJgQ4l7gf0kp4/ll63WuLTYIS3TPA6QxgfINIcRe4A8xfHHFovsfGKLxK0KIT7H8BNr5gPnIHpRSRtcwThhoEkJ41iC85rG0VXi/vcyy38UQs1+WUn69+A0hxJ0YolsLt2EI7r1SyveXjNeBIbqLyLsQfgf4HSHEVgxr/EPARzBuRr+UX3W9zrXFBmH5dM8vYvnXRSFYecv4qxiPoD+HYfHGgX9ep/2as+arsYDL8UT+9fXrMI7AiG1eLc/kX8u5EILAJWW22Zp//VaZ95aMk2e5c7ia8QpIKU9JKf8+v24cQ8RNVnOu1/v7tqgBS3Q3ECHEnUKIm4QQS8573mXwq/n//rjM5n+LcbF8EWMC7V+klLEy660GM5Sta53G+yLGo/PnhRBLwuOEEE4hRDUi8YX861+IovjionGq8at+GwgB7xFCXF7y3ic4434oZjj/ekPJ/m7BuOGVY7lzWGm8Ps64DoqX9wohdpcZpwHDDVFs9a/mXK/3921RA5Z7YWM5gDGZMiWE+CkwlF/eC7wNY7Lm28A3SzeUUo4KIb6L4cuF9XUtPAq8C/gPIcRDGBf1iJTyn1YzmJTyFSHE3Rg+6mNCiIeBExiz7F0YVtksRtzqcuM8IoT438AfAS8LIcw43TaMyccnMGJOlxsjLoT4IIYf9SdCiOI43T0YN7jrSjb7G+CXgX8XQnwLmMiv+2bgGxjxzqUsdw4fwAjp+t28C+nZ/Hl4O0bMbqn47QPuF0I8jeEDPg20YFi4DoqEepXnel2/b4saOdcxa6+lP4zg9l/HmCg7jhFLm8UQgYcwwsiUZba/DWM2/8gy63wiv84NZd7ryb/39ZLlNuBPMeJhc/l1Dha9PwwMr2J/e4GvAyMYgfsLGCLyFeDGknUPUiF2FCMp4eH89hkM4b2/dIwVzv1NGBEASQzL99sYQvR1ysfpXoMx+RXCcPv8FCPC5Ib8+p+o8RxuwXAHTWCI3DHgf2IYPqXrbs6P9TjGRF8Go0bH94C3VPh8tZzrZY/V+ju7fyL/JVhcAAghPoEx6fIBafj4LCwsLjAs0b1AyAe3n8R4bNwipUye40OysLBYBZZP9zxHCPE2jAD/n8PwZf5/luBaWFy4WKJ7/vMujLjQaeAejHoBFhYWFyiWe8HCwsJiA7HidC0sLCw2EEt0LSwsLDYQS3QtLCwsNhBLdC0sLCw2EEt0LSwsLDYQS3QtLCwsNhBLdC0sLCw2EEt0LSwsLDYQS3QtLCwsNhBLdC0sLCw2EEt0LSwsLDaQlQreWIUZLCwsLGpHVHrDsnQtLCwsNhBLdC0sLCw2EEt0LSwsLDYQS3QtLCwsNhBLdC0sLCw2EEt0LSwsLDYQS3QtLCwsNhBLdC0sLCw2EEt0LSwsLDYQS3QtLCwsNhBLdC0sLCw2EEt0LSwsLDYQS3QtLCwsNpCVqoxZWFRESomu62QyGVRVxW63oygKNpsNRVFQFAUhKhZbsrB4TSKkXLZ6o1Xa0WIJUko0TUNV1UX/Nt8rFlpThM0/S4wtXiNU/IFbomtRNaViK4RACIGqqqiqiqIoS9Yv/hsZGaG1tRWv12uJscWrnYo/ZMu9YLEiUkpUVWViYgK/34/f718isOUwRdkkm80CFLZVVZVcLrdoG0uMLV7tWKJrURFTbE3XQTgcxul0rloAhRCL3A+l45hPXaYYl65rs9kKfmNTnC0xtrjQsETXYgm6ri/y05oWq6IolHNHrZfwrSTGpa4NKeWylrElyBbnI5boWhTQdR1VVdE0DVjqHqgkutViCuVqtit+NSkV49JtYrEYTU1NlhhbnFdYovsax5zkyuVy6LoOLBVbk9WK5nptX2684lcTcx/Hjx/nsssuW7KNaR0XuyosMbbYKCzRfY1ixtiqqrqi2JoIIQrrrob1Ft2V9mP6gYsxP7emaYWJPZNiN4VpHVtibLHeWKL7GqNUbE1RqUZY1upeOB+o9FmLxbg01ricz9iKqLBYLZbovkaoFGNbi3BcKJbualiNGFvhbRarwRLdVzmm2C4sLBCNRtm8eXNVMbblKBVNKSVzc3MMDQ2RyWRwu934fL5Ff8WP9+ez6FZiOTE2feHZbBYhBAMDA/T391tibLEslui+SjFjbE0LTVVV4vH4mi58UzSllMzMzDA0NITP52PHjh04HA5yuRyJRIJEIsHExASJRAJd13G5XPh8PhKJBA6Hg/r6+iW+1guNcmIciUSsxA+LFbFE91VGaUJD8Wz9WlwD5lihUIixsTHq6+vZt28fHo8HXdfJZrO43W7cbjdNTU2LjieTyZBIJIjFYszPzzMzM4Ou67jdbrxeLz6fD7/fj9frXVcxPhdiVm3iRzGm+FqJH68NLNF9lVApocFEUZRVi66u65w+fZqBgQG8Xi/79+/H7XZXta0QoiDG0WgUv99PS0sLUkrS6TTJZJJEIsHY2BjJZHLdxHij3Rgr7c9K/LAwsUT3AmelhAaT1fhTNU1jfHyc8fFxWltb6evrQ9O0qgV3uWMQQuDxePB4PEss47Mpxucbq038KCfIlhhfGFiiewFSS0KDSS2WrqqqjI2NMTExQUdHB1deeSUOh4OpqSkSicS6fIZKrFaMfT4fXq+3IMYbLT6lkQ1rZSUx1nWdoaEhPB4PLS0thXWtxI/zH0t0LyBWk9BgUo3o5nI5RkZGmJqaYvPmzVx11VXY7Wd+IucyI61WMdY0jUwmU3CJnG3LeL1FtxLFYiylLFi65jFYiR/nP5boXgCsJaHBZDnRzWazDA8PMzs7y5YtW7jmmmvKhpWdq9oLK41ZTow1TePpp58mGAySTCZXtIzXKsYbJbql+yz+nmqJNS7O2LMSPzYWS3TPY8wY29nZWQAaGhpWbZ2UE910Os3Q0BChUIju7m62bt26bAzvhZQcYT5qNzc3L1puWsaJRKKiGJt/tYjxuRBdXddXVdfYxEr8ODdYonseUpo9Fo/HAWhsbFz1mMWim0wmGRoaIhqN0tvby44dO6q6mJYTzQvlYiy2jIspFeOFhYWaxPh8Ft1K1JL4YZJOp3G5XHg8HkuMV4kluucRpQkNxRMjpbGdtaIoCrlcjueff55UKkVvby+7du2q2UVxvrkXVtpfLeuuRYwdDsd6H/6KrFV0K7GcGJ8+fZrGxsYl71uWcfVYonseUCmhwcRms5FOp1c9fjQaZXBwkHQ6za5du8peNNWwnGhWY+ltpOiu136qEeNEIsHs7CzRaJTDhw+vyU1RC2dLdCshhEDTNOx2+6LPU23ihyXGBpbonkNWSmgwWW1iQzgcZmBgAIC+vj6SyeSiyaZaWc6nW+1FdKHVXqhEsRg3NzeTSqU4deoUe/bsWSTGtbopamGjRdfcZ+kxryXxozi07bUSUWGJ7jmg2oQGE5vNVlh3JaSULCwsMDg4iN1uZ+vWrQSDwaqPLZnV+P6xaYbnk7QH3bxtTxt1HuPReTn3Qi6Xw+l0Ljv2hVjwplqKK7cVi3Hx++stxudCdDVNq/pGsZbEj3KW8atFjC3R3SBWk9BgUo2la1b8GhwcxOPxsHPnTvx+f03HqOuSfz48xqmZBA1eB89PRJiKpvn16/tw2pUllq6UkqmpKYaGhlAUBVVVsdvt+P3+RSJi+jtfC6JbibMhxue76FaimsSPTCZTWJ7L5YhEIrS1tb0qEj8s0T3LrCWhwWQ5S1dKyfT0NENDQwQCAfbu3YvX613VsUbTKgOzCTqDLoQQeJ02JiNpZuMZNtV7FlUZm5ycZHh4mIaGBvbv31/4TKF4isn5KKFkmnh8mkQigaqqBSvYbrcTDAaXlH280Flt9MJaxNh8PxAIbNi5XA/RrUQlMU6lUszPz9PS0rJi4odp1NTV1Z2VY1wPLNE9S5iTY9FotJCWup4xtrquMzU1VRC+Sy65ZMlkT63Ybcax6RJsIn/DkGBXzhxzMpnk0KFDNDU1cdlll+FyuZBSks1mGQ+nuP+5KTQddCl5XX8bB7bXF943Y2InJiYKWWPlavButPW2HpyNNOCVxHhqaoqJiQlSqdRZ8RmX41xY1+YTVLn9FscaA3z/+9/n6NGj/Omf/umGHmMtWKK7zhTH2KqqyosvvsiBAwfWdEEWW7q6rjMxMcHo6CjNzc0F4VsP/C471/Y3cvDEHE67QlbV2d9VT5PPwfj4OMPDw2iaxtVXX73Efyul5LsvzOBz2fE5bWi65PGBBfqbvTT7nbhcLgKBAA6Hg+7u7sI2ZtnHeDy+yJrzeDyFwjY+nw+Px3Nei3FpdtjZoliMh4aG2L17d2H/GzWBt9GP88tZ16WGTCQSqWkO41xgie46Ua4djt1uL6TtrgVFUdA0jeHhYSYmJmhra+OKK65YceKq0nEudzxv29tOV6OXyUiaZp+DJhHnySeeoKWlhUsuuYRXXnml7H5zmiSV06j3Gv5bmyIQAo5ORHHbFVoDTupYHL0ghKhYgzeVShUEZGZmhlQqBVCoMmb+eTyeijGlGykO59pXvZETeBuNaelWQyQSob6+/iwf0dqwRHeNVEpoWC/Mil/hcJimpiYOHDhQ9Q+wFNNNsdyFJYRgT2eAej3C2Ngpcq2thSpj2Wy2org47Qotfidz8SzNfifJjMrQfJJUTiPgspNRJTsbBbsaVj5OIQRerxev11uooAWGlW+KcSwWY2pqinQ6XVi/eAJvo8VjPW6uZ4P1FuNzcXOpVXTNJ6nzFUt0V8lKCQ1rJZvNMjIywszMDJs2bcLn89HX17emMVcS3eL6uW1tbQWxLd2+Em/f28YDL0wzGcmg6pJGj4O+JsOfremSo5Nh+gOrq8Vr7t8UgtbW1kXHbVYZC4fDjI+Pk06nSafTvPLKK4Vt/H4/DofjrInjuSh4s1pWK8aZTIapqakNtYxVVa3ahWZZuq9Cqk1oWC2ZTIbh4WHm5ubo6uri6quvRlEUTp8+veaxK4mmpmmF+rnt7e0VremVQr6CHgfvvWITGVUnlMpx31OnC+dGEYAEVV9/S8lmsxEIBAgEAoVlqqpy9OhROjs7icfjzM/PMzo6SjabxW63L/IXr0ca77movXA2WE6Mk8kkzz//PJlM5qy4KXQpSWY1fM7FrYrMLLhqiEajlui+Wqg1oaFWUqkUQ0NDhMNhenp62LZt27pPzJSKbrHYdnR0LOu6yGk66ayOVka0Z2IZook0jT4nAbcdt8NGsyJo8TuZiqapczsIp3J0Nbhwb+BTvxCCurq6JeFDxQ00Z2ZmiMfjqKqKw+FYEmNc7cV+LkR3I/cnhMDpNCZEix/f18tn/NJkjC88Nkwiq9Hkc/K7N/aypcGIxqnFvRCNRq2JtAuZtSQ0mJgJBZUENJlMMjg4SCwWo7e3l507d561i8kUXdNPfPr0aTo7O1f0E788GeU/j06hajrJhSw792Vp9BmTad98ZpzvvTiDlDqdQTd3X7OFzfUeHDaFO/a18/hgiNl4hv1bgmyr00nGIqs69oyqc2QkTCiZo6fJw56OwKrPk9mRuNQiymazxONxEokEk5OTJBIJNE0rdDM2Bfl8qDJ2LnyrlVKA1+ozVhUnn/+vIXQp8TvtRFI5PvfDQT73jp04bErNPt2GhiomDs4hluiWYT0SGkzsdvui5ACTWCxWKELT19fH7t27N+SiHR0dZWFhgU2bNnHVVVet+Bg4H8/yrWcnafI6cDlsHJ2Bbz17ml+9toejYxHuOzJBg9eBEAoDc0n+6clx3nvFZlRd0hpwcvPOMxNhCwsLJFdxzDlN5+uHxhiaT+K02/jJqQXesruVN1y0+joS5XA6nTQ2Ni4qoVkc1lYqHmZYm8/nWxKwf7Y5F5Z1rSnA1YrxK1MxhqYzJDWBAFwOhVa/k1AiQ2udB1VVq96v5dO9wDDDvhKJBNPT03R1da3ZjVCaTRaJRBgcHERVVfr7+wuFyc8muVyO0dFR5ufnC214qv0RLyQNMXE5jPWDLsFUJE1O03n+dASbIvC5jNA4Tdo4PBwGBC67QsBt54597TT7jRvOatOAx0JphhdSdAbdCCFQNZ0fvjLHdVsbsSln99wtF9aWTqcLlvH8/DzpdJr5+fmyMcbr/R2fi2iJ9UoBLhXjWcc88adfweswRDeV0zkdSXPq5RcZFsZNb3x8nEAgsKKbQtO0c1JmsxYs0WVpjK2maSwsLKxL6IkpuqFQiIGBAYQQ9Pf3r+puXKt1Y/Y8m56eZsuWLbS3txfy16sl4LKjS4mmS2yKIJmTbPE4cNgU6j0OJIYlahMwHc0QTqlMhI0ylK0BJz89Nc/tl3QAqxddTZcIccaHqQOarqNLiY3y5+NsW4LF4tHS0oLb7SabzbJ58+ZCWFs8Hl8S1lb8WO12u1d9jBuVjFHM2UoBVjVJs99JJJVDCLDZFDqCbq45sB8pJYcPH6a+vn7ZesaKoqw6/X2jeU2LbrmEBkVRcDgcS6ofrXZ8s3C41+vloosuWnVOuClY1VykxeFmxREQL7/8cs0lItuDbm68qJkfnZhDUQSqDj9/aScAr+tv4qmRMC9PRkhnskTTOq0BJ0GPHV2XTITTBSt3LWxucFPvcTAeTjETzTCfzLK53sPQfJKLWmsr6nO2KP79mELw0mSMHw5JVM3Lld1BLupwkUwkiEQinD59mnQ6jc1mWxJj7HQ6V/yez1Wxm7Oxz9aAk0afgy31blTdSLLZ2W5EopjntDheG5a6KR5//HH+6q/+iqmpKe644w52797N29/+dq6++uqK+7377rt58MEHaW1t5cUXXwTgox/9KA888ABOp5P+/n7+4R/+oayB1NPTU6h5Ybfbeeqpp6r+vK9J0V0pxtZut1ddSrHS+LOzswwNDZHNZunr62PTpk1rOmbTYl7uR1/cYLK7u7sgtiarrct77bZmdnbUkcxpnHxhjs35WWWvTectm1U2ySz+YAOHRmJMRzNMzaSwKwoLGbC1KiwsLODz+YDVTQB5HDY++LouPvODU6gSLtkcpKvBw3een+b9VznXRdhXQySVY2AuiQD8morHfkYoh+eT/OPhcYJuB3ZF8N1jszjsbVzT175oDNOdZfo3S8PaSmOMTc6XWrpghHqlczoex+qKk+/pDPDWXS1876VZbELQVufiA9dsWXabUjdFd3c3t99+O7fffjuf//zneemll1Y8P+9///v5yEc+wvve977Csptuuol77rkHu93O7/3e73HPPffw2c9+tuz2P/rRj5b04KuG15TolhPb9SwabpY6HB4epq6ujr179zI+Pr6qdN1STNF1OByEklmiKZVmvxOfy042m2VoaIj5+fllG0yanyueVvnxyTnmkzk8DkGTz0WTz8mujgB22+LtxhaSHJ+O43bYuHhTHW67IJ1OMzg4SCQSobe3lyv37TYmOzxTHJ+OMxPLks6pbPLBge66QoxsKpVC0zSEEIt8ntXMTAc9dpp9zkVRC5FUjoVk7pyI7nwiy1d+MkosY/yW7FqGOy8+YxG9Mh3HLhT8LuOzNXgdPDse5Zq+xX3ubDZbxbC2ZDJJPB5ndnaW4eFhcrkcDoejEFds/pZXm6FYK+XcC8cmY/zd46MksxptARe/fn0P7XW11QIRQvCLl2/iTTtaSOWMcZz22m8o4XCYYDBIb28vvb29K65/3XXXMTw8vGjZzTffXPj3VVddxTe/+c2aj2MlXhOie7YTGnRdZ3JykpGRERoaGrj00ktxu43Mq1oKkC+HKZg/PjnHvxwZRwB2AT/XZ8OvxaqK7VUUhVRW5Z9/Osx0LEM4meXUbILOoIfOejd7Out4zxWbOR1J8/2XZhiZTzAVzdLb7EHX4fDQHNtlimeeeYa+vr5CeNtCPMOR4XlAIpFkNA0dwdVbm9jbb/hz4xmVbCrJzOQ4LS0tZcOyTBE226KXthev9zqIZzQC7ryfWYLXeW6K4Dx2cp5UTmNTvfE9D0wmeWYyxa6txvvefNEfk6yq43VU7w91OBwEg8ElMafZbLYwcZfJZDh69OiisDbz/NmdbpwO+7pONJaKbiiZ428eG8HjVGivczGfyPLFx4b51NsvQlnF9VXu5lnLhOF6Ry587Wtf493vfnfZ94QQ3HzzzQgh+NCHPsQHP/jBqsd9VYvu2U5o0DSNiYkJxsbGaGlp4fLLL19i1a6X6NpsNqYjKf758Dj1boV0MkE4keb+4z7+z3sO4LAvvaBl/rHPnX/sUxSF8XCa6ViGjjoXx6djtPhdRDM5Lg8GeWkyyrHJKA++MIXTZmMinCaUzFHvVmiyZzg1GSfYrHD9dVcwG88yHk7jd9n45yPjpLM5cqrk2OkYfc1eAi4bxyZjOBRBLKMSSubI5bJs86ns3t2wKJbSDMsqjgRIJo3gMo/HUxDjN/bX8cBLIaaiGXRdcnlXkE3B1acVr4VERsNVZI05bIJU7szT0f4tQZ4cDjMeTiEwalPctLP2R9FSnE4nTqezUARp+/bthdKZ8XicuXCMvz80wcn5NArwxl4PV/fWL4oxXq1bQtO0Rb/vyUgaXUq8TuO31+RzMh3LksjfGNeDWmN01ysx4k/+5E+w2+28973vLfv+448/TmdnJzMzM9x0003s2LGD6667rqqxX3Wiux4JDcVjldtOVVXGx8cLabOlNQqKWat/2ERRFCZDceLxGCKlEQjU0VNfz1Q0QyqnLxHdqUiar/1shNl4ljq3nfdf3WW029ENa1+XEinz6bnk/dpCMB5KkVUlrQEHSIlNy3B8PMGNO1ro7AiQzMzwj0+OkcxqSGmITTydw67AbDxDPKvy9GgUm82Y+HtmNMKuDj/7twRJpCSHT8e4OpqhregRtDgsq9hHZha4icfjxGIx4vE4+1wpYjlBQ8BLl9dJKBTC7/eviwunFvZ0BnhxMobboSAxwpy2NZ+5Afhddj78+m5emoqj6pJtLb51dYMU+3SFELhcLlwuFw+dSjGredjZVU9W0zk0l2ZntxtbKsXc3Nyim1lptbaVxLh0TiHocaAVRbakchpOm8DjXL8Ih1pidMPh8LpYuvfeey8PPvgmhnCOAAAgAElEQVQgjz76aEXd6Ow0JpNbW1u54447OHz48GtPdNczoQHKF4cx412npqaqyuQC1qV9eiqVIhwOE04v4HS6CAZ9uB02IqkcQbcdn2vxMaiazt/9dLjw+BtLq/zdT0e4a6+Pdr+N9joX09EMPqeN6ViGi1r9zMez+F122uvcaJrG7OwMjlyctG4nWFeHqrhxCMlcStKiQ3vAzUIyyzOjYaLpHPVuO+F0juloFpdDodNjzETPxrPEMxqJrIbDZkMgCadyi0S3EsWRAIs+n6oW/J3z8/OMjIwU/J2mRed2u89q1tYlm+tI5TR+fGoBIQS3bPWzvWVxEXmfy84V3WcnUL/SRNor03GafUb0g8tuw26zkRRuLuvZtGjb4hjjcqUzi89jIVSv5HrYVO/mbXta+e6LMyjCKOX5oWu7FhW9r4bJSJqv/myMsVCKrkYPH7imq+AXrqXuwnq4Fx5++GE++9nP8thjj1UMQUskEui6TiAQIJFI8Mgjj/Dxj3+86n1c8KJrhn1pmsZzzz3HxRdfvC5uBDOTzGazLQrB2rJlS03JBTabbdXhZ8Upwl6vl+3bt9C61c7XfzZCJKXic9n48A19S/x20bRKOJWjI//oHXDbmYpkiGR0Wr2CD1zbw09OzjMdS7MQz6JLaA64uHl7IwtT48j4LHM2Px1tbTiTOXoavXQ1ebmmr5FPfGOC4eEF5hJZnDaFjKYTSmTxOnx4HTakhHhaY1KksQkFn1Mho+qoukRBoktJ3RofPe12e9nJp9I03ng8XmiJXuwvXo+C6EIIrulrLEyMDQ8Pb2g5yUqi2+x3MhXN0Gh35jt/SALuxU9hZkxrqajoul6o1lYc1mbe/JLJZOHGZoa13XZxO/u3BImkVNrrXDVb8xlV5y8eHSSe1Wj0OhgPpfnLRwf5k1u315wCXGuxmzvvvJODBw8yNzfH5s2b+eQnP8k999xDJpPhpptuAozJtC9/+cucPn2aD3zgAzz00ENMT09zxx13AIYB8J73vIc3v/nNVe/3ghXdcjG2mUwGXdfXZTbXbreTTCYZGhpiYWFhUbxrLazGp2uKbTweL6QIDwwMIKXkyp4G9nTWEUvnaPA6y87yep02bIogndNwO2yomp6/+OxIqeJ32XnLnrbC+mao2dDLR+nu7uYP3nUtJ2eTpLIqWxq9BfF+ZjTMfFpnJpIgndMRwtjXpnoPOV3SHnBS57aRkxBw2gq+TKdNEEup6LrKvlZnYbz1pjiNN5vNksvl2LdvXyGe04wEKGfV+f1+XC7XmpIVNjJDrNIE0y/s7+SLjw0zFUuj64ZFvrczUGaEpSiKUjgXbW1nfh9m6cwTJ04Qj8cJhUJkMhlsNlvh/G3y+fA5a+9gMhPLEE2rtOTFusnnYDaeZTaepTPortmn29HRUfW+//Vf/3XJsl/5lV8pu25nZycPPfQQAH19fRw9erTq/ZRywYlupYQGMGZ8c7ncmkU3lUoRi8U4duwY/f39bN++fdUXVC2im0gkGBwcJJlMLqnHYE6cgCF03mX8Zm6HjV+8fDP/fHgMQQ5Nwm37OmjwqiQSZ2oE5HI5hoeHmZmZWRLXu3fT0iSOl6di2BSB32Ujo0kUwGlTcNltOG2S7kYP4+E0bodCJqcjgUavg/95c79hBatZpseHqztx60SlGgCmVRePx5ckKxQ/XpfGx1biXIhuOQNgU72b/3XLVibCaVx2hZ4mz6oiCYoxS2e6XC56enoKFrKqqoUY43JhbdWEBXqdNnRJwS+s6kZfPjPS49XWNQIuQNHVNI1cLle2aLjpElgtpuglEgm8Xi89PT2L8u1XQzWiG4/HGRwcJJVK0d/fT1NT05ILuFh0q2F/Vz1djR7m4lnqPQ7ag25mZmbQdX1RenAtFrzPaSerQVeTDyFS5HTDem72O2n0GjeCbS1emvxO0qrEIYyMtu5G4yJNpyVT50kLdkVRmEjAD46nkVLhjdt7ubIjUBAS0yoeGhoqFCwqrcFb7E44F1XGKn1ndW47de3rn6lXGjJmdnYujRjI5XIFN8/U1NSijtCl57DJ5+Rtu1t58MXpwva37WsvtH2qJfXYEt2zhNnvvhympVsrsViMgYGBQvZYU1MTp06dWrdQr0rjxONxBgYGyGQy9Pf309jYWPHCtdlsVSVshJM5RhaSOGyCrS1+mv1nHvmklMzPzxd807W6S67pb+RbhxTmE1mCbhvRjI7TJrhhexM3b29CEXDvE+McGgrhtCnowI6O6h5t14tIKoemSzy25cX9xEyCP//BIHabMQH03HiM//HGXnZ1BJYIiRmSZYrxxMREYTLFjAJIJBJ4PJ4NyxQ7n9OAHQ4HDQ1LwwLNc5hIJBZ1hO5zubhzh4sUDrY013Fx1xlDR1XVqmsqWKJ7DqjV0o1EIgwMDKDrOn19fYtK+q1XqFc50TVFPpfLFcS2mnEymcyy65wOp/nrxwZJZTUkkt4mH792XS8KOiMjI4yPj+PxeLjyyitXdcG2BlzctdfL8WwDkzEjAuGtu9vob/WTzWZZSGTRJNyyqwVVlzhtgtPhNMmshjffDeBsRRRouuQHr8zywukYSOgIONjmqLyvgyfmsNmg0WdYVAuJHAdPzrOrzE2iOCSrtOyjWdxmYWGh0BIdWPJ4vRZ/cTnWa+6i1n2udrJwuXOYTqfZlBfjRGKWZ54ZKdzQMpkMjY2NVYW1RaPR876WLrxGRXdhYYHBwUEURaG/v79sQPVaog5KxzFFNxqNMjAwgKZphbKO1VJNavK3j55G6rCp3oOUklOzcb775Eu0EmHz5s3s3buXycnJNVlITT4Hd1+2GZfLjVIUNWHGR4PE7TjTxLBY9sqJrpSS0VCaeEal3uMoZHjVyivTcZ4bj7Kp3o0iBGMLCdJS40CF9Y1jWXQkNe+zuIFmKBSipaWFhoYGdF0vWHShUIjx8fHCxFOxr3gtbYLOhaVrujR0KRkPpclqRuF6c34hmjaakdoVwUWtPhy2lY9vubq7qVSKEydOFNLcy3WE9vv9hbA2y9I9SyxnLSznXpBSMjc3x+DgIG63m+3bty/qqVWK3W5f0bKsBjPk7JlnnkFKueqyjtX4hiMp1ZiY0HWi0SiRhRip9hauutYIcYtGo6uqKVHMmU4YxvdgTsZNTk4iATVs49i8nXqfm5yws7OzvnBRlhPdnw6EeH4iik0xmlde3dvA/q7as4rm4lncdqUwaVTntjO/UPmzvnF7M4eHw8zFjYlFKeGmHS0V168GUwQVRVnSsw2MR2XT1zk9Pb3I11maAr2SRXkuRBeMJ4qvHRrj2bEIiiKoc9n57Rt7kRI+/19G6JeU0NPo4Tdu6CncgGvFvKE5HA62bNlSiNUuDmszO0K/8sorfO5znyObzfKFL3yBvXv3sm/fvmUjGcpVGFtYWODd7343w8PD9PT08I1vfKOsYXTvvffy6U9/GoA//MM/5K677qrps11worsc5YRSSsnMzAxDQ0P4/X727NmzJNi+0liJRGJNxxMOhws+24svvnhNKYq6FJyYSxNzh+lt8hba5RSzs93Hg8+O4iWN2+OjoamRA7t6CxfwStby8akYPz41j6pJruypZ39X/ZKbnCmcqqoyMjLC1NQU3d3dHDhwACkle1IZjgzOMhWK4xUJfJEQR44M4/V68Xg85HI50uk0LpeLSErl2GSMznoXijBmro+MhtndGViUYlsNzX4nadUIjVOEIJpWafZUHqOv2cv/umUrB0/MoUu44aImtras/LuoRDUTaXa7fUmboOIU3kQiwdjY2KLOFKXxxcWJCufC0n12PMLToxE6gy5iGY1jkzE+ev/L9DV5Sas67XUupJQMzSd5YijMDWvs7lEavVAc1mayd+9e3vKWt3DLLbfQ3t7OwYMHOXXqFB/5yEcqjluuwthnPvMZ3vjGN/Kxj32Mz3zmM3zmM59ZUmFsYWGBT37ykzz11FMIIbjsssu49dZba3pqveBEt1pLV0pZKEITDAbZt28fHo+n4ralrCUSIhwOc+rUKRRFYevWrRw7dqxmwdV1yVwiiyKMQuL/cGSaF8cj1I2M4LIp/NYb++lpMiYYzAaT9bFx9nf4GYj7sTtsvHNfB/1FQrKc6I7MJ/n3Zyao9zpRhOC7L05jVwT7tiy1ysfHxwtdKMzJODPtOuDzcOPerpLPYlgn0WiUXC7H8ePHjVoLmsL8vIJb9+B2uXHm22yrml6z6O5o8zMWSvHCRAyATUEX253L/7z7mr30NXctu061rLaTQ7Gvs7QzhZkCbVrGqVSqkNiQSqUK0QDV1N9dLxYSORRh1J54YSKKlDAVzTAVzdDb5Cl8JrtNEE4tP6mdyWkMzidx2210VwhtqzZkzCxk/ku/9EtVfY5yFca+/e1vc/DgQQDuuusubrjhhiWi+/3vf5+bbrqp4Je+6aabePjhh7nzzjur2i9cgKILlTsQ2O12crkc4+PjjI6O0tjYuKjiVy2sJqnB7A5hs9nWVLA8mdX464ODnJqNA9Be52ZsPkmTR9ASdBNKZrnvyDgfvam/0M23s7OT1119Fdfb7YVzUy7srJLonpiJ47LbCqUI6z0Ojk3GCqKr6zpjY2PMzc3R0dHBxfuvwO20V2VtmdaJx+NhcnKSffv2GZ8znWH48BgLiRT2RIiFeIagU3LqlTCBQKBg0VTT7samCN68q5WrexvQdIlb0Tl5Irzisa0X6x0yVuwvLsZMVDh58iSxWIyFhYVC/d1Sf/F6TrSZn29TvRtdwmQ0k/fZC9oCTjI5nZcm48TSKo0+Z6HeRCWG55P87n+8xEwsi8BI4rjnth2F359JtRa9+fS0FqanpwsuiY6ODmZmZpasMzExwZYtZ2r9bt68uTB5Wi0XpOiWQ9M0ZmZmmJ6exu12l634VQu1WLoLCwsMDAzgcDhW9BVXw3eOTnJiOk5H0IUEjo5HsCEJ5K8/t0NhfDbEE088UbZ1eqWLfznR9Ths5LQz72U1HU/eP3z69GlGRkZob28n0NjM0yEnj06PY1Pguq1N7NlUvRVffLP0ul2868oefja4wFwix95+Fwd66xGaEecZj8eZmZkhmUwWUlGLhaXc9xv0GBNT6+GPr4WNitM1ExXcbjddXV2Fx2yzrbzZIigejy/pZFyuZGa1mOK3q93P7fva+OrjY2RUSWudg831bg4Ph9GlZCycYSyU5j1XdLKro3yssJSSTz10gtloljqPHU2XPDsW5euHxvnIDT1L1q/mvK5nhbHlKGfs1fq9X/CiW9xOvKWlhUAgwLZt29Y87kqiK6UsiK3L5WLnzp2L/EzFrNSGvZThhSQBt92oIQHUex3MRtOkVZ1INMrIbIzX9dVz4MBlNVkzy4nuvs1Bjo5HGA+lEAJcNoWtvhxPPPEELS0thUpqjz78NDGy9LTVk9N0/uv4HC0BN43L+E+Lz0MpAbedW3a1liy1F3qPmZgdFioVuSkWlY2sgWByrtOAy7WVL+5kHI/HWVhYKMxTFDfPLI4AqISZpCCE8USxqz3AXz46gC5hdCFFVpNcuiVIwG0nkVEZC6UrjpfK6cwmcjjtilEXWjHcESfzT3arYT0iF9ra2picnKSjo4PJyUlaW0t/l4Zla7ogwHC13XDDDTXt54IUXSFEoQjN9PR0oZ24EIInn3xyXfZRKU7XTDAYGBjA4/Gwa9eusmIrpeT4dJx4RiOuipr6S21p8DA4m8DvMsTDJgSv73LzwtgCWWnnlkt7ee+BLuwl5RwnwikOD4WQwBXd9WxpXPxoqihKxTjZgNvOXVd3cWomzuzcPHpkCofWtOSJYTap0dFk7DeT05iJZXhuLMy1ffWs5IZdS5xupQ4L5iRUPB5nbGyMRCKBlBK3200ymWRubm7NTSCr4XzKSJuKZvjXpyaYiWXZ3urjXfs7FvmLzZKZxREApr+40tNEaWZYV6OHj92ylccHjegTiaAu/5RhUxT0Zb5mt0OhwesgnMzhchi/SVWT9DYt/r3W8luJRqNrtnRvvfVW7r33Xj72sY9x7733ctttty1Z55ZbbuH3f//3CYVCADzyyCPcc889Ne3nghTd4eFhxsbGyqawrlfwfWnabXHImdfrXTYKQtclf/3YII8PLKAIQSqRpq07uijTphJSSt66u43RhRRDcwnS6TSdzgy3bu/g+tZs4eZSykQ4xRcPDoI0MqwOD4f479f10l30QzYt7kr7TUYWSI0PsCkYpO+qy8r6woNuG7G0iqZkeOSlGUZCKR4fmOf1/Y189E29uByVf1JnQ5SKi9yY6LpOJBLh1KlTS+oqFAuK3+9fN7/n+VJ7IZFR+ctHB0nlNPwuO4eGw0TSKr95Q8+iOh5mnGuxNVfpacJut+NyuUin00QikYK/uL3Ozc9f0sG1fY186nsnmYtncdoV4mmV917RWfHYFSH4gzdv5aP/8TILyRxI2NXh5+5rlk7AVmuomK16qqVchbGPfexj/MIv/AJ///d/T1dXF//+7/8OwFNPPcWXv/xlvvrVr9LY2Mgf/dEfccUVVwDw8Y9/vKrkpmIuSNFta2tj8+bNZzVkxvyBmk0mBwcH8fv97N27d8W0xOcnojx+aoGWgDGrfDoFX/rJCF967/Ki+/RImHufGCWZVWnzSG5sTtLd0cxlO/txOBwcOnSo4oX9xFAIgaA1X4d0Lp7hpwPzS0QX8rPGc0kG5xJouo5fyeGOT1IX8HPJJZcsG+Vx1RYfhyY1fvDKLCdnE/icNqSUPPTiNCD5lWu6zloVsWpRFAWPx4PL5aK/v7+wvLiuwvT0dCFRxWzlXTxxV+tv63wR3bFQmnhWpTWf/t0ecPLyVJxUTl+2SBIs/zRh1twtbrFUfN5+43UdPDoQJZXTOdDTwLX9y4dQbW/186+/fCkvT8dxOxS2t/qXJFOczWI35SqMATz66KNLll1++eV89atfLfz/7rvv5u677656X6VckKLr9XrXJUV3OczuE08++SSBQICLL7646hzwcCqHEGdEzutUmI9nl70wT4fTfOUnQzhkDiUVZzjpoj7Qyi/u217VPjVNp3hkIUTZR7yMJvmHQ6M8Mxrm1HQMTcvR7rdz7fZ2PnzgohV7atV77Ny+p56fDCcIuGx4nXaiaRVdwrNjUR54YZrrtzXS2+RbVXPBs0m5Ai3FrYJKSz+We9Su9P2dL6LrtCvo+pnjUXWJIowOH6vFDE0LBoOF+ZLiFujxeBwtkeBKr9GVwptJMzISLVsIvRify87lXZWFshbRXa+uERvBBSm6y/24TbfAaidTpJRMT08XqktdeeWVNcX3AnQ3GutnVA2nTSGSgYs3Vw570nWd506OEgqF6Kz30tDaBorg5Gyy6ov5yt5GHn1lhsG5BAKje+77Dmxe8tmGwhoj2SjD0yH8doHi8eDxujg5l2F4PrkorrccQggcCvQ0exgLpcjkNHQpEYqgzmNneD7F8Pw4uzvqONBbv6aEg41guVZBpqCEQiHGxsbIZrOLulOYrzab7bwR3Z4mDxdvCvDcWBShGD70d17aUVVK7nKUXlMrlcwsLYRulswsPm9Op5NkVuPETBwpYVurb1HIWK0FzLdu3bqmz7hRXJCiuxzFHR9qobh9ejAY5NJLL+XZZ59dVexfb7OPD9/Qx9/9ZJiIptJd7+Cuy5bOhJoJHMPDwwglQKAuSCBoBInH0yr13uqD3kPJrNGZN5klksrhddp55OUZtjR6cdoUfnxyjh+9MsWLw1mc9hAOp5OAz42q6eQ0iU2IRSFjlTAn4z58XR8vTMSYj2fIaZKgx0FbnYusqtEScFHvtfOzwRBNPicN3tXVFziXVErlrVRtLJPJMDo6Sl1dXaE4y9kW4XLjK0LwwWu7eWY0wkIiS1ejh53rUOaxWkOmUiH0crV3FxIZ7juhkdZsOJ12mvwuPnrzNloC7pr2CRdOhTF4FYqumZVWrVgWC19p+3RTwFcT7/v6rU1c09dITtOZGB3G51xcHMbcZ1OTESHgcDiY1Ef52cACtnxGz4eu62UunmEinMbvsi87SfjYiXk8TjtOm0J/s59YOsdTI2G6Gmeod0q+8bMBGl3Q5hMMp5z4XDbCyRwgafG78LlsbK5f2aI3J+N6mn187X37efjYNM+OhelucHNqNoHTrrClwY3DZoQDxTPqBSm6lTC78ZaWLTxy5Ag+n29JNIApQLUURF8rdkVwZc/6CtBanh5hqWsnksrxxW+9xMlwAqdNp01oTIdi/P0jz3LjFlvBJSGEKJTNXKnCmCW6Z5HlLIhqkxp0XS9Yto2NjVx22WVLhLqc6E5H0xw8MUdWlVzT37js47hNEdgUWyG7zbSmh4aGyu7zl6/u4rqtTSSyGpvrPczG0nz6oeNo0oiIaBcq1yzzGBvP5LArCkIAQuC2CZ58eRifUGlvDtLRWAcjI/gaAoSTKnVuozKY12WjNeDkyeEFru1vwrVMkZLisK+OoJtfvqabm+fqefSZE4yqaYRu48RpnUmvi4DHueLkzUaT03RemoqTVXW2tfgKxbLXgllQv7W1dZEwlFp3pstqvRIWNpJaaz2kchpPDoWIZzQuavNzUevi6+RfnzrNbDyL12XHaRPMpDR6Gn3UtQS54opu0uk0o6OjpNPpJRXGim9iZsnMjUqOWA8uSNFdDjMVuBJmhtXo6GjByqxkyZamAk9F0nz0P44RSxudKx54YZJPvn0nO1co1K0oCqFQiJGRERoaGsoKPBgX79ZW41FQSsnnfngSn9OGz2VHl5JjgxonZ+Jc1LZ0f9dta+LoeIRkVkXXNdRclmQ8xZU7O2hvqufIyJmU2IDbwZt3t/P6rU3c+8QokWQOl93G4aEQ4WSOn9+/acn4AOOhFN95OUJOk9woA3T6bbx0ahA9neDmi3sJ1Md56Ngs8UiS0dkIbV7JKfc8oXrjkTsQCJzVDr3FlPOxZlWdex45xfHpBIoAl93Gx9+6reCDX+/9VZq4K44tnp+fL7RFNwXlbNXgXQuaplXdtujQUIi//eko0bRayBD80LVdXNVrPB1kVZ3HTs6TzGrEM0basJQQTqrs7ggs8hfX1dUVUnNLWyxNTEwQCoX4gz/4AxRF4dvf/jYLCwvs2bOnqjCu48eP8+53v7vw/8HBQT71qU/x27/924VlBw8e5LbbbqO3txeAd7zjHTV1/i3HBSm6KxW9KWfpFqeztrS0VJUmXGo1P3RsmnhGpa3OcD+Ekzm+8fQEf/z2HWW3L56Uc7lc7N+/H5fLxXwiSzyXpdHnqDy5JiGWVunIh4ApQqAogliFIiKXbgny4eu28KVHjzMTy9DdHGB7ZwPvPNCDlJITMwkmQinmUpI9nQ4O9DYwG8+wkDAaAAJ4HG5OziYKRceLmY5m+NrPRkgncwip8RffewGblmVrZyNOTxPuhI2ZJLztks1kVYldMQqetHcHCdiMtN6RkRGSySRHjhzB6/USCAQKYryWlO1qeXwwxEuTcVrzoXyhZI5/ODTGJ9520Vnft0mlAjfFglJcg/ds11SolmrcC1JK/vHwBPc/N8V0NIPDJrApgk1BN/c9fboguv/38DjhlHFdOW0Kc7EMbofC9dvaef3WM2KpadqiSexyFcYAHnjgAd75zncSDAb55je/yYMPPsif/dmfrfiZtm/fznPPPVfY16ZNmwpdfot5/etfz4MPPrjieNVyQYrucpQKpa7rTExMMDo6SmtrK1dccUXVF3jpWOmctiikyqYIUrnyWWszMzMMDg4SDAbp6+sjk8kgbA4++/2THB2PIIErexr4jTf0lZ1ZtimC7W1+Ts7EaQu4SOV0FCFoDyy1Nswiz7n5eT791j6EtwEdo9ODOfYHr+1hNJTixRdCvPnqLfhcRrqmni8+boaYCaBcdNGJ6Rg5VcOhZ4glUsRzLpqD9TQG6zg6HuGFsTBuh429nX68LgeKMCwal8tJY12gYHkcOXKEyy67jGQySSwWIxQKMTo6Wjal16wctV4sJLIloXy2Qj3d9WAtVmklQSnuN1YcI5tOpwux49UWBVoLpaI7NJ9kMpKmxe9iW951MJ/I8aPjcwTddkLJHC67wkwsS3udi5xqPOHkNJ2nRiNcsjnAi5Nxo7KYgFv3tPLh67sXVRqrNnqhsbGRXC7Hr//6r6/6HDz66KP09/fT3d29qu1r4VUnug6Hg1Qqha7rjI+PMzY2RltbW6F2QC2Uiu5125p59OVZYmkVRUAqq/GmosLXZiLFwMAAdXV1hUQD8xHy/qOTPDsWpjVgWK9PDC2wtcXHrfvKF1u+66ouvn5olBMzcXxOO7dd5KbJd+YzFDeY7OnpYdu2bRVFyuO0sb3NT2TE8KEBtPhd7GgL8NJUDJdNIaPpXL91qU9X13XmZ2eYmp5mc70Hb6AOh6pjVxRenooZYT4C2v12Hn55np7843pbnauQylxMJYEpl9ILrJtVbIpDTtOxK4JIKscbLmpeYatzS7l+Y7quc+TIEQKBQCHRY6U03rVSLLrff2mGrz85gcD4zb/jkg7etb+DnGbUg6hz21CEcZ6llMzFs7x5l3GdKMKwftOqxKEIVAUaPA7esrt1SWnHakV3PVxW9913X8XyjIcOHWLfvn10dnbyuc99jt27d69pXxek6K4Upzs/P8/k5CTt7e1LKnDVgt1u5+mxKP/5wyniGZVr+xv53Tf1859Hp8jpOu+7qo037mhZlLUWCASWZHWZvuGTM3E8+V5hAG67jVOzlQul13kc/OaN/aiajk0RHD16FF3XUVWV0dFRJicna24wWVz0RlEEt+7rYFurj3AyR3vQvWhiUErJ6dOnjUr6DS30d3UyH0mQy+ZQdUFHnZupaBpVSNw2BbvNRlvAme9eIUllVV6ejHNFlTPplVJ618sqvnhTHXcd2My/PHWanKZzeVeQ9x0o778+37HZbLS0tFRVFKi4C+9qiwKZtUPiGZV/PDxB0G3HYVPQdMn9R6e4bmsjzX4nHfrPOGkAACAASURBVEEXpyMZ+pu9Rq1ch423723lF/YbacE2RfD6/kb++scjGA9hAil1Tswk2d25OBOu1tDP1Vq52WyW73znO2VrKOzfv5+RkRH8fj8PPfQQt99+OydPnlzVfkwuSNGFpcVTzELeo6OjOJ3OmsRWSsl9T03wwPNTOGyCO6/YzJt3tzEWVfnSEzMEfR5cdoUfvDyLEII///k9he3m5uYYGBjA7/dXzFoz+611N9bz4kSUQD4APK1qbGlYeRLHnncRCCEKNW3NIj+1XjyllcZsilhSmtF0jwwMDNDU1FRwyfT05PjRC8NE40ne07+FI0MhBucSeJxwVU89x6diZFUNh01Q73cyl8jy5HCIvZsCq27bslqr2OFwlK0z8ZbdrdyyqwVNl2tOGDhXVIokqKUoEFDoTLFS5pi5T5vNRiRjuNPMc2dTRKFTR1udi4++qZ9/enKcofkUt+5t55cObKKppMtJW52TrkY3DpvAbbdR73VwZDTMHZe0L1pP07SqrmHzJrxavve977F///5FccUmxefyrW99Kx/+8IeZm5tblBBSKxes6JoUl3bs7Oxk3759DA8P12TdfufoFP/05BgBl52cpvOFHw0S9NgZWMiiaWdy1oMeB08MLfDh63sXFb9ZKUXYtHTfcWknx6fjvDwZI5pR2RR0c2X3ylagruucGh7lOy/OEhM+dnR3srOlc1Vxkyu17Jmbm+PUqVMEAgH279+/qOhNvdfB63qDRCKwraeRy7oaeFsoyY+Oz5HIqvhcNtwOoxB6Lt/9wee0EUmpqxbdSixnFZuTUdFolMOHD5e1ii9UwYXaw7cqnSuzM0U1RYFM90KT0069x/DZ1nvsxDIaLrtCZ9BwmTV4HfzmG3oL+4mkcjw3HsGuKGxvM867WSzfbEIaz6h4yxRKqta9EIlEVt0wAIw6DJVcC1NTU7S1tSGE4PDhw+i6vmgCdDVcsKKraVqhIWKx1ZdOp2tus/Pjk3O47UqhVkA6p/P4wAJ9QQfF/Wyzmo7fLjl8+DBer7eq4jdwRnT9Ljt3XdXFpx86jtdpw64IPvfDU/z+W7aXLRKj6zqTk5MMDQ3x0zk3wyk3HY0ejs8k+PKPh/jdN22tWcwqiW44HObkyZM4nU727t1bsYJa8fY2RdDT5OOXDniIp3MIPce9h08TTak47Ta2tvjIajr2NeT910KxVRwMBlFVlb179y5rFZvrb1QExXqwHv3RiiuNlcscKy0KZMbNBgIBfvv1m/jyoSnGw2laA05++w29+Fx2VF2Symr4XYYLbSqa5s9/YDarNEo3/s6NvVy8qY5NQTcT4TRKvmb0ey9f6uZZrnxlMWvJRksmk/zgBz/gK1/5SmHZl7/8ZQB+7dd+jW9+85t86Utfwm43ajzfd999q23LdAfwx3ABi+7Jkydxu91LHrGX6whcCb/bTk4rclXokjq3g9f1BXng+Ulm4xlUVUPLZXjX/iB79uxYtqzjsckYsXSO7iYvm+o9i+J9f/DyDAG3vfDINRVN89iJOX7xijN1EoqTKJqamti9bz/3f3+ANr+K267Q6HVzOpxmcDZBWjUE8KI2/5JWJ+UoFd1YLMbJkyeRUrJjx44Vu16Uq4lrtykE3HZyOclb97Txs3xJy4ym09fso9HrIKvqJLIaGXXj43SrsYpLayucrQiKallIZHlmLEJGlezu8Bf64ZnHfraOqVJs8eHDhwkGgyQSCTLxWX6xK4W2WVIXcONIzXPwxXn+5WiInA6tASe/c2Mv//7MJOmcTlvAiZSSgbnE/2PvvePkust7//dp02e2V622q3fLluRuY2yasTFOcEJxwgtCD04C+ZHk3suPNEiBQLhUJxgnhASDgYC7sWUbV0mWZfVdaXsvs9PL6ef+cXZGM9pdaSXZAeXe5/Xyy7ZGc+bUz3m+z/N5Ph9eGIzzhtW13L6tkfv2T6CZNm9eX8+mFeefqV7IYEQgEGBubq7szz7ykY8U//sTn/jEGQ0ulxuO4/wU+ClcxKC7fv36RZXGzrZ8Xizu3NXKkYkjzGU0HKA66OEdW5sICAYf2KBwLGpiiwrXbl7DupVL13Js2+GbvxzkpYEYoujq2v7+dZ1c0lpZ3FfdtMtpZyWaB6VUs8rKyuIQhWZYLtgJru6B4zhops3dzw6RM2zAoSbo4Y9vWrWoS/Bi5yeXy9HX14eqqqxatWrZbqZnEkIHaK3yE15fT0o18coC9WEvsZzBMydjGJbN8KRF02z2rMI6r3ecT624FIwv1I/rTJHIGfzLnjF0y0GRBF4dS/Kb25pY3eDu67mAruM4ZOd514sZPy4nChN3pzfuCqJAwzMJ/unFcWTBQhEcRqYE/vLnafyKjCJKOI7rgiKLAvGswdBcjrufG0Gaf0Z+8uoUzRW+IrvkXONiUhiDixh0l4rzSf276oL87zu2sG8ohiSJXNFZDVqGIydOYKh53n39ZUta8ZRG73SGlwbjNETcSaK8bnH3c8N8692nboiru2s4MpFCFMC2wXQcdrRXFalm4XB4gZmmV5G4aV0dP9ozgEfXkFXBpawZFs3zeglTyTyPHp3m3TtWLtiv0rBtm8HBQTRNo7u7m9ra2nM6Z8txf6gKKEW9BcdxeL4/hkcWqAp4iSmwbzhJfdhL2Pfrd/udb1ZsWdZrloH2zmTJG3ax5pmWTF4YjJeB7nKu2eBcjv/1QK87bqtI/M+3rGJ762s3KlsQBbJSDj5/jNqQ+8Kvsm0mE3nW13t4biiNmk1j2ZA2REKmh8cPp7Btm/qwH0Fws/pf9sXKQPdcaGDJZPKcLNB/lSEIwhlk/v8vi+ZKH7dubSYej9N37CCKorB27Vp6e3sJhUIMRLN8+Yl+JlMqm5oj/MENXcURx0JkNJe/W6SEKSLJtIZVImy7va2SD1/dzu7eKJIocOVKH4nhY2h+/xkbcjeuq0dSE8xkLVatbGLfUJyemVOeUj5FdlX4lwjDMBgYGGBmZoaWlha2bdt23pbhi60k0ppBz3gSjyLTWu0nMg+ohuWQ063iFJ+b5TvkDevXEnQXi+Vkxbqus3//fuC1yYrLtZHLP3Mc56xNVNN2+LOf9ZDIG0R8Mqph89kHe/m9K1vxeyQuaYlQF35tsvVKv4LluGW5Agc3EvDygevXEXh5gpcG4yiiwPvWVbG1UeHkgSmymRzTagpBEMjZEmm/TTweKooCnaus44U00v6L4y8vjrt+kTgTYJyrEeRMWqN3dJbc3AT1IaVY23QcB8uySOQMPv3jI2Q1EwF4qneWWFbnK+/aVLYfbTUBJFFwu7Eeidm0xrrGcJHyVdi3HR3VrK4SOXnyJIqm0L1hQ9kD7TgOh8dT7BuO41ckrltdR3OljzX1QVbZNq2tVaimxf7RJCGvC4Bp1WBT88IbzzRNhoeHmZqaoq2tjZaWFiorK5c2DdQtNNMm5JXK9juRMxiN5+gZnyMxl8Nbn6G7LujS2GJZvvzoURI5Da+isKohxLt3tFEd8qJIAhGfTEo1iPgUDMuttQb/C4RwbMeZL3OIeF8HQfXSrHh6eprLLrvsNakVr6oL8Hy/yGxaQ5Fcbuz1q8tHhs/2woxldZKqWazzK5LASFzjG78cwitL+D0Sf/eOtWW14vONtmo/N2+s56EjM4iCOwDx+9e141Mk3n/5Su7c2VKWjLx9R4SBpwYRhfkXiG5wWUuwTBRIlmU0TWNqauqsokDJZJLW1tZFP/t1CkEQrgNuv2hB90xxLpKMD70yxFeeGkAUBGTFw8eua2XbfDOpcJOcmMmQVU3mcgaW5WDZNs/2RZlMqDSX8Gzrw14+9cZu7n52iNm0zobmCB+5xqXP5E2H/SMJ8rksYnISnyIu2bg6MJrk3hdHCHokTNvh0HiKP7yhG1EUi03CK7tqSORNHjkyDcAtW5q4urv8wRwdHWVsbIwVK1YUByj6+/uXrHk/fWKWx4/NIIsC7TUBbtvWTFXAw/BclgcOTXFsMk1eN6gUNZzeKLphUS3m+PovetAcLx21YVRN59hojPvzc2yrlwkGg7R5/Ryec8ioCqoFl3dUEFxG0+9CIqWaPDGkEUqOIwgCV3dXs7bhwnVlzxavRa24OujhfTtWsHc4gW46bGwOsao+5A6rJDUmojlCzplBN+KTEXCnwhRJJJ43sGyHSr+CT5FIqq7uxJ/ffHZnkuWA/O1bG9nQFEIzbFqq/MVSA7DAjaSt2s8nr2vnuf4YtgNXdlYtGMopCERpmrakKFBh4i6RSLB58+azHsevMgRBqAK+C7z7ogXd5cg7ngl0k8kkh3tO8o/PpakM+vH7PBiWzbefHeKy9qriqC6AX5GI5wxM00aSBHTLQdcdPvC9A/zZW1Zz9apTzbUNzRH+8Y7NZd3zuYzOPUc0cgdfBceho6GSP79105LL66dORKn0y4R9bvliIpnn0FiSzTVSETAFQeDmTY28bWND2fkonSJraGgoDomk8gaj8QyTcYMO+RSlLqOaDMdy9Eyl+NH+CbdkIkA0o+NTRH77spX84vgsumXjlUSqK7z0TWaRxmO82jvIuzbXUFHTQMAR8SvuQ2FIKs2tVWzfUFekH22108wl4zRWaMRGTmLEXYHw10s34Jm+OLrp0BjxYVg2jx2bxbBsVlb6XxM5x9JYTv3xfGrFl9QUsuIAtuPwhcf6eKInioBDSBH4dkPLkn50PkXiD97QwZd3D2JYFpphE/FJRYqhRxLPWI4q7qPjcGA0weE5m8ZEflHN5WhG56tPDzKR1JBEgfftWMFVoTOrfLXXBJbMsguNu2AwWKaFsJgo0Cc/+UnS6TSDg4PMzMywdetWLr300rMeV3E/2tsJh8NIkoQsy7z88stlnzuOw1133cXDDz9MIBDg3nvv5ZJLLln29kviI0A98M2LFnTPFGeijRVcYgVBoLqpFb9/AP88uCmSiChYxLJ6GeiubwoT8spETR1Nt8ABr+zq1n7zl4O01wYXTJYVQCSbzfL1Rw6RUm06Givwer1MpVQeOTrNu7YvPoIqClD6GDuOW9c73aG49HeWmiIDF/S/v3eUqZTKeDRJhS/FZypqCHpkfrh/jKxusXcwRixnsKLSj0cWiWV1TsxkGY3neXk4ge04zKY1av0isxkTj5ShtrKSYauCmrBNfzSLiICDjWrarKoPlLkvFOT59u/fT3d3N6qqkk6ni7oBBVJ+6T8XYrk0mzEIzwvHz2V19o8mmMvqhH0yN62rY8sFUJQW+73zeWmcS1a8f9ri0R4Dj+yKw8fyFn/9aB9fu2Pjktu/cW0daxtCDMfyTCZV/nXPOLppI4oCecMuqn6d6bj+99NDvDAQQ1N1npjs4Q+u7+Cy0wZ67n5uhKmURkPYg2ba3PvSGG3V/mVNWy4Vi9V0FztfzzzzDO9///t529veRi6X44EHHjgn0AV46qmnlpwwe+SRRzh58iQnT55kz549fPSjH2XPnj3nfDyO43wB+AL8N2QvwOJC5qlUir6+PhzHobu7m4qKCjTDwqcMk9VMgl6ZjGqQ0SyOTqQJemVWVrkZmIDDb25fwf2vjDGbMfBKAo4gzGdMAvuH43ztqQGmUirddUFu3dKIR7CZnRxldC7LrO4h4JWLN1FBzm6puGFNHd95YRjDdDBtdyJuS0sFkpFdlCY3NzfHyZMnSdg+erI16BmBLWacN6ytQ5FEXhiYYzbtOlBYNgwndL66u5/LO6uJZjQaIz4iPoVo1mA2rVIb9qKaFkGPxDMno9QEFZI5HUvLcSxh45ehprKCLa2VyJJIa5UfSYTBaBZwuG1LI2sW0fyFU55koVCo7EY3TbMINJOTk2QyGWzbXnSA4WwAJwgCVQGZiTSYls2B0RReSWRFpa84zt1REyg2+y4kUqrJZCLHdM7BtF1JywuNxbLiQ8+PYAuj7ovXNBFx6BmPc+DAgTPWildWueDnOA5eWeT7+yZQTZu3b6rnhjU1PHZ8FlGAHW2VCxrDRyddNk61XyaPhKJIfPOXw1z63oriNbAdh75olsaw+4Iv1M4nkuoFg+5yX7qZTIY3vvGNrFx5ZubO+cTPfvYz7rzzTgRBYNeuXSQSCSYnJ4tJxPnERQu6y9XUTafT9PX1YVkW3d3dZXw+ryLxuZvX8rkHe+idSpNSTSRB4Cu7+2iM+Pjs29bQl3QYfnmMrrog166q5WeHprAcaK3yURXwMJPWuP+VCfyKRHVA4cneWR46NE6NF7K2THtdiFhGZzZlU1dloSCgmjYbz5BpbW6p4M6dK/mn54aYy+psaIpg2g7KaRzk0imy+vbVPL5/hohPIiyLPD/PFb5xXT05zWImreFXRGwkbMchntN54NAkhuUwEM2jSO7L5cBYCkEASRB5+6Ym5jIqjUqeeD5DfWUQFZ1a2eSStirqI15m0hpVQS/v7aommVHxeaQzTsktRTmTZZnKysqy6+M4zgLRak3TyppS4XB40SbLtV2V/MdMlLGEa0m+qTlyanhEgJxuXTDoTqc07ts/QV43mZk1yL46yW1bGl+XEeP2WtfrThBFd/LSsvEpCt84JrKu1uSW1RrxeHzJWrHH4+GWzY3cstnVNxiN5/nUj4+T0UxsXLD8ozd0sKO9qvjiSGtmkdsrCAJeWWQ2o7v34vyUoSgI1AY9pDX3fNq2g+24tePSSOQMDoylMC2bjc3hJcsihViu7gK4CdX5UsYEQeCmm25CEAQ+/OEP86EPfajs8/Hx8TIwb2lpYXx8/P9O0D1TyLJMOp1mYmICy7Lo6upa8qKsawpzw5pa/mVPHq8sut1i1SLjMfn/H+ghn9fw+yYQRIGdHdV86z1b+OruAWzHXbbubK/iyESKiE9icDpBNq8jSxKm5CGvG2RVkw3NYV7M5RmO5akJ+7hta3nTy3FcWpVPkZDmHVyf7I2CILC6Psxc1uAfnujj09e1YFnWolNkLw/FcRyKwNIQ8nBkIsWN6+pZ2xjiwcNT+BQJy3EwLYesZs1zaW0CishcVnezeFnEPz+i/I2nTrKzwaG7pYHrtzaydyiObovks2kOjidZb4Xxe2Q6awMokkhFYGlR9kIsh+db+ncXG1UtXX4XhNGBovRjKBQi7BG5qcNHY3szCKeaOVnNRBHF1yTL3X1iDlEUaKrwQk5iYDZH/2yOta+BEeTpcWlrBZe1VfLSUALBttAsB9m0GZzL0zebY04T+Otb1gPL4xXfuz9Bdp62NziXQzVs/sfPe7mis4rPvnU1XlmkoyaAKAjkdBMRmMsZrGsMLXipfPiqVr68e5DZtI7lOLxxTW2ZPU88Z/ClJwdI5A0kQeDRY7P8/nXtZ2ROmKZZxlU/U+RyuXN27C7E888/T3NzMzMzM9x4442sXbuWa665pvj5YvfqhfYfLlrQXdInLJNhYmICwzDYtGnTst6Ahybc5WeWeU7k/ODBTEZjdZVIJKQgSRIvD8e5fVszX71jM2NxlQq/jGGY7Ombws4bGI6Cx6NgmDZTKQ3bcRiM5WmrCdAQUrhtawO/ubOrrJs7m9b484d6ODKeAuC2bc3cuWslA7NZGueHLGpDHqZSKsNzGXKx2KJTZN55QC2EatrF5eLmlgrevrmRn7w6ieg4NIQlUpbIhuYIqmlzYjrDTEoDHCI+D4pgY5o6tiDzph3rGJxTeXU0SSpvcs2qGmYmVVRFJuJTuGl9PRH/4ope53LdziUWW35bllWUgJydnSWZTJLP5xGcXq6o8/PLUYORrETI7+H2bY2viXdbKm8Q8Eg4zrwWhbS4qP1yo2cqw7GpNPVhL1d0VhWzzKmUxvf2jBHyiNQGFUZiBqbt8mI9Xgkch+cH4sUy2XJqxZOxFIaqM5Jy0EwQARGHoxNpHj02w62bG2mMePnjGzv5ypMniecdtrUF+eR1HQv2u6suyF/fsoaJpEbIK9FSeUqtLKOZ/OzQFLMZnY4aFxhjWYNHj83ykauXFgw/Vy3d8x1KaW52JSfr6+u57bbb2Lt3bxnotrS0MDo6Wvz/sbGx4nfONy5a0IXyrCmTydDX14dhGDQ0NGBZ1rKXHE0RHyemMwiC4FLCLJt4TscBZrIQCNjIsuzqCZgWVYEgYY/I8PAwk5OTXNVRwb5JHcE2yes5ZFFAlkA1gHnObaUHWis9C+gzf/v4CQ6MJFwfNNvhB/vGiPhc599k3nCpVY5NKpVmYiRDQ9DLZZddtgC8wj6JZE5n90yG2pCXhoiXd62vL56nd13awpaWCl46MYGh5qisqWcknqcu5KFPEKgJe1z79pyKX5EIB/zops2G5kp2dsj87OAkqmlR6ZeZnoCakEJVUCFSsoxcbkPp9fBJkySpzDI9m80yODhIV1cXmUyGW/1pYskMlp5guj9GtqQ8EQwGz6tpt6o+yN7hBA1BGcMGxYbGyPkNHPznwSm++MQADu45vKqrmi/csgZBEHjs2IxrvqhaTKa0Ypc1o5pIokDQ4zbXxLPUk0tfVm/a6uGeF0axDB1BsHGAgOxgGBovH+un1ZokFApRFwrxuevq0A2D7q6uJbdd4VcW1IQHojm+9ewwQ3M5ZrM6ouDSxRRJQD3Ly+lc3YfP52WezWaxbZtwOEw2m+Xxxx9f4H92yy238LWvfY3f+q3fYs+ePVRUVFxQaQEuctAF98T19fWhaRpdXV3U1NQQi8WYnp5e9jY+cGUbx6fSmLZNLGtg2g41QQUHmM0ZWLM5Giuhwi/TUullcHCQiYkJWlpauOKKK7hSEDg2mWY2o/Ofr07wZM8sDu5UkWbaxHMG79lURVd1+QOpz2eZiuSWNZDcCa7dvbNMJTVmMxqO49Dgd4Vk3nzVKg4fPrzgBptOafz73jGaKvwokshkMs+mFeEiF9a2HaZSGpUBhbetryEadWjrbOSRo9McGksSTeVY6VOpa/Gyd9JAt939/tg1HcWppQ3NYZ7tmyOe1emNG/iMNJIgsLG5goZ5oFnOjX8u5YULjVKDw7q6OgqQUdq0Gx8fLz58hTpooURxtqbd1d3V6JbNwdEEmgW/saXhrLXKxcKwbP7+iYF5VS33/DzXH+PAWIpLVlaQyLvDNqMJFQGQJbAtsHDLJbLoOi/4z0Fx7u2bGkirJt99aQzddGiu8FAT9JDIm9xwSTsb2iOk02kOj8Z5sX8WTTfp6ptl64oQkfnzc6Zz5DgO97wwiiQKdNQGSOZNTsxk8Msiuu3wlg117BtO8PJwEq8i8MY1dbSWGIQuN9M9V6Hz0pieni56opmmybvf/W7e/OY3l6mMvfWtb+Xhhx+mu7ubQCDAd7/73fP6rdK4qEH3+PHjJJNJuru7qa6uLl78c1Eam06p/HD/OB01AS7vrCbil/n5wSlqQy5vt38qRVI1uaY+yNu7PBx+5WWam5sXqJsVVO9H5rI83x8j4pNQJImUZlIdULi6I7KAeaBIAiHvqfFdx3GwHIfe6QwVHoEar4MpSBiizB27upcU5j4xnSarWaimRc9Umpxm8cOXx+mdyvCx6zq4+9lhTkxncIBNjX5u73Inkm7oDKIkRtAjNps62vH5vKxvVxmN5/m9q9rpqD1Vl9vQFGE6pXH/gQkkAXZ1VFEX9vJcf5Tbt61YdqbxXwm6S8ViTbuCvmzBoaK0DhouAZnSpp0iibx5fT3XtIfo79fOe/gib9jYtkNhhSwIrjB4POveF6sbguwbShL0iLgT5QJ1IZmkalEf9nLnzhZu29K45PYXC1EQeO+OFt65tYkvPTnAq2MpUqrFzRsbuHZVDYIg8NSwzndfjDGbMXGA2phAVPTwWzWes07bmTYkVIOm+RLZxuYwx6cyiKLAHVsbkUSB+/ZPUOlXMCybbz03zCeva6dxflx8uaB7ISPAnZ2dHDx4cMGfl6qMCYLA17/+9fPa/lJxUYNuR0fHom/axShji0Usq/PHP3Yt1RVJ5OB4quiZ5Tius0BzhYdQXufG6hjVvibazuJIIYkCDWEPKdXCtEwk3GXoYvskCAKffmM3n/7JUWJZ1yAx4gHLMAl4vHg8YQTBXUaOJzUaK3xYluVyLYVTjhJJ1eDoZArVsJhO6wjzqmP90Sz/62c9ZHST2nn1sVfG0tSKEo71KpZlcc0l6/CNaxybSiHn89i4qmulgAvu0nVDc4TplEpsIknrfBMklTSxbIflMKUs26VV/VfEuQJ7qb5saei6TjqdLrNLLzT4SvnEF1KrDnslVlT5GI3nkUWwbPBIsK7JBfEbVteiGTa6aTE4l5+fioQVlX6+fseGIlCdaxweT/GNZ4dJ5Aw2rwjz4avaiuWRaEbnJwcnSagGPmWezaBa7B3LcOu2Frq7Ty2xF+MVO46Dx3QYi6rUhX34FYnuugCffmMXjREvX9k9QHVAKa7GJpIqx6cy5wy6F6Kl+6uKixp0/X7/opnfUjbsp8crIwmSqkFdyL3RfKbN3mFXzen4ZBrTNFBVlbd0+tm188zGljndQjUsuuuD1IQ8tNfK2LbL47y8swZJEtC0hdzcS9qq+N7vXsLP9/UTj81x5ap6vvhSEkdwm3qmZWM7rsmjaTs8N27yyMM9iILA9atruXZ1LVnNQpFE1559vq7qUyTCHoW+aKZose44Drap0zdj8Z4rV1FTU4NtO4S8MVTDxrRsruyqZm3j4hzbsM9t0ujzpzya1mmo8BYZF2eKl4cT/LIvxsxsnsvtKG/dvOJ1d294rZp2NTU1ZW4BpV5kpU27Q4cOlZUnzmR/c/p+fvU3N/DHPz3OyZkslX6Fv7h5dfG6eWSRd2xp5JbNDWQ1i/984ShVVVVcvbZpQR11uTGVUvnbX/SjSCJVAYVjkxn++fkR/udbVgEuXQyEIk9dFMT5UvLCZuFS03a1KxN8+/kRxuNZbNPi+haByf5jpEMhtLxG3hQIzHsG2g5IJc2w5dZ0L0RL91cVFzXoLnVDFzzJlhOOc8odVjdtknmdYJ2HWjFLuNLPDWtWsrpKOiPgPnp0mn/bM0pKNagJebi6u4aXBhM456xfGwAAIABJREFUjsPVq2p4x5Ym4nOzC8oLhSmy4f5+3tBWQ8d1V+DxePBXx/iLh3vJahaW7fDBK9tYWeXnyZ5ZTsQttq/xYdkOjx+foW7eZn1LS4SB2RwpLYnf43JxRxI5BMdhLJ4nk80TkEwcPHTV+YsgcnQyxSujSVbVh7AdhyOTGdpqggsyXXDpaNevruFfhvqZSmo0Vni5orOmKLo+PT29gBsKbkPlid4oTREvdkbk8GSWmnCcq7ovzPbkVxWne5EVqGudnZ1kMhnS6TSTk5NF+5vS8kRp085xHB7viXJwLMXKSh/3vHcLsigsaLYWQhQEwj6Z7Y0Kra3VhM4TcAH6ZnNYDlTOszhqgwqHxlPkDQu/ItEU8VLpl5lICqi6jSSCIIpEfBJt1WenZ4miSGdTNZ9/ZxXJeZaHT5GKWfHOFXP84OAcM3MJLMehwq9QbXuZm3MIhULLbsr+P9D9NYnlZjheWWQ8kWd4LusyF2wHRXD4wat5ZElkZZVAw4xBZ7g8i3Mchyd7ZnmiZxbNtOmfzTKTdpteY3GV0Vief//ApUR8SnFQoNQ9Atwpsr6+PvyBINR2MWwKWHMq6xoVdnRU86+/u52xRJ76kJfG+YynfzZDSHGzZ2t++mk4lmPrygqOTKRY1xwipRpMpzQ0w+Xfrmv0cHgiTVwTEUMBLlsZ4YoWvbgfI7E8FX4FSRSQcDOPsUR+UdAFaKzwc1WzzM5LVyBLIrFYjEMnThCJRFixYgW5XK7Midbr9XIirWBpNo7tillX+SSGYnmuOqer+usbBVuZ0qZdIQzDWNC0cxyHQCDA/ScMHuvPYFhuKevxnih3v3sTEme+f18L3d7QPFumsEIZS6ikVJO/eayPq7qreeOaWv70Td38w+4B9g/FEESBy9oquev6jmU5lBRCEoWisL7tOByczDEc06gLVfHxGxsYiubwKyLraj1IllqsFedyubNO28H/Ky/8l8eFLB8TOYOvPzNIe3WAobksGd12O8OKSNgro5kWpm3z0kia7bUB1pZ899Gj03zjl4P4ZIlEzmAiqRLySvgVCa/skMgZPHF8tkxQvAC6pVNk6zds4P5Dc7x6bBpZEjAth7dtauCm9Q1UBz0LXCCqAh4GkjZjRgIR1034yu4aBGBNfZChWJ43b2igMiDzxJFxPEaWtsoAmzu6OTmT46pVNVzbEeHYsWPFbYZ9MhPJfFF8Rzfsolvxmc67ms/R29uLKIpFrzhd1xfYvGiaRqJvmlen5pidnSWfyzOT1lnVEGRyUlryYbqQMG2Hg+NpjoyoJH0xLmmtfF2kHQtxpqxsLm+xuy9HVnfY2NTIzrWV4DjEkhkeeugQIjaSAKZp0TOZ4qE9x9nVWUM4HMbv9y96Xl4L0N3UHGb7ygr2jybJaCYp1eTa7moaIl6eOTFHXdDD1pUVfPn2DRw7doyVK1ee1crpbPHzQ9M81x9DEODIRBpREFjXGOL9l69kRV35tvft28eGDRvOqMxWUNE710x3dHSUO++8k6mpKURR5EMf+hB33XVX2d95+umnufXWW+nocHnJ73znOxfQyc43LmrQPVuc6WGYSqlousF0Mo9pO3hEMGx3qMCnOPOZL0iK6wBRGg8enibokYsE+/FEHt208SsSpuXgkUVSanl5Q9M0ZmZmyOfzxSmy0ViOQ+MpWqrc2p85r4Z17apavIvQf1ZW+cmZ4HEcbCDsldkzEOeXJ+aQJIF03sBU87RaaZoDCmNqJSnHT9B2wXV9YxhBFJnLmUwmVWqCHra2VDAazzOZULFxa8frlqjpAqiqSj6f5+jRo6xevbrIhV5qcsfn83HFupVMawpDsTx5NcaK2gg3bqjGMPJlD1PpaG/BhfZ84smeKK+OJDHzFnuGk0wkNW7Z3MDDR2d5cSBObUjhd3a2vGYi3kvdZ7Gszr0vjSEK7qrq0WOzmLbD1d3VKD4/oiAgCm5NU5JAEkDxBVFVlWg06g53zDftSksUrwXoSqLAp97YyYGxJD87OA0CtMw7VQS8EsOxPFtXumBWsF8vjaxmYjluE7DASHllNMXBsRR+j8j1q2vKGnw53eKFgTjNES9PnIiSyBmAwNHJDF9/Zoi/uHlNUQ6yICV5NmW23bt389hjj5FIJHj44YfZsmULf/M3f3NWO3ZZlvnSl77EJZdcQjqdZvv27dx4442sX7++7O9dffXVPPjgg+d9jpf8/dd8i78mUcgsF3twk8kko3295FWVvCXgVyQ008Z03Gw3p5vIkogsuqTvGm85oIjiKZAJeV36lW7a5A2rOIteUGI6Ohrln57qJZ7T6ayU+eMrthbB2pjv+hceWEkUcHAwbIel4KAjItDV6oqQeySB5/piXLu6lqGZFCcn4xyxBU5Wh2is8CMKBofGUwzM5fjglW00Vfh45PAkLwxrHFZHGY3nqQwoVPoVruiqoanCR2PEu2iDyzRNBgcHmZ2dRZZlduzYseyVhiKJ3L6ticmUysmTeTZ2NVBXXb4kLG1OFdTSLMvC7/cXgXg5gjc53eL4dJqmiIe4JdJU4WUsofL1Z4b4+eEZwMF24PmBOPe+b8uyG1GO42bPvdMZIj6ZK7uqi6PES4HuSFxFN22a58FMFgX2jyS4utv97vqmEMcmM+C4egU+n8yVa1eUSU8WzktBka2/v590Os3x48eJRCJFIF5u0640JFHg0tZKplM6Lw8nin+uGnbRbqmwDwXQtR2Hf983wTMn5xAE2LIiwgevbOXAaJKfvDpF2CehWw4901k+eV170YDVnn9ekqpBPGvg90gYlkPAIzIcyzOd1oqgeybmQum03Wc/+1lEUeTyyy/niiuu4OjRo2cFXICmpqbigEM4HGbdunWMj48vAN3XKy5q0D2b6I1hGGUXr1SzYOfmtXw8nOWzD/agWw6iINAY8ZLIm4Q8EtVBhS0tlXzwihamBo6XbfuO7Sv4u8f70C0dy3Loqg2wo72al0fihLwK79nRwsbGAC+8cphv7IlSFQnT0hChZ3KO7+8Z4feudpcsTREflX6FmbRG2CsTy+qsbQwv6arQEPG6N53X5QCPJfL4ZOgfGedo1CQS9KEgklQtFFnnutV16JY7ktxeE+TEdIaBuTzVXhhPqEynVAKKhBQQeOZElI9e07EAcG3bZmxsjJGREVpbW9m1axcvvfTSeT3gLZV+shFl0aX+6c0pcMEsn88vKnhT1FiYF7wp3R/X1Nsp287PD8/gkYRihzylmrw4mODN60/VX88Uz/XHefDwNAGPhGbZHJlM8/Fr2ufHgBcHXUlwG7WFMG0HZf7YBUHgK7+xgS881sfB8RRNER//483dC7R+Fzsv+/bto7u7uwjGhaadLMsLaqDLYQBcu6qaobkck0kVB4GVVX52tJ96KZaC7nP9cZ46EaUx7EUQ4MBYkgcPTzM4l6M6qJSs/lROTGe4vNPNUoMeiU0rwjx7cg4BAc2w8XkkPLJIRrPKRJLO1aqnoqKC+vp66uvrl/Wd0hgaGuLAgQPs3LlzwWcvvvgiW7Zsobm5mS9+8Yts2LDhnLe/WFzUoHumKOXFlo4Ir1q1qlh4f/uWCJbj8O1nh5AEAVkSuGZVLf/rrWuKHFjHcRg/WV5euKq7Fr8i8czJOQIeibdvbmTFvLizYRgMDg6yf/9JcoFGIhUWDZUuta3a696kLhFewO+R+Ph1nfz01Ulm0hqXd9Vw86bGJQGtozbIlSs8DGQ0TMuhiixrQhovTgvkbQk96x5vQ8SLatjYOMiiSFo16J1OoxoWfkUkbzvEVYOaoLfoVZZOuRNwoZLs7djgOI/sH8AbDHHjto20Nr02DYuz0cuOTqZ5oieKYdlc3lHFFZ11ZQ9UKXc2Go2Sy+WKGVA4HKazQuTIVNZt3iVUWqv9CMUZwcI+nBuXd/eJKPVhL54S6cKBaI6NzeElQbe7Pkhd2Mt4XEWWBFTdQpZEPv2TY2xqDvPuy1bwhVvXLvjeciIQCBAMBsvOS2nTbmxsbFHFscJqoTRCXpnfu7KViaSKIAg0V7irnYKTsGZYxXLGQDSLVxaLI8dhr8zJmSxeRUS3yumbhbLD4Fy+WDMOeyUmkxqJvIky7w68sSlMR/WpUsS5jABfSCMtk8lw++2385WvfGXBgMUll1zC8PAwoVCIhx9+mHe84x2cPHnyvH7n9LioQfdsmW4mk2FoaIhcLkd3d3cZ17IQ79jazKYVFe4UmF9mZ3vVAk+zxR7O7W1VbG87pe1gmiYjIyNMTk7S1tbGrl276JnOYB9NFR9KzXKoVOQyo8HqoIcPXOkKf2Q1kwOjCXK6xar60KIqTOvrPGz1OsQTSdatWcVoXmHg6QHUuRwBRaIm7CWe1fErMomsycGxBKbjsG8oTlozkUURBQdJcH3VOmuD2LZrQVTIUuLxOPsO9/DzQZtgqBKvKXPPi2O8/3KRdU0XJv59tom0gWiO7+0ZcxkVgsDPDk0jiUKZ4PZS3NkCXavTnyMtJZh2TFqkJJsjIm9aXckjvQlEQcByHMJemZ3ty39YC0Lyi3+2OOj6FYnf3dXCoYkUWdXkW8+NMBpXMS2b5/rjHJlM8/e3nd+SdrHfUxSFqqqqMs2R0hpoLBZjZGQEXdfxer1l9fNAoNzJIadbfO2ZIY5OpslkVN7rm+EdmxtoinjRLbt4zFndornCx9aVEb6/bxzVsDEshwqfzNqGIA8cnuaZk7EiSN+0tpZ1TWGOTaXJGxYrKv185qaushr1uWS65+sEbBgGt99+O+95z3t45zvfueDzUhB+61vfysc+9jGi0eiSYufnEhc16C4VqupST6LRKGvXrj2rzXhXXbDMo6kQmmEVM5uMavKL4zPM5XRW14dor/ZTGfAQ8kplXmS7du3i4Hia7z3eh+04VAUUxuJ517BSd/joZS1lbg8nZrIMRrP4FZG9QwmiGQ1ZFHji+Czv3dnCphVuM8OyLEZGRkgkEnR2drJp4wbXFHI4wdqGEJuaIxyZSKGZNo0RD+/b2UbPdJqgV2J7axWK7A5PTKY0UppAS7WfyYSKJAiMp1R2dVQTkiwOHDiA4zgY4RWEIimaK9wMPpk3eObkXBF0z9ct4Wyge3wqjSKJhLwypm1jWDa/OB7l0rbKMwqES5JERUUFFRUVtACtLWlGR0dpbW0lk8lwS6cOqsihGYMqv8Rvb4lgZhPkhOXZBV27qoZHjs4Q9slohkWFTy6qZi11LhzH4bFjs+w+EcVxXFqWYdlYDhiGxZO9c4zF87RcgNj32aK0BtrY2Fjcr9LVwuzsbNlqIRQK8dPeHEcmsjSEvQiawI9emcRxHFbVB1ldH6RvNocgQFOFj1u3NFDhV/DJIkenMvhkkcs7qsgZFs/2xWiq8CKKApppc/fzI2xsCvGW9fU4uGWIkVi+zKnl9QZdx3H4wAc+wLp16/ijP/qjRf/O1NQUDQ0NCILA3r17sW170aTtfOK/FehqmsbAwACJRIJQKERNTU0ZZ3K5MRbP83ePn2QsnsMrS+ysMvnxA8eZSKoYlsPdsSEaI14iHrimXucNG1YUvciOjCe5+9mhYpMlnje4YW0tLZUBokMZtpdYnbwwEOPHr0ygyAIzKZ25rM4b1tQWHYUfOTrDhqYwExMTDA8P09zcTH19PXV1dcWHvLXapRV5ZJEd7VVMpzXetK6ey7tqqA17SKtmsY7o80jUhTxsrJTZuXM1Gc0imtWRsdDmxjl8eIDVq1dTXV3NE8dnwEkX91WgXEbvfEH3bOFXJEzbJqubPHRkxm1OIjASz/O1OzaeE/VLEIQywFm75hSNrZAVl9oFldaJT6exXbuqmqBXomfKbaRdu6qmOMK61Ln45xdG+c4Lo+imq+Jl2c68QLyAI4DtwJO9UX5n12vveHCmEAQBr9eL1+sty9wKq4VMJsORsThoBjEji2HZDCcz3PP8MPVhL6sawnzqhk5k0a3/FhKT1Q0hVpfoT0xOqkynNaJZnZBXpiHsJadbyPMC6ALMJyPl5btzAd1MJrNAwvJs8fzzz/O9732PTZs2sXXrVgA+//nPMzIyArjaC/fffz/f/OY3kWUZv9/PD37wg9fsfr+oQbdwEnRdZ3BwkLm5OTo6Oli7di3j4+PLnkorDct2+OtHeolmdKJZg6yW58i4RdgfY3trJQfHU8iiw3QyS129j5cSId7ZuLJ4k+wbTuCVxSLv1bRt4lmT37q0hhdmTj3EjuPwkwMTeBWxqLg/EssRzxnUhjzIokgileGll14iXFlN+7otVAR95Pp6y4Ys6sJefvvSFTx1Iopm2Lx5fQM72t03f2PEhygKpPIGPkViOq2yo70aOTqFV5GQRUhMTzM1NUVnZyfr1q0rntNNKyp4+kSUmbSbeWd1i1u3NBXP+2K0pcWoRYtdszNlupe2VbJvOMETvXOkNVe6UJEFjk1l+MHL4xcMUAUam8/nKwOc0npoKY2tlK51yYowO9oWliR6ZnL83dNTJPUptrVE+IubV1PhV/jXPWMYlj3PSnEbaThgCw4CgiuTeQbbpuVGMm/wnweniGYNtrdWcG139TkBRDSjE88ZNES8xdXCqhUahydSGI7DSDyNYYNPckikMzwdS+PXorx1bTVR41QzcyKlk5svNwS9Ek+emGM6reMRBQajefZbSfyKyMsjSa7qrC6+iNpPm3Bbbk33fLV0r7rqqrPW8z/xiU/wiU984py2u9y4qEHXcRz6+/uZmpqivb2dVatWFS+ALMuLah2cLWJZN+PM6iZ53cInixiGRVazGIpmUFUdjyTgSDKhcJhoRmcyqVJb0G9QJKwSURfDcvApC2+Kl4fivDqaBBzSmutHphoW0YyOYOkMT8e5qj1Efed67j84gzY4hgBsiRhU1xrsPT5Dz2SaqoArJH7nrtYFv1Ed9PCbl6xgd+8sed1iZ3s1V3ZVs2fWYWxsjOHh4TJ79tJoiHj52LWdPNsXRTcdLm2rKJYWTgdOx3GwbbfOV6ruJooiBWfXQpwNdCM+mY9d084zJ+fwSGKxaaMZrkvC6xVL1UMLDIHZ2VkGBwcxTbOMxpbHw6ceGiFvuMf0bH+MT/zwKN/7na3YzqnWnQAoomt545EFaoIemit9NFf4MSybaEanwq+cs7h6VjP5wx8fYzKpIQlu5jyd0rhj+/KEtp/omeXel8YQBAFZFPjDN3SweUWE39jWyOPHZ8loJjkDJNEhoUPI68e2TQ4nfdwaqsI084yMjPBgT4qjMQtRlPAqMu/a1sBQNMsVHZXsHU6SVg0kSWBDU4R43uTQRJo19UHuuKRpQe/CNE0CgaVdJU6P12PF9XrGRQ26giBQVVVFR0fHAtA4F3nH0gh5XbHyjGbiroIEJBEcx2YuoyLJMpptE1Ak9gzFsR34+tOD/Pnb19EQ8XL96lr2DcUZT6gIAnhliRvXnRITL3SE7z8wSdAr0T+bRUAgq5mEPCIz0RiRaoXrN65kZW2Ebz8/Rn3IS1PEh2baPD2SYEyd4dmhLKppIwhwfDLNn75lzaKW7i1V/iIgO45DNBolm82SzWbZsePMIj7NlT7uuLRlwZ8XygsFsC2IDimKUgbAhf8uZOanf2epDCXscxuaj/dEEQT3e7LkygMWwnEcDk+kOTyeIuiVuaa7esEE34VGqZtx6e+W0tge741hn/aSPTyeIqMavHNrIz96ZRLddM+P3yNx6+aG4r1RF/KwoSnEbXfvJ6OZOA58+o2dvH1Tw4J9WSpeHkkyk9KLvFrDsvmPlyd41yVNZwWj6ZTGvS+5ovmKJJLTLf7xqUG+9dubmEnrrKzyEfRI9E3GiWqCa/Hk9yCLAkGfzERe4squVnqnM4zbQ1REHPpms+gpnb/dPUJDQMD02OTzIIvui6d/NseahhBtNQHuun6hCwUsv7xQGKK42OKiBl2A2traRZXGlivvqBkWRybT2LbDmoYQEb/Ch65q4y8f6iVnWAiOSbUXAn4vbbVhZEmgZypDLKvjlUVW1QfJ6ibfeX6IP3vLGhorfPzpm1cXyebbVlYUtRMKFuoZ1SSj6iTz5rwhpDsC7BEc6qsi3LKrkwePTHF8ZobD4ylaq/1sa6lgOqVyMqqzd2yGSMBDY8SHYTm8Op7k6ESKXZ3VSx5nMpnkxIkT+Hw+AoEAq1evPu8bVhAEDMMoq+2Wbqt0aVi4NqZpMj4+ztzcHHV1dViWVQTjwvdLs+I/vKGT4Viek7NZbAfeuLa2TDN2z3CCH+2fJOCRMCybQ+Np7rq+/bxVt87l2AOBAIFAgPr6etZalYiHj1HKCwY4cvAAV0cE9NU+XpkyqQ55+aMbuuiuDzGRVDFth+aIl3fdc4BEzsCriFi2w5eeHGBDU5jO2sUzvdNXCabt4JT8tigImLZ9GkFu8YhmdQRBKHKzAx6JuaxOSjXRLdeqPeKTaK+UyMeF+azXYkNTmAq/XPzVlGqi6RajCRW/VybolUnmTRzFS0IAR8qDZRFQBCRH58joHCukFD09WlkNvQC0ywXddDp9waPJv4q46EF3qViOvGNGM/ncAz2MxvMIgru0/ctb1tNRpdAYsEnmHGxRIG3CdW2V/NnNG1AkkZ8cmODf9ozSXOlDkUR002Y4dmrpWxf28paNC7MVSZLIqjoHRlPsHU6S001sG3yyQ8gnEQ54kT0eHj8+Q33YgyJJjMTzTKVUeqclRuI5EEC3bDKqhRaw8SkSjgOJ/OJZfSqT5blXe1B1kys2r6axtooXX3zxvBphhQdelmV6enqoqKggEoksyv0shCAIRKNR+vv7qaurY8eOHciyXMyGS/8NFIE4IAt8+7c3EM0aeGSpONlUiN09UWqCHvwlo9gnZrLFScD/KqH0q7qqaI4ojCZ1dAv8isjv7mph1852LMtizepMsWmXHutl/4jrUBEOh5nW/cxldLzz5SdJFLBth8FobknQPX2FsLUlQsAjkVQNPJLo1vU31BHPGRiWTV3Iu6RqWcM8Y0AzLLyKRFozCXolIj6Z1fVBfLLobscWaKzwoog+NjVHitNlaxtCmLbDofEUx2dyqIZFtVPQTHZ7CVtaImR1e97qysZyHOqCMh+4aR2C6TY0JycnyWazxQnEXC5XVKnzer1L3qeJROKiE7uB/wagu9QFkWX5rOWFx47OMBzLFYWbZ9Ian7lvL0NxjZQu4lMkVjVESGYyVPjEYkbQXhPAI4tF48BE3mDzGSzVAeI5nR/1aiSOH+fAWJqwbKPpbn6UNyEScCed/LLIq2NJumoDdNYG2dIS4fm+OQbnXO+1DQ1+HASiObf+G/JKhLwynbULxbd7TvTxw4OzZMQQfl+Inn0zfOhq1/ngXOf3S8sC69evJ57K8OLJaV7cN0BW1ahSHK7pCNJadwqIdV2nr68Pj8fD1q1by9xdC799elZcVrJwHGoD7i1qGEZZRuxQzpt1HMqW+bC8Wl8yb/DVp4fon82yvinMJ65tP6e6qiKJ/MNbV/Bwb4qc4GN7awU3rKktHluhMVV6jAWHilQ6iYRFXjWLHX0HkUqvs+RLUTetspy6JujhH25fzz8/P8Jc1uCytgoymsUHv38IQYDWSj+fe9vqBZNuALUhDx+/po1vPDtM1rDwyRKfvqELRRKpD3v51A2d/MfeESbNPDdvbmZNfZCjkxk8ssjO9kpqQx4eOzbD3qEErVVeeqYyzGYMZFGYL3cIxHMmTRVeKnwytgNp1eRd25upDPoA3wKBpHw+z5EjR8jlXEElTdOQZXmBPKYoihelwhj8NwDdpWI55QWXEwtTSZXRWBbNtEEQaIz4SZs6Kd1m/2iCpqDEVFItfm/bStdd96HD04jzXMX37VxZll2VPjC6afOXD/VwMmpQ4XMwDJMsEqsaQ8xlDVJ5g46aAAGvTNgnUxfycGg8hWbYNFb4uKy9miq/TFI18TkqiiiwZ1wj7JOoCXq5YW0tq+Ytrwt83omJCZKeOjRfDZ3zgjqzaZ2Hj0yzThKX7d57et1WEATyhs0Xnx5j/0gCzbTxeyR2tlexNyHQ0RIgFotx/PhxTNMsdv8TicSiI7ulUShXHJvKEs8ZNFX46Kr1L5oRX91RwU8PzxDySCTyJvG8ySsjSXyKxJaW5Q1wGJbNB79/iOFYHseB49NZjk9l+M57NxdfqMuJk1GVfz8YI2s4PNk7y9qGECsqF3dzKHWoaGxs5O9vr+NPftYDOBimzZu6g3gyU+zbN1hGY/P4gzxywtU+zqV1tMoYV3a55aSVVX7+/OY1ADzbF+OLTwxQFZQRgKFYnm8/N8JnblrcVHJXRxWbV0RI5g2qg54ySl57TYCPX9nM5KTAmjVuaed0gfsne+cYmssjSwJhn0JWs5BFVyJ0S4ubFUe8Miur/eQ0iy0tEbYucX0KpRtJkujq6iq+kBdzpvjRj35Eb28vtm2ze/dutmzZck482kcffZS77roLy7L44Ac/yJ/8yZ+Ufa5pGnfeeSf79++npqaG++67j/b29mVv/0zx3xZ0Cw/wmaK5wkvPZArVBEmcF5yxXcEb1XCFm03LYTproRqnQEoQBN6zYyVv2dDAdErlpwcm+dyDPcTm+Yi1IS+3bGnkqq5qhmN57n1hhD0Dc8iORUq3kWQRBAFBEKkP+6gJevjwNZ08dHiK6qCXiN+9+SeTKtvbKnnLxkZsx+HeF0eYSpsYhklbjUvorwp62N7qdtzHx8cZGhoqerjtPjGHR5otglzQKxHL6oiVZwfdxcC2sJ2nT0Tpj+YQEKgKeMjpFgPRHKvrg4xG0yhqnLVr11JXV1ck4Z/OiS1kw6WcWMdx+Le9Yzxzcq4Iendsb+aGtXUkVYvReB6/ItFZ6+eaNfUEfAovDMYZiat0VPtIqQb37R93nWsrxeIxLJXRn5jJMpnUik66zrw/3XhCZeUyBxZm0xr/32OTFJLsiaTOO+9+mRc/fcWyVhI72iv54QcuYXAuR03QU1ZWME2zOMBw30t97BvLU+MDj2Dzry8M4HN3u5gUAAAgAElEQVQ0NrfVuk1jy2Y6rXFsMo0gOMXzF/RKnJx1Xybf2zNGRje5oqOa27c1okgi0ymNV8eSCILAtpbIAuU1y7KWPI6cbtE3m0UU3XqwVxZRDVfgZ0dbJZIkEMvqeOaHJWqCnmWtIk7/zcXUxjZu3Mg999zDiy++yAMPPMBf/dVfcc899ywLGC3L4uMf/zi/+MUvaGlp4bLLLuOWW24pE7z5zne+Q1VVFX19ffzgBz/gM5/5DPfdd99Zt72cuOhB93yaQbZtMzo6yv0v9Lv1LsFVnhIdUGSRrG7jkdyMDlwAOjqdI62aZQyB6qCHu58dKjZGZjM6sXme7b+8OMLzfVGOjMXdjq4F1QGJkM+DoNqk8gYzKZWwV+Yv3r4O37xwCrhqVO01AVqrA/zuFW3F3/vQVe3sPznKL0/OEc3a1Ie8ZFWTzz90jNvbDbqaarjsssuK9dXW6gC67RS5onNZnetW1SIYKfYMxTk+oxLwuOyKplJLnxL2welNMnBpdfPvDWzbZRYkMnmm7AzetmYu3byj+NAsRsI3DKMIxMPDw2QyGURRJCv4+cWRHE2VfrweBdOG+w9M0lTh49vPDmPaNhnVpLUmwEevaWNnZy15E+I5i6b5EpEsibzQP4dYlaaurg7TNIv7f3rDrlwWx43TyxZniwcPT3NaVYOcYXN4IrPsjLs25CkqbJWGLMtFGlvqmEb3ygiSYxGPx7EdgaMjswipSabSBv9y3CJrQs50hy6q/AqCKJDTLVoqfXz+sZOIgohHEvjpwSkM2+YNq2v58u4BNNPGceChIzN01fpRTYeNzWFuWld3Rs5sRjNpjPwf9t47Sq67vvt/3Tp1Z3svWkm7qy7ZspqrjHHDGIPBBAfDAxgC5+FHgmlxeEIIxWAghBCeVHggoRkTHBxjI7BxA9xlW7K6tve+O33mzm3f3x93ZrSr3ZVWsoFYJ+9zfCyPxvfO3Ln3cz/3830Xz8UtnXMQCEoDKg1lfiZTXuT6eDxH0nD45hMD+DWF91zYXIwhOhVOd10HAgHKysq49NJL+fjHP76s41zAc889R1tbG6tWrQLg5ptv5r777ptXdO+77z4+85nPAHDTTTfxoQ996BUTBL3qi+6ZQAjB6Ogo/f39BMuqMNQwDWUOfTMZbFeQcwSW66BKQN4ApzyoYdkOpiN48MgEN21tLG7PtF36ZzLUl/p4cShOUFfIWg4HRhIkshbP9c7iU8FCQlVk4oaLLDlkLJeV1UGayoLIskT3dJo3bamnsSzAUDSDKss4wuXmk+halWGd85si3P3COPXlpSAcrEycpCFQq9pYu7Zx3vs7akLcsKmOXx6ZxHEFF7SUceW6Gn70yCDPz45RVRIgl4+Bv+2K1VSGdRzHKZ5cS3U4Gxoi/PzQJJUhnfGEQcowaSrReM2WVWxff/pkYE3TFnQujuPwUv8ksjSIkcmQjFu4wiVpK/zLo8cQkkI063J8Ms2B0QSPd07zmdevwafKuPnP6zgO07OzBGWHdRdtpqSk5JQLdisrfLSU++nN//6qLLG5MULjGcSoP3RsetHXX078Wzpn0z+TJRJQix13RUjzXtNBkRU01c+6VQ1sbS3ntp8cxiBDJABkTcZTDl2TCSK6TEVQpS0CvZMOdWXenFWWJH7bPYsQHvtBV2RGEwYD01mOjCVprw1zeCzJTNrk6hXakkW3LKBREdIJ6QouniVkSFf4092tHBpPMpnMkbVcVlcFUWSJWNbixy+M8pErVp39wZmDWCx2VorTkZERmptPiGyampp49tlnl3yPqqqUlpYyMzPzP94LcOo7YoGiJcsyk5OT9Pb2Ul5ezvbt20FW0Z59kZht4bii2K24AoJ+BUmSES64LvgUmZqgzGjM4J9/3cvR8RQhn0JNWGcklsV2XGQ8s/O4YRFUBOmcwBTg2N6KtuMKFElQEVQJ+CUuXl2FKku4QvDiYIzXrKnm1otXcGgkQdp0WFnldbonQ1EUVEkwNTOLLgtKS0uxVJdIaOHjsCRJXNpexUWrK3GFKC4EvjRpUVkaIJKnVw1HsxyfSLDDXzavGwTvxqIp87vd85oi3Hx+Nd97egC/5LJrTRW37GplbV34rDsBRVFY01RNVeksOdulvFRlJmXSHlYZiWYQjsHR8VyRBuXYDnfsOc7337WFkK7QOTKNkc0QDJdwy+XtlJSEi+dAYfsFFAqw4rr8680b+OaTQ3RNZdhQF+I9uxpxHGcBhW0xWI7LbGbhYm1Il1mzzDj23ulM3mxJY2drGb3TGT7+0yP5lX64fmMNf3Z5K2/cXMc//WaAiWSWdFawtS1cNBnvm/UKdNKwmUh7ScGaqtFRX8InLq3lyZ4ZTCtHLGYAEhYyEb/GTCLN8YkUU0kTO38NWEJg2l60+2OdM1zeULVk0dVVmfdf3ML/e2qQpOFQHtS49cJmmisCNFcEODyapGsyXWRPlPpVxhI5XCGWnJmfSTeZSCRoa2tb1ntP3sfJOHmfy3nP2eJVX3RPBU3TmJqaYmBggFAoxPnnnz9vBf29F6/gIz85gJM/vgUteNZyWV3pJ2O7+FWFEl0inTXonU6TyjmEfQpPdM2ABC3lfvYNxUCCnOXiuIAmeTNbPEmSI1xURUYWMrtXhelLynnhBfn0AI+n69cUtrUubd5hWRbDw8NsKzf47WwYWdeZyrg0lvnZ0rR0ZEkh/6wAVfHy4BAnxgmcNEoYmM1w54PdjOcTJm6/uo2O2nDRurLejvHNm9dTXlFxRotOp0LIp/KR167i358ZYjyeY119Ce/a2cyPXxjh8a4ZFMVCwnMJ8+sKtuNw4OBBNpBl0K8Rqi7lvBWVNJUs7XEL8wtxuaZx+7Vr5nXC8azFg0emSJsOO1eUsqY2VPz/CtuUZRlV9lKXa0IKU2mnyI398GsW+hIvht92z3DnQz1FB7OtzaX0z2RImw7BfLjoA4cmuHh1OdtayvjElas4MjRJMhbl8gtaigZAjaU+xuIGY4kcsuSNWKrCOoNRg3FT5/rt7Tw15jAW9xSaQji8aX0pLwzGmUrkcATIEjjCEwH1z2QoC+pIeE8EurZ0mWipCPDX13WQNj1V5Vx6WmVYRwjvxq2rMjMZi6Zy/ynPl1PNkE/G2TqMNTU1MTQ0VPzv4eFhGhoaFn1PU1MTtm0Tj8fnPZm9HJyzRTcejxOPxwFv6B4KLXQR655IFuWb4M3zXCGQhXdhC+H5pgohWBGBnqk0KyqCJAwbWZbyijMZEFiWoK5EI2NDyrCoDutMp23PVcqFgC6zpdbPNW1hfjUs0T+TpjygEzdsqkt8i870CnBdl8HBQUZGRqitrWXn6mpee2kbR8aShH0KO1rLz4jmdGFTgEeGLCzXc70qD+psaCid191+7uedJA2LqpBGyrT57M+P81e7q4hOjrJixQra29t/J2qgxrIAf3ltx7zXbtnRRDRjcmw8hSR5ybGu66LLUF8eZm3H+QDFOfGxY8cwDANd14uLdZFI5LTMCYC05fK+uw4xmczhCMH3945yx/UdXLiyDCEEjuOQzDnoimeV/rp1lfzTb4fmzYa//dQQN51fv6DwZkyHPYcnmU6ZXNAc4WuP9qErnlmRyNtvpk2HsoB3WcqS5J2DsRy0eEq99ko/s5JvnuPax69czV/dfwzbEXmlm48SvydQSOdsgrrCF96whid6ZknlHDY1RuioCTGSG6BqdIyplJX3h3BxHMgYFr2j01zS5GN2ZppwOEwmk1nSjU2RpaLB01zURXzceF499x+YwBWCypDG27aeWp68VNrLYjhbytj27dvp6uqir6+PxsZG7r77bu66665577nhhhv47ne/y4UXXsg999zDFVdc8T+dbgEnH4hUKkVXVxeu6xYlwosVXIBvPN674DVXgCQEAonzmyO4ruCFgSjdsya65jkm1ZX4sB0Xw3I4OJQjY3u6+oydl7risSD8qowseXMzBTAceLI/yTsv3sCeQxMMzGbY1FDCdZvqik5NADMpk+FYFp8qE3aSDPT3UVdXx86dOzFNk87OziXtKE+FQie3dUUFRqqPCdOkvDTIxe2l+JUTZWM6bRI3LMoDGgLwyYKpeIqRaJDd27efdXbZ2SLsU/mLazrY0VrOF3/ZRc600GXB/75sBY9MOTw0Mcy162vY0lSzqNl5IpEo2hcWaFiFQnyym9jPD04ykczhV/N0JdvlG78eYPeaGuJZi4/ec4Sj4ymcvBG9aZ3ocBXZ6xjTpsPATJpVVSe2nbNd3n/XQfpnMziu4K7nPQZJYQHTEZDMefP00Xiu+NThUyVa5hh8L8bGWFUV5Fu3bOGT9x2jZzpNVUgnazrIEkUqYcincs36+ckK7dVhSgMaGdOz0LSRkGToqCvhPRc2s7M5VDT/7+npKTJP5vrwni6dYltLKZsaSjAsh7BPXVKoUcDvw0tXVVX+4R/+gWuuuQbHcbj11lvZsGEDn/70p9m2bRs33HAD733ve3nnO99JW1sbFRUV3H333We8nyX3/4pt6Q+MTCZDd3c3hmHQ3t5OeXk5nZ2dpxRInOQodwKyhKZIjMUN+qYzRLMmsoDWigDDMYPB2QxZy0WWvDBL8AprxnRQZInV1SHPD9bxlGr1ET87VpaRMwye6E/zlovhrRc05uWrCQ6OJFhdHaK+1E/PVJp//U0fGSNHPJFgfV2QD197AbquM5ux0BDzXMaWi0KXJoSgsbGRtzY2Fs1cEokYL40NYVmWx5P0h7Etm4wksK0cQoDPH2BDx8rfe8Gd+/nXhE0+vQ1Kq1fgK6nkU/cfw87bJT7dG+XT13WwteVE57OY2XmBhlVgTswNxYxEIkzF0/NEForseQ4IIfjYPYfZP5zAr8oYloPl4i264j0lCeGdD45wiGdMHMdfPOaPd0UZimY90xvFm/FnLJd41qY0oDKZMHAEbKgv4fnBOMIVyAh0VWU0nuO8/JrqyUU3mrFI5WxqSnx8/g1r+Ppjfbw0nKA8qPGnl7cWi/piuLStgv7ZDD95cZTRuI2myDSUes50TWWeE1uBeSL5wjzeNUM0bbI6IBPIy7oLkfKhUGheOsVcTw+fKi/bkvNsonrOBtdddx3XXXfdvNc+97nPFf/s9/v5yU9+clbbPh1e9UVXCMGRI0eIx+O0tbXNMyxfrv/CybAdwfGxFELKK53yrx8aS1LhA02Wqa0MYruCoWi2mINluwLXFbxtWyPbV5TzXH+UHzw7SM5x2DsQY1W57hlIOy664/K1h7s5MpZEljye6MeubOM/nhskFZ8lpMs0tNQwnnJ4ZiDB954ZJpo1kYBrGx0uuGD5x2cpvm3hIimE9AkhyGQyzM7OsrvO5hd9BrIkIckSr1/rQ8klyeU8L9bfJ2KxGJ2dnZSVlXHRTk9G/I3HerEct2hykzBs7n1pfF7RXQxzaVgFzE2daPXnkIRDxnA87i4Sr22L8Ff3H+Xp/ihCMI+zjSShSN7iVWFtAAEfubeTH73nfBrL/J4KzcqzQvLho5LkpUZvbghzYDSJC1y6qoyBqEFAkyFv/ShJsOfwJNdt8LrUuUX3v14a5z9eHEOSvNicv7y2jU+/rn3Zx1WRJd69q5nB2SwjMaN4LKdSJk/3RVldHcJxHAwH/uXRXqbzQp77TYc3bqrhf+1aW7T5zGQyJJNJZmZm6O/vx7Zt/H7/vK54OeGZtm0vO6onmUyeddH9Q+JVX3RlWaaurm6eF2wBpyu6QVUiYy9cpZx78ZyAwBUSMwa0VuhUhr0Rw2zaLKYA+1QZTZG4el0tlWGdJ7tnMGyBcF0ypsNE3GB7nUKpX+OFwRhHxpLURzxteSyT4+t7DmA5Nq21FYSCHhtBkbP882/6sV1BeVAnZzn8Z2eG189maF6E3VD8tKcotkvBdV0mJiaYnJzklkvW8KbLQozEDEp1qPF5iwlDQ0Pkcjn8fn/xEb2kpOSs0mhPB8Mw6OrqwrZtNmzYsGBMND+M8uz9FualTjQ1EamZ5uuP9pIyLHa1hNhcKfjCbyaK58PcvciSN3t18snOuiKjyBIZ0+a+gxP86eWrUBSFXaurUH89iOm4qJKELeDiVeXceUMHjuNwx0N9yJwIs5Qlj69tOaI46oATzlpdk2l+/MIoZQHN40lnLb7+aB9/+5YTXFMvwTjBvqEEYZ/KazoqF107COrqvMUtIQRafgzgOA49MzmmUiaTSZNUzruevrd3lNaqELvbK+clTszdhmEYxZvZ3PDMk0NF53buZzLTXY5/839HvOqLLkBlZeWiF5ymaWSzS3uwVoc1BmLmMvdS0MZ75HfT9vi9adNBAkr8CiGfxrUbaqjMn9gvDMUp9XuPh06++DWU6Mh50rokedtLJhJkM1kkX4jdG5t5aSRBICAwLAdXQMKwqM/H5hQW7oai2UWL7tkUWyEE4+Pj9Pf309jYyI4dJ8QNK+d4OtTW1hbfn8vlSCQSJJNJRkZGMAwDn883rxAvJwZnMTiOQ39/P6Pjk7S3t1FXs5CLefW6Gh7vnCaWtZAB24U3bq5buLGzwOUdVVzecYKP+dDhMRR5Fl0RxZGUADQZ1LzHl5pf/c/Zbn6RS2A7J87JxrIA3/ijjXzpwW6iGYsdrWXcfk0bPt0z/3nXrma+9eQg5UEdaSaLLEHWctAUmT/eWoNt2/MokOOJHJJE0bPBp8gcn0wzMJthRf68eKY/xveeHSagyViO4IXBGLdf3TYvXh08WtrfPNzDVMpECIFPlbms3RvJuK6LJMukTYdUzibk8wz3ZdvlgUOTXLaEYbokSQQCAQKBwDwubUEYk0qlGBgYIJPJIElSUS5eWAA9HX5fhka/C5wTRXcpY+zTdbr2yVKi5ewrv7+EYWPkC6fjQixjUxrUaC4PkMlfmdGMSTRr5XX4gtm0ReeMN2NurQxg5nIMpeKUlYRw/REuaavirRc04gKHRxOEdJX3XbyCL/6yk4xpE9TVPK2HBXLN5SjJFkM0GqWrq4vS0lK2bdt2Sn/d4jGQTqQvzF24mluIx8bGyGazaJpWLMKnYxAIIZicnORYVw974yEG02GU0Qmu3wRXrJmfc7e2LswdN6zj3pfGsB3B6zfWsG3FmS+qnAoF5aI9NQKSjCwLArLAcjyxwv0f3MnQbJYX+qf5m0cHEPkia7kCTYKVvjQ/fvI4Twxm2T+aQpYk3rq1ng/uXjmvs5RlmTV1ET71ujVMJHMkDYu9AzFsR3BFRwUdNSFc1yWXyxGNRqmqqqIy6M2FLcclnrHpmcmgKjKf+Okx3rGjgRs21/HgkSnKgyeM0UdjXhrEZW0nZtw52+XFIS/RIWO67FhRyhu31J1Y4HMc1tSGCeoKpuOi2S6m47KyIjDPrH+5WEoYU1hfiMfjmKbJ+Ph4McW40BnPHWsVrvf/8dP9b4bT2TuWBjVGEmdmdC5L0FDqZ3A2Q8inkjQsHMABeqezfPGXnfzisCcNHYlmmUqaWLZL0KdSGdJQMZiYmGCkp4c/3ljCI8Mh0jmXi1aX8Y6dzQR1hVsvWlGMaQf45LVr+NzPjxHPekKOy5pU2mvmP8otR0k2F5lMhq6uLoQQiz66nw18Ph/V1dXzOpulGAQnF+J0Os3x48cJhUKM6k0MpOI0lvqwXcG9L41TX+pnff18s5X19SULXnulMDs7S1dXF1VVVVxz6U5Km+P8xX8dIZ1zWFHp5xt/tImwT2VdfQlfe6THo2txYvTQVOHnm/tTjCdmyD+RE9bgB88MoloZ3r6zhXA4PO+3KgtqRTewuTeQws2ot7eXpqYm6uvrqROCm86v4z9eHGdgNosqS7RVBdBkie8/N8LO1rJFPHXFAt3zd58Z4um+GBVBFceFg2NJwn6VI/ksuA0+i00hH7dftZpP/uw4WdOmpTSAqshcvKr8FSl6hfMhEomQy+UoKSmhqqqq6MYWi8UYGhrCNE10XWdiYoK+vj5CodAZxbWfjE984hPcf//96LrO6tWr+bd/+7dFKWitra2UlJR4wiRV5fnnn39Z3/ecLrqns3dsiPg5Mp45o202lfl58/kN/NPjvUymctgn+caYtsve/iirqkLUl/nJmA4522FzYymSa1EvWUxNTbF161b8fj9vWGI/8hxqzabGCN98x3kMRw3KghpDR/cBZzZKmEzm+NHeESYSWer1HBdUWKztaH/FCN9LYTEGQeERM5FI0NPTQzQaRQhBZWUlkUiEw8ejKJLHmQ3rCpoMg7OZ31mBnYvCHNlxHDZv3kwg4I11Ll5dwW8+ejE52/Mwnov+Ge8cKvxmritIGg6m4+KIE6XYEjI+WeKZoTSXNgyRSqUAit1c4Z+5M81sNsuxY8fQdZ0LLrhg3qP3zdtb2NxUzl/ce4SqEp1C+VYkh+mkwe7VpfzHixOEfDKW45nSbGgo4aXhOD/ZN07WtOmeyrC2LlwUehwYSTKTnqSlPMBQ1OBQLMf28y1aK4P8/U3reeDgBNGszcb6MK9de+YS3NOhMNOdaxZfGGuB9zRlWRa/+tWvGB4eZvv27QQCAf7u7/6OHTt2nNG+rrrqKu68805UVeX222/nzjvv5Mtf/vKi733sscdeEQkwnCNF91SeuqfqdPtnzzxza119mM2NERrK/IwlFs9gc1yP6zqRNLEcgeMKpqIxdtRrbKv0sXHjxjPeb3lQpzzoXXBDeCfncue2ScPmrx84xlQ8jWSbHFN8qOE6LvodF9yloGkaZWVlJJNJMpkM69ato6KiglQqRffYLI91TpM2PSpYY1ihNuJDc82X1dWcDgUByvj4eJEFczIkSVpQcAHCPsVTdLletysBFUGNsaSZHyN4RdcRAiHJtFSXsmHDWgCi6RyjM3FyjkF6fLzIMQ8Gg9i2TTabpaOjg+rqapKGzb8+1kf3VJq26hDvvrCZtuoQFSGdrOlS4ldJmzaqqtBSVcL6hlJCPo0XhuIENYUr11Qwncjy9cf6CKgyqiIxlTIJzWZZWRVECEHcsCj1q7w0kkAIyBguz/bFeOOWOmpKfNx60cIsvlcSp6OM+Xy+YqFNJpPcddddJJPJMw6nBLj66quLf961axf33HPPWX3mM8U5UXSXwlI5aYWssMnomRfd7qkMDx2d5F0XtnBg5OACrm9B0pk1HUI+BVwXWwguaa/mtms28NRTT53t1yl2tj6fj+eff774SBaJRJZctBJC8OzxYUamotSU+AlVVCLwfFf/5JIVqGdxsr5cTE9P093dTU1NDTt27CgW0tKyMr78k24ylsDFiyofTrmsrJSpIs7zz48CJzi1hc7w5RbimZkZurq6qK2tnbeIuBw4riBuzDcWLw2qXLmumrv2juLXZCzHc/FS88qtD1zaCngWmf/2tCdH1RSJj1/Zxo51YWZmZjh27FjxMXtgYIDOri6+ddhlJCUI6Cpdk0m6p1L87U0b+NR1Hdz5yy6mUyYhn8Inr2mjLH+DvqitmovavI7UdV3ufWkcgJKABkLQXOZjOJbFr8k4AsK6wmjCIKgpKIpMOutR1t6wufYVk3ufCsvl6c5NjXglInu+853v8La3vW3Rv5MkiauvvhpJkvjABz7A+9///pe1r3Oi6J5K2nmyb2yB8xkIBKiM6CSiy2UveMjZLk/1zrLn0Dh+TUHCwXQozs9K/Crr68IcGk2QzVlIkkxdqZ+kffaF4eRFsi1btmBZFolEgkQiwcTEBJlMpih7LRRi27bp6uoikVYIBUOEw96jsuN48SnSaVO0Xlmk02k6OztRVXVBkgTAw0en6JnOIMsyshA4eMGe29tr2bKpJf/ZT3BqR0dHSaVSuK67oBAv58LNZrN0dnYCsGXLluIo4UywbyhOJq/+AkBAxnR5z0Ut5GyXn7w4RkBX2FAX5g2b67i8o4rKkM5EIsd3nh4k4tPQVZlUzubLDx7noloBwuWNuzZTU36imPTPpJned5DyYN4j2LY5PDTDQ0++QHtdGZ+/shbZF6KqNIy6iO/D8YkU//70EF2TKWJZi+oSP9Npk7GkBZJM0Kdy/YZqEhmLf/jtIDnJxbUcwpp3/iWzJiV+7aw6yjPBcnm6y5UAX3nllYyPjy94/Qtf+AJvfOMbi39WVZVbbrll0W08+eSTNDQ0MDk5yVVXXcXatWu57LLLTrvvpXBOFN2lMLcYF+TBQgjWrVvnXZiP//aMthfUPHVSNJMioMpUhnzEshalsoRfk3n3rhY2Vbj87MV+YqUamqYzGM0ynTL5bfcM9780xkzUITKaoLnMz4HRJLbjsqkxUoxwPxlLLZLpuk5VVdW8x2DTNEkkEkVGgmVZhEIhOqrDVI84jMYy6KqC7Qhu2tpwWknmK4WCSU4sFqOjo2PJi+XJ3llK/CqpnKeOEq4nImitOLHIt1QETjqdLt6Auru7cRynSEMqFOMCM8N1XQYGBpiYmKC9vf2MEgdORjqvQgzq+aBG4VHILFvwsSvb+PAVqxCCBT4M0ynvZq8XvDtMg30jGfpnVDRV5eGR4/zDzZtAwD37RhmOGmQsl9KAr8jWcRSbtR0dlMh5o/jJSfqOZ1BVdd4NKOWofOnBLlRZoqpEZzRusHcgSs5y0VSJzQ0RMpbLWNLi+k21/OLYDJZl4poG5SUhAgENvyoVw0SFEEXzn+Uu3C4Xy+XpLrfoPvzww6f8++9+97s88MADPPLII0s2bwUznJqaGm688Uaee+65/ym6p4Lruhw6dIh0Ok1HR8c8JdJypYkAPsWb3ZmOwKdIaKpHgq8MeRElreU6jdYwPlHJn75hF199pJc9hyZQkKgM6VSHfXz+F8dpCLg8MtHJZCpHiU8FSSKkK3z+hnXzrBzPhm+rKAqJRIKZmRnWrFlDdXV1sSP+wFaFR47PMJnK0FahsSmUZHx8/JSjiZcLIQQjIyMMDQ3R0tJyWpOcoK7QUR3kyHgKMz8L39paxqVtp549LxaVXlBJFVgTPT09xUfXTCZDVVXVot32mWJzYwmKLGHkBTK264VB9s+kOS9YtnCq0gcAACAASURBVOT4prrEe/zPGDmMTJreuIskS5SH/CDBTNrkO08Nsn8okeciC1I5m6GoS1lAwxaC7SvKaK2JIEvSolzYRCJBf38/zwwkmI3bVIc0JE1jY12QrmmDmhIfK6uChH0qQdvl0GiCd1xQy+5am8eGbErLywhoKh/cvZJgIHDaMNHCb/FyCvFys/teiXy0X/7yl3z5y1/m17/+NcHg4kKjdDqN67qUlJSQTqd56KGH+PSnP/2y9ntOFN3FLmTLsujt7SWbzdLW1saGDRsWvO+1HZUcGh9e1j5cF2pDKilHYjJhkrEsplMmAU0C4bKrxsfObecXH1E/cOlKjowlKQ/qBDSZo+MpJAEhTcK0HUZjBnpek14a0PjBs0P8+dXtDEezgKA+oiNLEq6AXx6Z5Om+KCU+lZu3NdJaOf8EEUIwNjbGwMDAAnHD3I54wxrPe7TQEZ9qNPFyC3Gh2y74Fy+ne3nzefX87cM9rKkNk7VcqkIad7xxodLwVJhK5UjnPD/YuSqpAgsAYOXKlRiGweHDhzFNk0AgMI/CNpcPalieJWJ5SKNskXj38qDO12/awF8/cJzBaBbhCmJZk//vx4f42JWrePN5i7tqVQQUrm1RuOdwnEAwgJBzVATlIsdLliWOjqeIZUzKghrxrIUqe0nQ5zeXUhnWuXJt1aLetCdzYY2SKI9N9uL3e91qNmsQlm00x8ZM26QsnYwtUe4T7N+/nzftaOfGy0pIGDZVYZ2wL+96dpow0cL4y3XdYiEWQqAoyjxLzFcCiUSC1tbWl7WND33oQ+RyOa666irAW0z7l3/5F0ZHR3nf+97Hnj17mJiY4MYbbwS80cfb3/52rr322pe133Oi6M7F3GDGFStWUFpaSkXF4qqZzS0VwPKKri2gZzZHadDLL4tnLVzh+TRctCrCrddun7eP6rBOJKAVUw2yloOieK5RI8kctiPIn8tMJHJ0Tab41H1H6Jn2DFg2NkT486va+NmBcb7/3DC24wKC4xNJvvSmDdTm42nORNwQz1pMJk2qw0uPJl5uIc5ms8UV+DPl/7bXhPnL13VwcDSBT5HZtqKM0kUK3VK4d/8YPzswjiJJBHSFj1+1mqZSH/39/UxPT9PevpAiV0igncsHLcicJ20/X3liBlt4arMPv2YVbz3JmnAkZhQjb5x8+oSuKLgC/vbhXt60pX6BxLbAud3d0cL1u9YTN2x+3TnNvz8zjON64wnX9dzDxhM5JpM5ZtIW4NmN/urYFGUBjXv3j9FU7udrb9m4QCwzF1uaSumoCdE5mUaSZGQ9wO2vXcEzvVEODMdIpE0cK8e1tTJC6IyMjBSfHHTp1CViqUJc+PdSXfHJ0Ulnilei0+3u7l709YaGBvbs2QPAqlWreOmll17Wfk7GOVF0C6Ybo6OjDAwMFIMZFUVhamoK27YXlRZWhU4vNywgrEukLYGd8ly3/Ep+v0hMJG16ptK0zREs+DSF269u59P3H+X4RJKM6VAV0lFkh6zlQF6zD56H72zaJJ6xqA5rSLLMS8MJ9hye4MfPj9A7nS7y2sfiJi8Oxdi9soSuri6AZRW35/qj/M2vuhH57fzZa1ayu/1E0T15Rtw3nWEqkUHWbDKZzGkLcUG6Oz09TVtb21nPSZvLAzSXB85Y5tk9lea+A+NUhXVUWSKWsfi7B49x80qThoYGtm/fvujFvRgftFCIb//WPtKmgyp5o46vPdRJlYizvqmCSCSC3+/n208OkMha+UVVT+WYs118qozpuJhzeL2ZTIZjx47h8/nmcW4jAY2372giYdjcd2AcSZK4oqOSY+NJxmNZTPeEyEFXJFI5LzhVkuDgSJJbv7+f779766Ix6+DNjf/PtR081x8llbNpqwnTVh1ie0spj+/rZDpms/u882iqKS+aHiWTSWZnZxkYGMA0Tfx+/7w58am8NgrH+eTjvZzxROFaPl0hTiQSr8r4dThHiq5lWTzzzDNUVlayY8eOed3eUrQxgNaqpQ1jTkba9DiYVp6p4LiQd85lPJHju88M8pnr181bnFJlCVWWaa0IoSoS/TMZBuMuAU3BrymYtudKFvGrpAyLmOEwEs/RWOZDV2T6ZzJ05wuumo9Nz9kuD7zQS2Vaob29HV8owo+eH+b4+AAtFX7esbN5wWNw2rT56sM9aIqMX1PI2S7feKyPzY2RIve3ACEE33pykPsPjqNKErIs8devX8OWfIjfYh2xEILheI798QBasISrK+HiOTU3nrV46OgUsazF1uZSLjiFE5gQgh89P8J/vTQOAq7fXMs7djSdlq40nQ9CVGUJ23ZwsgmGcxJbbtxG4AzntpIkYcsaKVMQ9J04lo7rEnN0UqlUUeZ8fMjCyEmYbsEEn7wgxmVDvXcT/sIvjvP4sUl02eEjV6ziyg0Lua6yJPHB3Sv535e18uJgjD/54QEcIeaJb3RFwnK9bleRPb8FSxJEMxaPHJ/iDZvqODqexBXQURsipJ+4vHVV5pI58t/Z2Vk6OztZ19BA8/YTI5yCD0IhIr7wmxiGUbTELHhtzL0BF8xrThefBYuPJwqilNLS0uKCXeHzLNYRn62X7n8HnBNFV9d1tm3btmg3eyqBhH8ZxhoFuICeH7k57gm7R0ny/umeTHNkLMmmRs/4fDxh8NP9oxiWQ0tFANMW1Jb40AV85IpVfP2JMQzLQQiPND+d8mwbZQkGZ7P5OO5QkVzvuqK4z5KAj+3bvbSET91/lF93zmI5LrIs8dJwkn/8403oc1bLo2kL2xXF2ZxPlclZDlNJc0HRPTqe4v6D45T61KIxz5ce7OKH79mKJEnzOuJEIkFnZycpV+PufomsZSO50zzVNcVNa3y8pqMSxR/ib347yVTaRpUlHjw8yQcuW8FVa+cbahfwq2NTefcsFQn4z31jVIR0rt9Yu+j7C6iL+HBdQTSWwLEtXDXA2qbwGRfcAsI+lVA+aFRXZe/4C1i/opbVc/LP/nPkIC8dnS4+QUDhpizonU5z290vsn8khV9TsND4wsPDrKyrXNKAXpIkPv+LLhxXoKkydmE2CiiKjOV6/63KBQ9fz6AmnrH4q/uPMTibBQnKgxqfvX4N1SexYizLorOzE9M0l02Tm2tec7JJfMFrY3Jyclkm8Ytte3Jykr6+PlavXk1NTc2yOuKJiYn/6XT/0FjKmeh0/gtnAtv1OoagLpE0vBPAFZAyHA6PJXi2d5asafP3j/bQNZnGFd5j6WzGJJqxcF2BX4F7XxjkYxfXM5ZVCQV8/HT/GCU+lcHZLHHDwnG9WO5rN9Two+eGOTSWxC5YB6oSV29uRpIkplMmjx+fwXQEWj73bP9wnMOjCc5vPnFCVoR0NNkLzgzoCoblffaayIkLMmM67O2P8sKgZ7RSkLQGNJnZjI3lCPS8Y7dpmnR3d5PNZlmzZg17OhOYYpi6Mn9xWy/GVd5SUcEjR8YZmk4S0TwvWUlS+e6TfVzcEl50Rry3P+axQ/I3Db8q83x/7JRFVwhBwE5yQWmaZ6Y0fP4w5UGdD+5uPevfWpYk7nzTOj5x7xGPniUE797VMi9wsnsqzWNds/MKbvEzAcmcy2/7UpTqgHCRBRg2PNE5wcrK1gXFKGc7TCRyRDMW3r3WU+UJATJep6srKuUBjZG4geM6RAKal/5gufTNZKgJ68Vz40d7R/iz16wqHqOCZ8HKlSupra192YyVxWiLlmWRSqVIJBIMDAyQSqWQJGmezLkgaMnlchw9ehRN0+atR5xqTmwYBl/72tcYGhr6vfs6v1I4Z4ruqZzGTuW/sOzt43W3hu1i2t4Lhd25QM4WfPXhbvyqF7ce0BTs/DhgLJ4r+q4KSebAlMO2yQSNvhy5ZA6ygum4S8Z0USQJF2+UEY/FCYl00d/XEVAdUNnYEAEgZdgkDRtJlnBcCZ8mY9kuIzGD808kTBPUFW6/uo0vP9SdXwAUvPeiFo+yhlckP7/nOENRA8NymEzm0BSJsoBGwvA6da/b81y3xsbGWLlyJTU1Nd6FKxILZBayLHtuWDWCQDBLedjnmXnnLLKmxeFjnTw1kCRlK6yvL+HCtmoikQgVIQ1zjiWi6bhUhJZeTCsY5fh8Pj5w3U7e7cqkTZuKkD6v2z8bbFtRxr3v387AbIaqsC/vFudhOJrlfT/Yj2G5CwpuAYVjknNlSny6N6t0HLKJWe59dJzJLDRXhjmvpYK94w5/9+shLMcla3viFctxT6RU48X5vG1rPbdf3cb3nh3miZ5Zwj6Vd+5s4vnBOJp8glbo12Qm8jL1AnPD5/Mt20nubKFp2ilN4guCllwuh23b1NTUFE30TwVZltm/fz8f/vCHueGGG+jr6/udfo/fJc6ZorsUNE3DNM9MdbYYwj7F0/7LCobtejr6/N8V1PUCMGwBtoOmSAQ0hVTO89v1qxIhn+fklHEkIpW1bO2oQghBdWuM9/zwIKbtIiPwyzAxG+cfHzzAgRko9Xspq6btYtiCp3tnSZs23316yCvIjsCRvESKiE8p+qlOpXJ847E+uifT1Jf6+czrO7j/4ATP9sf4/nPD/KZ7lr+8tp39Q3EGowYNpYXOQTCcj+uuDut86nXt9AyN0dPbT1tzLdu3b5/XhVzSVslP948RzXgBh5bjcuN53jxwS2OEgKYQzVj4VJmUDddvbuInAymOjusgBE9NJJnMCHbVTrDSTaM5NqOzOWRZoSKk87YLFtKubNumr6+PaDTKmjVrimIJHU8V+ErBc/5amE7w6PFpMqb3O8+9ScyFIkvoioQjIJXzRBQrKkOU19TxraeGAIHTm+SCYYs9nQmES7GzdWVxwsAG7wnHcgXHJlJoqsJ7L17Bey9eUdxXxnR4vHPa83/I57RtbChhYGCAsbExOjo6fufmRkthrqAlm81y9OhRwuEwDQ0NZDKZeTzqYDA4ryP2+/3kcjm+8pWv8Pjjj/Ptb3+bzZs3/0G+xyuFc6bonqrTLeRgvRzUlfqZjKWJhDQvCw2YTHsd9Ny9Fv6cyHozTFmWUIVAV5V8EoCXrVYQQkiSRFt9Oe21JaQMG8fKgWthCJ2sFkCIBDnLLWaxCcvlwUOjjCZsptIed9N2PZ8CgO2t5ayvL8FxBZ/f08lozCAS0BiOZfk/PzuGEN78U5agfzrDd54aZF1deF6n2lAWoKbEzx03rEV2cnz9l/vYN+kQ8PvZkLb4aJMgNEep2Vjm58s3rueeF0dJmw5XrKniktXeBV5d4uPzb1jLD54bJp71FE8rKgPcd2CcyqCGlO/oftln8L4rt7NFlti2NcPTXeNk0hmaAha9h/cxNMeX1zRNRkZGaGlpoa2t7Q/iqZo2bSzbPSXLIqTLKIrM+y5q8R6x/SqXrK7gf/37PvyahKooOK7g4d40QoCueWXWdgWqJAhqMnHDRVO8G7sMjMay/N/Heni6L0ZAU3jvRc1ctLqS3e2VjMQN7j8wgRCCnc1hVjgjWFblgpvkHwJCCIaHhxkZGZl3A5g7ly2wRhKJBLFYjIceeogvfvGLWJZFe3s7t9122zzHsVcrzpmiuxROtZB2si/DUpCguJCSzjnU5WehU2lrwaOlInutigvMpC00RSage51qMt/tfODSVlZWzVefratQeKwzhitrxHIqjuvQE3UI+VSm05b3GfIxLs8PJlAkyFknHmFDuoQsK8iSxA+eG+by9kpG4ydyr8oCGj3TaYL5zwJe2kX3VJo3n1+PKkskDRtdlZlJm1y7roqp4T5+3TXDwahCS3UJEnB4LMnde0fmdVkArZVBPn5V26LHr7UyyKdedyJW/eneWc/7IV8sVdmbRzuuQJElqiJBtq5uIGnYNFf4CekqpmkyOTlJT09PkXA/Pj5OJpN5xQQdy0Usa/HQkSlMRyw5WgBIGA6vWVPGu3Y1Fz/XSMxAkshH+uTl3XgtbkHoIAmBrChsbinjie5ZZFlGCNczARI2//XCIEEVDFXhzl8c41NXt7J1ZQ23bG/iLVtq6entI5OMs27dhnkROn8oZDKZYnd7qhvAXPpeeXk5d911F/X19Xzuc58jm82yb98+KioqimKGVyvOmaK71MW2GGWsEE/T27swgv1kyHgpD7URP1hZXFUj7PN09mG/gl+RiWWtYica1GRCPs8/oC7io606xGjcwLBcXrexhtetr5kn952dnaW7u5trWkuYMKp5rGsGnyKzujaEInkjibhhe/p9WcKnSCSMAp2mkA0GiZxLQHHpHZ2iayzKM11j2LYXra0pMq7wiPsIihd3KufQURtmRUWQj125mh88N0zatLmoUafVGaGkpBW5zE9gaqZI2Qr7VLqnXt6Tw7q6EvyaTDxr49dkkjmbna3l6KqMEIJ//s0A9x0YQ5G9Ec2XbliDGx8jkUiwefNmIhFvpr0Yfa2QVPFKFeKJhMFP948Tz1pcsrqCi1dX8ET3DEnDe8qwTnHfFsCzfTF+0z1T5ERXl+iEfQq90xksRxTTS2Q8I3w7P7a6sr2CP7+6nVu/v4+RmIEQnnl+xnLI2C4JB4KOTEiHvd3jyPHRotdseXk5K1euXFbsze8SQggGBwcZGxtj7dq1y2YbvPDCC9x222289a1v5Te/+U1RzfiGNyzlPv3qwjlTdJfCyZ1ugZ8YiUTYtm0blU88yUxm8StHlaEx4iPo81JZA6rEzRev4PpNtfz84ARfecibr9VGvO7QtAUdNSGsPEF+VXUIVZFpqQgynczxhk11NORjUNLpNF1dXUiSxMaNGwkGg7xWTDAUNYpRKZbjLcQ1lPqxHZdUzsWwHQKajGF7doGyDD5FwnYE5zWXoakKlm0xnsxxXrXKM8Nxj9epKuxujSCrGi+OpFFkmdqIj/flO9ZNjRH+4vL6onR35cp1qKpKY3Qib03oKesypkNT+Zm7cRW+z7eeGOCho1MIoMSn4NMULlxZXuycXxyKc9+BMUK617XHMjk+ec8+/v7GNjo6OpAkryM/PJbEp8psbKg4rbLuTAvxkbEkn/35cUZiBgnDzqsK4ccvjLB9RRnHxhJEs15+ncwJ+uBiKFDumsr8rKoK8cDBCWbTFtl8tZbwOLeeb4N3Ywz5FI6Mpdg7EOPu927j6FgSSYJjEym+8VgfMgJVkslYLkgyq5rqCcizaJpGS0sLuVyumMprWVZxTlr4/r+PYpxKpTh69GhRBr6c8YZhGNx55508/fTTfO9732PDhg2/88/5h8A5X3QLlLFUKkVnZyeSJLFp06aigisS8DGTWeirG/HJXLW+loCm0DeToSKoMT7t8q0n+rFdl8vbq2ipCDAUzRZTYF/TUUGJX8OvykiFlTXAdrxHw5CuFD0hJmZijEhVGELDmDDY0Rqgocw/7+KLZ22ayv28OJggZVjk8r6s7TUhhqMGputS4lOoCvuYSORQVRlJAk1V0XXBLbvXcZPtMDCTJig7rAo7JBIJNvgtHGRW1QQwYlNMZ32MjIyQyDnUNrWxorasaA/42rXV7B9KcHA0gSRBfcTPLdubzuq3+OHeYe7dP46uSMiSxEza4rPXr2JH64mV7tG419UJIchks+iyRMLVaWxsBGAkluXD/3GItOngCkF7TYivvnlDUfV1Kve1ZDK5aCGeS+yPZkxu+8khDMshnbOx88bkmiJj2i5P9EQp9cleArA49XiB/CkwFDX4kx8e4Kbz6/np/rF8erQ3LlLlE09psiTRVhPGp3iLpt9+apDXb6xle/74PHxsmrqIj/FEDqswjkEQTPRT09E2j0NbYATMnZNGo9EFCrPC9/f5fK/IaKbg4DY1NcXatWuLTyWnw969e/noRz/K2972Nh5//PFlJwK/GnHOfLOlThjbtkkmkxw+fHiByxhAY6mfvpmFRXdlZZgP7l7FNx7rocSn8NJIgqQBKDY/fHaImrDGV25cxz37vFX7y9oquWpdNZIk8XTvLE/2zvJ07yxBXaG+1M8fba0nPjXGkZER6hub2TPhMBKPIyNx/8EJrttYzbt3tXBZewU/PziJIkN7bZiAKrOiwo8kBRiLG0wmTWxH0FEbpnMyRVBX2dIYQWuR2Tccx6/K5GyXtuowrZUBNEUuUswKaDVsBmdSSFaWiYkx4vE4T0/K/HYMVOUw5UGdT1/Xzuq6cnRF5s+vbmNwNovtClbk6WPLRSxrYdouVWGdnx+cYCqV86hzeAtNz/XH5hXdhhJvHJR1XAKBAFnLpXXOOObvH+slbliU+DWEEBwdT/HzQxO85fzFjWVg6UL8xPExvn5PD9GsTUsYbt0cIOYGyFk2PlUhPidy3XVPUMOSpifBLSxing5egRXctXeEkE8h7FNJ5Zw8jxsUBXRZwrBdxuPezLfcr+LmF4cL5/aqqiDP9sdYWxsinrWIpQyuWunn4p3nLUmfmjsnPVlhlkgkiMfjRb8Jn883z/jnVFLfxZBMJjl69ChVVVVs27ZtWZ4K2WyWL37xi+zdu5cf/OAHrFu3btn7e7XinCm6J6NAKZqamkJVVXbs2LHoCXTN+hqe6I0ueP31m2poKg/QWBbgie4ZcpaLTwFHlrwk2IMTfPXNG/jIa1dzZCxJImszFDUQCP7fk4OsrgrSWOZnIpGjISRTZwxi2zXoDWv4y0c8GlckoGE5LpYj+NYTgxwbTzGeyBH2e4YpJT4V2xVMpy2iGQshBGpeex/0Kbz/khW8e1czquLp/H9+cJxj42may/3ceH79Ag9X8Mys7/hFJ+lsjqyR44YNlVy6YSvPd3ZSW66AcJlN5bhzz1Het15e8GiuKcu7CIUQfPOJAX52YNyLm8eLMAKvaxRCkJiTuCCEYHR0FHNskDdvquSB4wlytqA8qPOp13UwFjf4v4/38djxGWQJApqCqshIwGh88dikU2Em6/KVx8cQyJSF/YzlbH7cr/OurWU4bhTTNFEkQWE1YO6aqyp7xXC5YbiF9xu2gytcAppKQJNJ5hxcvBh3RfaSG2Yz3qJpPGtx9bqaeefsm7bUc2w8yd6+GWzLYtfKcm67fiPaIhFCp8Jchdlcv4lcLle0hBwdHS1KfecW4sVGM67r0tvbSzQaZf369ctevHv22Wf5+Mc/ztvf/nYeffTRc7q7nYtz5lsWTgTXdRkeHmZoaIjm5mZ27drFM888s+Qd+7XravjyQ92k5uTuqBKMJ3KYtsstO5rYNxgjZzsokkJYspBzDklXZ3JyknuPpdg7mKRwU9+5ogyBF6miYFGh5hiJmpz/pu3MGoI7fnYMWZLQFImZlInAy9MyhODJnigt5X6aK7y8qq7JNO01QcbjRrG7dAW8+bw6br24tRitDd5448YlbAQLEELwpV8cI5lME/ZrlFeV8siAQSiSALzHW8ORKA0HiJkOF164fV6a71zTm7mFeLGO6ImeWX52YBzHFSQNGydfpASe4KFwDM5ripBIJDh+/DiRSITt27dzoapyy8UmyZxNfakf1xV88O4DzKYtQrrCbMZiLO7NviVJYuNZBFYeG0/hCkEgfwy9BcIMW1dv5DVr0zx+fApVttGEd8xFnjlSyEKD/ELmImq0k2G7Iu8SBhkTYlnnpL+HjOV4xRmByBd4nzb/pplNJ7mmKs7VLdU0NTbRUB54xSJ0JEnC7/fj9/vnefPOLcRzRzOFIixJEv39/dTV1XHBBRcsu7u94447ePHFF7nrrrtYs2bNK/IdXi04Z4puQebY09NDdXU1O3funHfnnPuYNhe6IlMX8XkMA9tThPk1iQMjCR48PMF1G2v43PXtfOaBTkxXUOpXSRg2V7WXcHh4lscOT1GqCVRNBVnjV0cm0FSZ2dlZjzHgC7Gi0o/P52Nw1Eu9rQ7rjMQMkjmPMmRYDnWlfoaj2WL35Jl8gGG5NJf7yVoukiRRHvQoZHML7nKQy+U4cryL8ViahoowWv7YyJJUNOE+FPPGLLYjWJWntC2W5pvL5YqLVaOjo7w4kmbPgIvpyuxsLeVDl6+id9rjniYNG0WWUJGwHQdVkYj4VAK6gqZIyIlRuuIm69atm9chVYT0It2tezZNLGNTHtSI+FUcIYhnbRKGzdu3N3J5x5k7mkUCanF2LOXn6JriLdwpuQSNQUFrXRV/tK2Z8pDG1x7u4cmeqHdDVRUs16XcLzORsk/JYACvYPtVGcsVyCeZ2IBX1F0BugK66v2uOcvFyYsubNump6eHZDLJxo0bz8gu8+XC5/Ph8/kWjGbi8Tj9/f2k02l0XWdqagrDMIpd8VKeC08//TSf+MQneOc738lXv/rVPzh/+A+Bc6boZrPZedHmc6Gq6pIxII7wkiQVWconSXgdWdiv0DmZ5Fq3ioayIJ9/4zoeODhBwrDZ2lzK7vZKDo4mKSs1qSnRsR2HnJHDSSRp1lx6UhK6quLH5E821uE4DiV+Nb94IrGpIcLzA1HSpkNTuZ/60gDRjIXpejQvw3JRZYm26hADs1laqzxu8HTKpPIMLCnnptyuWrWKVXUuM2mTMtXrOIWAi1aV8f1nh3AcgaJI6KqE6bj0TWfm8YkL8Pl8VFdXU11dTddkivufPYKuQxjBb3tjZFL7iagu8YyDYQssB5A8pZjpeB4SmuTyphbB6obq0/oABDQ53yl7PN6VlUGiGYtv3rKZ+tKzY1Kc31zKjpVlPNsXy7vFwTvPK+e9/76XmCkjJInh3jiN5SEeOjpFwrApC2rMpk1Mx+WCFWV88po2rvvH5065n/qwjKKoZC2BlTu1B4jAu+EJvC76xvPqmZqaoru7m+bm5iJ74w+NdDpNT08PjY2NNDU1eQKXfFpFMpksFuNCosehQ4eoqqpiz549HD58mLvvvpuOjo7T7+gcxTlTdEOh0JLR5gX/hcWKru0KmssDKJK3ch7UVZQ8Naq2xFe8W9dF/EV6VQEt5d5CVSJrITkWI7Mp1tRF+OybNtMznWU2kaZUMZHMOC+8MIzrurSFZQ5PG+iaRntNiKqwzlTKm9n+ySUtxDMW+4YSlAY03nNRM01lAY6OR83ODAAAIABJREFUpxhPeLLciF/ljy5oPO3xKCQe9/T0UFt7Qrp7+9Ul3PGLzv+/vTMPj7I81/jvmyWZhMmErAQIJGRPZA0BQetSrFI5iD1tQayFumI5Uq1bcWkVtUdUxHoqLW64HBfAo63YKqBVoW5JAKEVsickQELIPpOZzPp97/ljMp8TkpAJkAWc33V5XQY+Mm8mM8+83/Pez32rvcNl3xvPKFMY4SE6Jo014FEEBr0Gi91DQ7uzx6Lrz4G6dmRFMCI8BCEEMVot+1s9CHTY3PZv05KF1ysiyaThmgwPGaOjyM7M6OJyZXN6qGrqYESolgkx39oEjok0cElmLB+VNKq3+VdOSThhwfV9cBlDvTupb+raMdvdZMQbGWUKRSNJPHJFFl9VtXK0tR29tYFWtx2zW4ut079TEd7+vCnUm4yrKIKEiFDsHoWnfnoOX1a29Pl7aHdBmE5Gj4IiC0QvNVMndbaZOrfNP58xmrD2w1S3Cgo6Ynn+k0ZGhrex7HtJZCecevrtyeDxeKioqKCjo6ObQ9nxaRW+69vb29m0aRPbt2+nra2N0aNHs3btWtavXz/gIZfDlbOm6J6IE02lRYeHkBI3Qp2IarW70Oq0JEeHM39Swgm/78hwPdfnxfDszgrsio7ZmWO44XvJ6HQ6MhMi4Lg3h6IoZFks7KtpoqG1nQgcRIe50YVFEDXSRHz0SEaMGNFtN/PIgiwO1LWjCEFWghGT4cRGHz55XEhISLccsPHRYfxp8SSabS4iQnWMCNV5Wx4RIbR1uIkM0+PyKCiILgYvvWE0eDXMZruLI61OXLKMLLxtG/+DJlOoFr2kEGOQmJ2TjNPp5MCBA2p4ZjthPPVVMy7ZO5l1YVoMd1+Wpk6uLc4bQ3VzB/VmB7lJI7lu9rhe17Rx9xFe+eowEhJpceGYwvTsqmlDI3nbNquvzGbauEiEopBAK3qlmYypGRTUuWjPP+CNScJrMCQLQbPdgwaQOvW0kQYdOkli+4FjJ3xuJMDqUnB6vIYthhCN6vB2PL+YGsGkxCgq2hRMWg9J2gZGj07ntX9b+LyihchwHccsTh56v4ynF55DgunUst36S3NzM2VlZYwfP57MzMyAdtxOp5PVq1dTVFTEX/7yF9LS0lTzne9qwQWQ+nDo7599/xDjdPZ8il1cXExCQkKPpse+eOl39tapu6xLs+PJSYg4oTTKf7ghPT2912C7vvDtBsxmMxaLhY6Ob9NcTSYTkZGRAUt3fBpgi8VCRkZGl8Tcvqhu7uCRD8qwONxIksQvL0hiTmZcn//O4Za5/e395Fe1QueEnFv2tmj0Wm+v1DtNB+OiQjln7Ege+1GO+u99SQW3vV3EoRY7Bq3XO9guS9wyO57vZycgdAZueauI1g7fFJjgJ1NHc8XkBAqqW9FqJC5IjWFkuJ4Xv6jxDhB0+hyH6zU4PJA40qtDdbi9o9XP/ySF8vJyRo8ezbhx49BoNBw125n7TEGnlWP3n9X3G5g+PpKU2BG8v78em6tvzVi4XoNBJ2HpHCF3uBWaO30zosL1rL4ik6gQDw9uraKl83A10aTjjvNjeWBnm9eaU+/dHzXbXKy4aAIXZ8Se+EFPE263m/LycpxOJ9nZ2QEFeQoh+Pzzz1m5ciU33ngjy5cvH5De7fXXX8/f//534uPj2b9/f4/ruO222/jggw8IDw/nlVdeITc397Svoxd6fcOeVTvd/tg7+qfthuk1LDl3XECFzeVyqYUtPT39lN3rdTpdNys8/6mq+vp67HY7oaGhREZGqsXY30vUP3U3KSnppHp/yTHhrP/ZZFpsLiIMui6pAyfCoNdydd5YKhs7Oq0uvYbszs7erXowqJFA0vLjqV1t/HxJBfU2BRda3LI3vkbj9FDR6saxr4bqRiv1LW4iDDq0kha9TsNbX9fxt2+O4fAoSMBrBUd4ZH4mr+YfRuqUYClC0O78Nk0ZvB8Ex9o6OHT4cLe7gNGRYcxKHsnuQ2aUztOu419NoXoJY6iOHWVNGEO0ARVdRXjHhQXeg7I2uweNxvvcGfQ6dla1YjZbaOlwMyraiFajpdHqYleThhCNwGLtQIs3s8cha+loN9PRET7gXhO+fnJycjIJCQkBPZbVauXBBx+krKyMd955h9TU1AFb37XXXsuKFStYunRpj3+/detWysvLKS8vp6CggOXLl1NQUDBg6wmUs6ro9oa/kbl/Yqnv5DqQF5PPS7auro7k5OSAb7FOhp7E/P5i9kOHDuFyuQgPD0ev19Pa2kpsbGzAqbv+VDTaeKPwCFanh/NSolkwOaFL5FAgxBpDcbhlrE6PN+Oq84PPIwtCtBJaDZwz2sSt308hL6n7/H1tm51mqwuby2sI1Gb32kB+WNGO3S0wd3iNhayyQnSYhFa4abEpGPUQGaZDq9XSbHWyaXctOj9PWY0kIeOVpzncstfL1y2TnWBk2tSpALR1uPnjp1WUNdiYEBvOby5LY91Orx7YJw1TLTwlb2pIckw4JcesuAMU6ioIhPD6Xnhk4bXwlLwHtyP0sP2bOpKiDERFjECn9f7+9DoN7bKeFZdk8sdPq3ALUIRCRkwIaZES5eXlA+I1Ad4P/dLSUoQQ5ObmBmQWLoTgs88+45577mHZsmX86U9/GvAWwoUXXkh1dXWvf79lyxaWLl2KJEnMmjWLtrY2jh49GpB/70ByVhXdvna6QghkWVaLbSAvCiEEjY2NVFVVMWrUKGbOnDkkMhefhtI36ukLOXQ4HERGRmKxWNi9ezcjRoxQd8Q+h/7eqDM7eOj9UpTORIw3Co/g9Cgszuv7oM6fOGNI54m712FNA8SGa5gxwSvluig9lism9a5Q2HqgAZPBayLk8ih4hFcqFxmmx9bZMhKAzeU1eo8M0zF6ZCiS5J3kkhUZIXs41tCI8MiEaARO2Zthp5EkFk6JZfPeRhS8O12LU/Dev+upMzvYur8Bi8NNmF7LUYuDg00dvLRkKiXHrPzXxn/TZv/W4U3p9C7eUdZEk9WlmtX0hcsjkLQKEQZd54CEd13hWu9AQkhICNNT49le1EiY3tua8SiCiWMiuDA9hlGmUErr24kw6Dk/NbpL26uvEef+FuJjx45RVVVFSkpKwDaK7e3tPPDAA1RVVfHuu++SnJwc0L8baGpraxk37tvef2JiIrW1tcGiOxjodDosFgsulwuNRhPw7taXARYeHs60adOGRTyILMscPHiQ5ubmbqm7iqJgs9lU/azVakUIoQrZIyMju+gn/3XYjMOtEN8Z363VSHxc0tjvouv0KESHaTHpPEgaHaYRBpwewS0XTSAltm9NqVtW0Gm98ji3rGBxuGm2urG7ZGS/bDjwFl+NRmJR7mje2FWHPlSD0OjQh0hcc1EGHU4Paz6qwOnxto4WTlAorm/EFAKGUB2hOi21Zgf3bylWgyTD9BpMBh0hOh2NVifVzR1MHmvizetzuemNf9HQ7sLl8Y4BK0B1S/ex8T6fI1kwOX4EyTHh7Cj1JlRLGg1uSce5yVHceN54zHYPhdXe6cgrJydwSab3TidzlLFLTJA/J+M10VMhdjqdlJSUoNVqA06XEEKwc+dO7r33XpYvXz7sFAk9bcCGg+TurC66vjZCREQEDQ0N7NmzB0mSuhxS9ZRg6nA4qKiowOVykZmZSUTE0Eh0/PHZUVZXV5OYmNhjpLhPFxkREaEaxPiiUtra2vhqfyWN5g5GGbUkxkZitWg6w/4EICEr3ujw3gZJesLhcNB0qJwIrYd2yYApLASbUybOGELiyMA0tN/PiGPrgUZ1kAK8o9Y2l9zlQEvCe4uvkyR+eM4oPALe/6aBUJ3EDeeN5/xU7wfQjOQoSqrr6GiuIzttAndvq8PsttDu9iCEB0/n9wzRgEuA3a1gc8mMCNGqu37wGs1v+PlUFm/YjSsQk4UTIAH/OmJhRrSH1ReZ+LIljFqLi4mjI/j5uYmE6rT89vIMbC6v+X2o7uTvpvpbiGVZpqWlhfT09C6mOSeivb2d3/72txw6dIj33nuPpKSkvv/RIJOYmMjhw4fVr48cOcKYMSee2hwMzqqi6ysU/odk4BXz+2ziZFlWe6OVlZXqRI3JZMJoNGI2m2lrayM1NZXY2Nhh8cloNpspKysjIiKi3xlXWq0Wk8nEeyUWthbLaDUGQLAsegTZsS7CJTdVR+3ISLQ4BDFhOm56fS8rL8sgvZfdFXQdukhLS+Ppa7L4886DVDV1MGlsBLdcNIEQndeZq9HqYmSYV57WE1kJRh65IpM3Cmtxy17f4aSoMFa9X0qLn1G81Cn5ijGGEBcRyg3nJXHDeV3f7DabjcqSEiLDw5k+awZuoaGmpRIJ74QffDu3638G1tLuxBEiMXV0GKFuC3a7dyw2MSqMxKgw2uztapvhZPCa5ghqXaGsyJvCeb1cF+gBZn/pqRBbLBaKi4sBCA8Pp7KykkOHDp1wRyyEYMeOHdx3332sWLGC5557bljtbv1ZsGAB69atY/HixRQUFBAZGTnkrQU4yyRjbrcbj8fT70Myp9PJwYMHqa+vJyQkRHVm8u2GTSbTkJhxOJ1OKioqcDgcZGZmnnQKQEWjjQf+VkLMiJAuiQXPXzMFs8PDB98c49X8w4TpBNEG77AHQuauc03ERUeqz4PPh7W5uZny8nJGjRpFUlJSr2+68gYbj3xQSodLBgluuSiZ72f0LUMDr+FL2TErf9l3lM8rW+hwyXgUQZhey4YlUznnOL8FX9ulpaWlS2ZabZuD6/93L3aPgtnuBkGPB2DjowxcN2ssOTE6tJ4OXB1WVTXyVYPEs7vaepSR9YcQLfzXRSks+97Q7gp9apcjR46Qnp7epUXlvyP2SRj1ej27du1CURR2796N2Wzm+eefZ/z48UP4U8DVV1/Njh07aGpqYtSoUTz00EOqSumXv/wlQghWrFjBtm3bCA8P5+WXXyYvL2+wltdr4Tmriu7dd9+N0WgkLy+P6dOnExER0WfR9SU3REVFkZycjF6vVz1IfdpZi8WCLMsYjcYuh1QD9Ql//OhuXFzcKe24d9e08T+fVqnjw0IIGqwuXl4yFYNeS3VzB/dvKVa9DgBabC4e/GEKkdpv5Wu+BFe9Xk9ycjJxcXG9fhgpQnDDa/vocHnHn10e7y38M1dNUo3ce6OmpYN73i3u7OkqhIfoiDDoiArXs+x7yaTHd+0TNzU1UVFRwZgxY0hMTOzye3F6ZBa9uAe3rGDQaWjtcHOsvWtQqQQkRhkwdfpqSEjcdWkqP8iKw+Fw0NjSxpUvF+Poea4hYOKNev72X7NOa3Bmf7Hb7RQVFWE0GklLSwvoUNjpdPLiiy/yzjvv4Ha7kWWZ6OhoNm/e3MUcJ0gXvhs63RtvvJH8/Hzef/99HnnkEVwuFxMnTmT69OnMmDGDc845R701b21tpbq6Gq1Wy6RJk7qMNPp7kPpuRxRFwWq1YrFYOHLkCFarVe0P+wpxT/3h/nD86O7MmTNPS2FPjPIWOYdbxtCZzDtuZFin14RXdiVAjfZxy95Do1FRRiLD9MTFxVFTU0N9fT2pqalIkqT6sCqKgtFoVJ8Ho9GIVqul3eGhze4hpjM+PUSnocMtU9fm6LPorttxkA6XTKTBOy3X2uHhxvOTuDS76xvc4XBQWlqKJEndNLc+QnVaHrkii9/9rQS7W0FWBAadhLOzsavTSiiyoK7NQbNeQ3yEd0R4zUcVZI0ykhgVRpVVd8oFNzxEy6r5mUNWcIUQquSxP9E5ZrOZ++67j4aGBv7v//5PVQM0NTWdskb9u8pZtdM9HofDwb59+8jPz2fXrl0cOHAAvV6PXq8nNDSUNWvWkJWVddKFzePxqLtAs9lMR0eHagTtK8SBKh78R3fT0tICmvzpD7tqWvnzzmpcHoUxIw3c9YM0Rpm+Xdu2ogZe/eowkgaEAtedN47LsuPVXWRCQgLjx4/v9lz5fxj5bksBwo1GHv7cgiRpiQgLwaMotDtk/mfRRMb1Efez5JWvcXsU9UCr2ebiZzMSuWZmIm5ZQUJQe+QIR48e7XZ73BsOt0yT1cXmPbW8kn8Y2a+f6/uY1Gm8I3WjIkLxKIL75qbzg+w4bn5jH59VdvdcDpQwncRD8zOYP3loDnFsNhvFxcVERkaSkpIS0O5WCMFHH33EAw88wB133MHSpUsH7M5u27Zt3HbbbciyzI033sg999zT5e8PHTrEL37xC9ra2pBlmccee4x58+YNyFpOI9+N9kJfvPPOO6xatYp58+ZhMBjYvXs3NTU1qhpg+vTp5OXlERUVddI7VqfTqbYlzGazOsTgP03mf0vudrtV277+ju72F1nx2kiGh2h7/PmOtNo51u4kwRRKdCiUlpai1WpJT0/v14eALMu0t7ezq6qBdV8cwyXLCAE/yonkyskJREZGnlA7+vj2cj6raCEqXIfcaQ95z9w0vqhsZUdZA26XiytzRvLLH0wMuNduc3p4Z28d6/9ZQ6hOg93twS17ndZMoTo63N8mOfgI02u4YvIo9tS0UdHUf5kYQEy4lt9dEEWUxoHH42HEiBHqh3JERMSAnhX42lTHjh0jKysr4NdWW1sb9957Ly0tLTz77LOqEmYgkGWZjIwMPvroI/V9uHHjRnJyvh0VX7ZsGdOmTWP58uUUFRUxb968Ew5FDBO+G+2Fvpg1axaFhYVdWgmKolBdXU1BQQE7duzgySefpL29nezsbLUIT5kyJeCiExoaSnx8vCq98XkLWCwWGhoaqKioUGVsPiVFSkrKgE64+dBqpF4VBACJUWGMNoVQXV3Nv5uaSE9P7+IaFfDjaLWMHDmSS3NHcm7OBOranESEgEE41efBZ4bu/2Hke47/66IJtHS4OXC0HY0E18wcy78Pt/Hh/joi9III0wi2VTmZVmNWZWInwuGW+fXbBzjU0oHNJdPhkokeoSfWGEplow29TkNCmI5as6PLLqPDrbB5z1FCtZ2py/18HhJMIay7ajI5nYd+QghVR33s2DHKy8u7tGcCGWgJFF90TkxMTI/ywp4QQrB9+3ZWrVrFXXfdxc9//vMBVyYUFhaSlpZGSkoKAIsXL2bLli1diq4kSVgsXqN9s9k8LGRfp8J3aqcbKG63m2+++YaCggIKCgr497//jU6nIzc3l9zcXPLy8khPTz/pN0dTUxNlZWUYDAb0ej02m02Vdvl2QQM9V388/pN3PR1IDQQ+M3TfnYHT6SQsLEwtProwI2GheloaG7jj3XIc6DGFewtza4ebeRPjWX7hhD4fJ/9gKw+/X0qEQUej1UWT1QlIjIoIQddpzWn1DWIcpws+/g0QaPG9fc4Els4a16fe1jfQ4nsOrFar+qHsX4gD/V0oiqIOz2RnZwesMW9tbeWee+7BYrGwfv36QStsb7/9Ntu2bePFF18E4LXXXqOgoIB169ap1xw9epTLLruM1tZWbDYb//jHP5g+ffqgrO8UCO50+4Ner1cL7PLly71OZO3t7N69m4KCAh555BEqKiqIj49Xd8N5eXl9mnHb7XbKysoAmDp1ahdnMp8JtNlsVneC/iY3/pKt001HRwelpaXo9fpBnbzzN0OHbwMTzWYzra2ttFZVqTrqhJFhVLTI6pSRIiDOGNg6PbKivgXijCFoJWi1e/hBVhznp0bz2/dK8J5vCdqd356Y+RfXESFawkO1tNvdODx9l92f5o4JaMDBf6DFh6IoqmTLd2gLdCnERqOxWyH26W7j4+MDDoYUQrB161YeeughVq5cyc9+9rNB1d0GMjW2ceNGrr32Wu68806++uorlixZwv79+4etPrgvgkU3AHwqhTlz5jBnzhzg2yBF3254/fr1NHXekvska7m5uYSHh2OxWKipqcFut/d6y96TCbTP5KatrU01ufH3VjCZTKd0K+qvbc3IyAj4RHug8AUmhoSEqOqQ3NxcdDodhtgmfv+PI9S3tiMEjDHpmTLSjdls7nMnOGmsCWOoDrPdQ6jOq92+PCeOuy5N462va9FpJcZHeFtOdW12Wu1dvZclwGTQER6ipandFdBut+yYjXMnnNyHpEajITIysksP1tcnt1gsHDp0CKvVikaj6TLUY7PZ+hXn09LSwsqVK7Hb7Xz44YdDMjgQyNTYhg0b2LZtGwCzZ8/2TkE2NQU8PTfcCLYXTiOyLFNcXExBQQG7du1iz549NDU14fF4WLp0KVdccQU5OTknfXji3xM0m820t7ef0FvhRN+noaGBqqoqEhMT1ciV4UBjYyOVlZWMGTOGceO62m22dfZ5tRKkREqU1jbz7jdN2Bwu8hJ0nJ8SpX4gHW8GX9vm4PnPq9l72EyT1cXIMD2jIw3MyYzllfzDRBp0SJ2JIXot2JwyTTZv3L0kgV6jQYNCh6cznLKPd8arS6cyI3lgJVUej4ejR49y8OBB9S7Iv03Vm4xRCKHKKu+77z4WL148ZL9/j8dDRkYGH3/8MWPHjmXGjBm8+eab6gQpwOWXX85VV13FtddeS3FxMZdccgm1tbXD5jXbC0H1wmAjhGD+/PkkJSUxb948SktLKSgooKSkhMjISFU7nJeXx9ixY0/6VsnnreDfE9RqtV3aEv4m6DabjdLSUgwGA2lpaQPWsugv/prbzMzMPlscB5s6uPOdA8iKNzfNJcvcPCuByTGSKt/zN4M3mUyUt7i5991iRoTq0GkkzHY36fEjcHgUqpu9fsB6rYb/XpDF1HGRtNndXPPSHg51GtwoAgw6CY+gW//3eJZfmMSvLk45nU9RF2RZpqKiAqvVSnZ2ttqq8rWpfBI+m82meiwUFhaSmprK888/jyzL/OlPfwrYSWwg+eCDD/j1r3+NLMtcf/313H///TzwwAPk5eWxYMECioqKuOmmm9S7nyeeeILLLrtsqJfdF8GiOxSYzeZuMh3fAISvLVFYWEhtbS3Jyclqbzg3N5fIyMiT/iR3u91dDqh846yyLKsmPv4z+EOJz6e4P5pbgA1f1vDXvfXEGL0fGjaXh7GRBv5n0ST1muOfh0+qrPytysPIMD1anRYkDQ6P4O2b8vi8sgW7W2bK2EjGR4chhODvuytZu+MwpvBQFEmLVgKLQyY5JoyvD5tx97LdjdBDbnIM66+efOpPUA+0tLRQVlZGYmIiY8eO7fN14kvvveeee9i1axdut5uMjAzmzJnDvffeOyBrDBI8SBsSetJFSpJEXFwc8+fPZ/78+YC38FRUVFBQUMD27dt59NFH6ejo4JxzzlEL8cSJEwM+4NLr9Wpsus+drKqqiqgo7+13dXU1FRUV3TSjg+0T3NbWRmlpqWrA3p/Hl45/TQvvn/rj/zwAOCJb+bC2BEkLskem3eEk2gClRftJNZkwxZkwReiw2+0UFxdjt2kINRjQ6726Zrkzpv35a6bwxIflvLGrrse16XQ6xkefXErxifB4PJSVleF0OnudwOsJi8XCXXfdhSRJfPnll8THx6uOdUEGn+BOd5jicrnYt2+fuhvev38/BoOBadOmqYU4JSXlhG0Jq9VKaWkp4eHhpKamdmkl+PrDvl2gb5Ls+P7wQPTNfLlbPiOfQA9+/DnUYueOt/d7Uxg03oK4cm4a3zuBblcRgj98XMnHpc1oNWDQaVl9ZRZjjBrMZjNms5nGxkYcThemyEiiY2J57PNmalqdXoczJBbnjeX688Zz/5Zi/vqv+h4fZ4wphP9bNoOo8NPXumlqaqK8vJykpCRGjx4d0O9FCMG7777LY489xu9+9zsWLlw4oH3QvibLAN566y1WrVqFJElMmTKFN998c8DWM8QE2wtnOkII2tra2LVrl3pQV1VVxdixY8nNzVUn6mJjY2lpaaGyslLtj5pMpoAew3dC7ivENpsNnU7XpT8cGhp60m9cIQRHjx6lpqaGCRMm9Cmx64vq5g7+su8oDrfCpVmxAR1cCSE42NyB1SkzISZc9ULwya3+2RDCJzVOZEVhVmIY81ND+LislVaH4JyEcOZkxRMZGcnLuxt57vNDPT7GA5ensHjG6XESc7vdlJaWIssyWVlZAd/tNDQ0cOedd6LX63nmmWcG3JgmkMmy8vJyFi1axCeffEJUVBQNDQ1nrAIhAIJF92zE1w/Nz8+nsLCQwsJCqqurEUKwaNEi5s2bx9SpU09p0MJn9ecrxA6HQx1g8BXjQPx9rVYrJSUlGI1GUlNT++UJPJDIskxlZSUWi4Wj2nj+9HkdEZ2x8ha7h6umj+G688Z3O7D83afNlLb2bGy+9ZY8kmJO3fi+oaGByspKUlJSiI+PD3h3+5e//IUnnniCVatW8eMf/3hQTvm/+uorVq1axfbt2wFYvXo1QJee8W9+8xsyMjK48cYbB3w9w4BgT/dsRKPRkJSURFJSEldddRVXXXUVU6ZM4aqrrqKoqIhNmzZxzz33qC5cvkGOzMzMgPunx5tf+w8wNDc3U1VVpdpe+veHfW0PWZapqqqira2tX7vuwcBn5jN27FjS09N54qMKNBrUYM5QnYY9h8xcdx6qIsTXp9d+uQsNVnoqu+b6IxzzRKujzf0tei6Xi5KSEiRJYvr06QErTI4dO8add95JWFgYn3766aAelvaUR3Z88q5vMOj8889HlmVWrVrFD3/4w0Fb43DhjC+6ffWRnE4nS5cuZc+ePcTExLB58+ZhE5x3utmwYYNqdH7BBRdw8803I4TAarWyZ88eCgoKeOyxxygrKyMmJobp06czffp0Zs6cGXDEtm+AISwsjISEBKDrKGttbS3t7e1IkoRer8dqtTJ69GimT58+bCaIfGm3iqJ0OZAaFRGqJgCD1wwnPqLngnfuhCjKG6woPVTdUXExWNvbqaurw+FwYDAYuox491ZE/SOZ0tLSAm4JKIrCO++8w5NPPsnDDz/Mj370o0HXsAYyWebxeCgvL2fHjh0cOXKECy64gP379w/5UM5gc0YXXVmWueWWW7r0kRYsWNClj7RhwwaioqKoqKhg06ZNrFzMnjRTAAAQYElEQVS5ks2bNw/hqgeOnpIlJEkiIiKCiy++mIsvvhj49s1dWFhIfn4+GzZsUGN3fPrhadOmYTQaA3rzHj/Karfb1T7kmDFjsNlsFBQUqLFIvrbE6bav7Av/nnJqamq3fuJPpo3h88oW6swOJCRMBh039ZLysOLiCfz9m3oare5ufxcXG8soP8OjniYL/ZNJfOZHJSUl6PX6fkUy1dfXc8cddxAREcGOHTsCltydbgKZLEtMTGTWrFno9XomTJhAZmYm5eXlzJgxY7CXO6Sc0T3dQPpIc+fOZdWqVcyePRuPx0NCQgKNjY3DfZpl0JFlmbKyMrU/vHfvXlwuF5MmTVILcU5OzgmLgX/iRU+aW59e1NcjdjqdgxaL1NHRQXFxMSNGjCAtLa3Xx7G7ZfYdNiMrgkljTUSG9f7z3vbWN3xU0tTtz4se+P4J1+LvPGc2m2lqasLpdDJy5Eji4uICchtTFIW33nqLP/zhD/z+979nwYIFQ/qaDmSybNu2bWzcuJFXX32VpqYmpk2bxr59+4bsg2KAOTt7uoH0kfyv8Z3ENzc3D5vhgOGCVqslOzub7OxsrrvuOsA7JbZ3717y8/N55plnOHDgAEajsYvJj8/YvLy8nJaWFuLi4npNvAgJCelmcOOLRfKN/57uWCRFUaipqaGhoYHMzMw+b2XD9FpmpwRmZ3nNzEQ+Lm3qMpmWHN337l2SJHVc++jRo8TGxpKSkqJ6MdfV1fUq4dNoNNTX13PbbbcRHR3Nzp07T8p+83Sj0+lYt24dc+fOVSfLzjnnnC6TZXPnzuXDDz8kJycHrVbLmjVrztaCe0LO6KIbSB8pkGuC9IzBYGD27NnMnj0b8D6Xzc3N7Nq1i/z8fDZt2kRVVZXawrjvvvtIT08P+PkNJBapvb1dNXbpbyyS2WympKSEuLi4gD1l+8OMpJGcnxrN5xUtgPfg7fH/zOnjX3mfxyNHjlBbW0tmZqYaexMSEtLFbczf5Ka6uponnniCoqIiWlpaWLJkCTfddNOw6ofOmzevW6LDww8/rP6/JEk89dRTPPXUU4O9tGHFGV10A+0jHT58mMTERDweD2azeVjsDM5EJEkiNjaWyy+/nMsvv5w9e/Zwww03cMMNNxAdHc2nn37KmjVrsFqt5OTkqDviyZMnB9y/9RVYk8lEYmIi0DUWqaKioosBek+xSB6Ph8rKSqxWa79ct/pL/sFWalrsZIwaAULQ4VZ4c1cdq8f2ntDgi84xmUx9TuH5zOBHjhzJ0aNHcTqdzJw5k//8z/+ktLSU++67j6eeeoqkpKFNFw7SP87oojtjxgzKy8s5ePAgY8eOZdOmTd0mXBYsWMCrr77K7Nmzefvtt5kzZ85J73T7Uko89dRTvPjii+h0OuLi4njppZfO6jdETk4On332mbo7u+aaawBv79ZnAv/yyy/zzTffqF69vv5wWlpawDtPnU7XzfbS3wD98OHDan9Yp9PR2tpKUlISGRkZA3pXU9NiR1YEIVrvz6GRJMobrD1eK4Sgpqam39E5iqLw5ptvsm7dOlavXs28efOGfKoMvObjCxcuZNeuXYMZa35WcEYfpEHfDkUOh4MlS5awd+9eoqOj2bRpkxoN0h8Cmbj59NNPOffccwkPD2f9+vXs2LHjrFVK9AchBBaLRTWBLywsVBOP/fvDgQ4A9ITD4aCoqAi3243RaMRms6kJDL7dcE/G36fCzrImVm+vIMKgRSNJtDs8ZIwy8vTCiV2us1qtFBcXExUV1efotj91dXXceuutjB49mrVr1w54KyGQ1zh4o4D+4z/+A5fLxbp164JFt2eCE2mnSiBKCX/27t3LihUr+OKLLwZtjWcSQghqa2spKChQ05qbm5vJyMhQTeCnTZvWZ//W930OHz7cTdvqn8BgNptV28vTFYukCMETH1bwz/JmNX/uyR/nkNiZduzL32tqaupXdI6iKLz++uusX7+exx9/nLlz5w6bqTKAX//61/zgBz/gySef5MknnzypoiuE4IILLuD+++/n8ssvB7y+DC+99JJqWH6Gc3aqFwaTQJQS/mzYsEF9MQXpjiRJqoH6T37yE8C70yoqKqKgoIC3336b+++/HyEEkydPVnfDWVlZqtyrtbWVyspKIiIimDFjRjcZmH8Cg+93dzpjkTSSxMrL0licN5YOl0xyTDjhId4ercViUQ/xAo3OAe+5xK233sq4ceP45z//OaDp0McTyGt87969HD58mPnz5/Pkk0+e9GNJksSzzz7LwoUL+f73v48sy9x///1nS8E9IcGiGyD9UUG8/vrr7N69m507dw70ss4qtFotkyZNYtKkSdx4442qnnXPnj0UFhayZs0aSktLVeOdjo4O1q9fT1paWsA7wdMdiyRJEskx32bdKYpCVVUVra2t5OTk9Diw0hOKovC///u/PPfcc6xZs4ZLL7102E2VKYrC7bffziuvvHJaHm/ixIlcccUVPP7449hsNpYuXUpqaupp+d7DmWDRDZBAlBIA//jHP/jv//5vdu7cOWgBj2crPj3rhRdeyIUXXgjA/v37WbJkCampqYwZM4a7776buro6JkyY0MUE3mQyBVy0DAYDBoNBnVDzFXuz2Ux9fT3l5eUBxSK1tbVRUlLC6NGjycvLC/jxDx8+zK9+9StSUlL47LPPhsyfoq/XeHt7O/v371cnG+vr61mwYAHvvffeSfd1H3zwQXJzcwkJCWH37t2ntP4zhWBPN0ACmbjZu3cvP/3pT9m2bRvp6emn/JjBk+TuNDQ00N7e3mVH5DOB903T7dmzB4fD0c0E/lSiiU4Ui2Q0GmltbcVut5OTk9Ml5flEKIrCK6+8wgsvvMDatWu55JJLhv1UmT8XX3zxSfd0/XnggQcwGo385je/OaXvM8wI9nRPlUAmbu6++26sVisLFy4EYPz48bz33nsn9XiB+EqAd/fxxz/+kXPPPfeUf8Yzgfj4+G6eCRqNhoyMDDIyMli6dCnglZT5TOCfe+451QQ+NzdXLcQTJkwIuNd6vMsYePvDtbW1lJeXqwW9tLS0yyBHb4X+0KFDrFixgoyMDL744ouA2xADSSCv8YFAo9EMGzOkwSC40x2mDOZJ8ncBnwl8YWGhagLv03f7ivD06dOJiYkJaLfpc8yy2+1kZ2cTFubNVfON8voUEx6PR41F8ml0N2/ezMsvv8zatWtPSTd+trBq1SqMRiN33XXXUC/ldBLc6Z5pDOZJ8ncBSZKIiopi7ty5zJ07F/jWoCc/P5/PPvuMp556CrPZTFZWljrEMWXKFMLCuuad+UfnZGVlqUVTkiS1P+xL2fWPRXr22Wf56quvcDgcXHHFFRw6dAi32z1sEpmDDA7BojtMGeyT5O8iGo2G5ORkkpOTWbx4MeBtGRw4cID8/HzeeOMN7r77bjQaDdOmTSMrK4uPPvqIpUuXMnfu3IBGm33+w2+++SYlJSW8+uqrzJgxg3/961/s3r17wFzVziRWrVo11EsYVILthWFKX+0Fs9lMamqq2gusr68nOjr6lE6Sg3THZwL/xz/+kXXr1jF58mRqa2uJj49Xp+lmzJjRa97bwYMH+dWvfsWkSZN49NFHB8wHwkdwVH3YcOKJnhP8F2SIcLvdYsKECaKqqko4nU4xefJksX///l6vv+iii8SuXbsGcYXfHRRFEY8++qhoaGhQv66trRV//etfxcqVK8WcOXPExIkTxY9+9CPxyCOPiK1bt4q6ujqxdu1aMXXqVLFz506hKMqAr9Pj8YiUlBRRWVmpvmYOHDjQ5ZpPPvlE2Gw2IYQQf/7zn8WiRYsGfF3fUXqtq8GiO4x5//33RXp6ukhJSRG///3vhRBC/O53vxNbtmzpdu3pKrpbt24VGRkZIjU1VaxevbrHazZv3iyys7NFTk6OuPrqq0/5Mc8GPB6POHDggHjppZfEzTffLJKSksTChQvVAjcYfPnll+Kyyy5Tv3700UfFo48+2uv1X3/9tTjvvPMGY2nfRXqtq8H2QhCVYIz26UMIMeiqhLfffptt27bx4osvAvDaa69RUFDAunXrerx+xYoVJCQk8Nvf/nYwl/ldIaheCNI3hYWFpKWlqS5sixcvZsuWLV2K7gsvvMAtt9yiGm8HC27PDIUMrKcNVHBUffjx3VEkB+mTnmRqtbW1Xa4pKyujrKyM888/n1mzZn0nDErOFPo7qv7ee+8FR9WHgOBON4hKIDulYIz28CUQU/+9e/dy8803s23btuBdyhAR3OkGUQk0/ujKK6/sFqMdZOjxH+PNzs5m0aJF6hivbxzdf1R96tSpAzbaG+QEnOiUbdDP+4IMKYHI1LZu3SqWLl0qhBCisbFRJCYmiqamplN63L4UEzU1NeLiiy8WU6dOFZMmTRLvv//+KT1ekCCDQFAydjZy6NAhkZycLJqbm4UQQrS0tIjk5GRRXV190t+zL5maoiji9ttvF9nZ2WLixIli48aNp/QzBKItvemmm8Sf//xnIYQQBw4cEElJSaf0mEGCDALBonu28vjjj4ubbrpJCCHEsmXLTqjLHI4Eoi1dtmyZeOyxx9TrZ8+ePahrHEz62vU7HA6xaNEikZqaKmbOnCkOHjw4+IsMEgi91tVgT/cM5/bbbyc/P5+nn36azz//nDvvvHOol9QvAlFMrFq1itdff53ExETmzZvHM888M9jLHBR8dp5bt26lqKiIjRs3UlRU1OWaDRs2EBUVRUVFBbfffjsrV64cotUGOVmCRfcMR6/Xs2bNGm6//XaefvrpM86xSgSgmNi4cSPXXnstR44c4YMPPmDJkiUoijJYSxw0/HXSISEhqk7any1btvCLX/wCgJ/+9Kd8/PHHPT6HQYYvwaJ7FrB161ZGjx7N/v37h3op/SYQxcSGDRtYtGgRALNnz8bhcNDU1DSo6xwMAtn1+1+j0+mIjIykubl5UNcZ5NQIFt0znH379vHRRx+Rn5/PH/7wB44ePTrUS+oX/tpSl8vFpk2busmYxo8fz8cffwxAcXExDoejS9R6f7n++uuJj49n4sSJPf69EIJbb72VtLQ0Jk+ezNdff33Sj9UfAtn1B3JNkOFNsOiewQghWL58OU8//TTjx4/n7rvvPuPc9wPRlq5du5YXXniBKVOmcPXVV/PKK6+cUqG59tprTzhJt3XrVsrLyykvL+f5559n+fLlJ/1Y/SFQnbTvGo/Hg9ls7pJsHGT405fhTZBhjCRJy4BLhBBXdX6tBQqBO4QQwaH6EyBJUjLwdyFEt+2uJEnPATuEEBs7vy4FLhZCDOhthCRJOqAMuASoBXYBPxNCHPC75hZgkhDil5IkLQZ+LIRYNJDrCnJ6CY4Bn8EIIZ4Hnvf7WgamD92KzhrGAof9vj7S+WcDWnSFEB5JklYA2wEt8JIQ4oAkSQ8Du4UQ7wEbgNckSaoAWoDFA7mmIKefYNENEqQ7PfUuBuWWUAjxAfDBcX/2gN//O4CFg7GWIANDsKcbJEh3jgDj/L5OBOqGaC1BzjKCRTdIkO68ByyVvMwCzAPdzw3y3SHYXgjynUOSpI3AxUCsJElHgAcBPYAQ4lm8t/fzgAqgA7huaFYa5GwkqF4IEiRIkEHk/wFs7w2Agt6NdQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "## Fitting a gaussian copula to the data\n", "copula = GaussianMultivariate()\n", "copula.fit(data)\n", "\n", "# Sampling synthetic data\n", "synthetic_data = copula.sample(len(data))\n", "\n", "# Plotting the real and the synthetic data to compare\n", "scatter_3d_2(synthetic_data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "nbpages": { "level": 2, "link": "[3.1.1 Definition ](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.01-Contributed-Example.html#3.1.1-Definition)", "section": "3.1.1 Definition " } }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [3.0 Input Parameter Distributions](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.00-Input-Parameter-Distributions.html) | [Contents](toc.html) | [3.2 Principal Component Analysis](https://ndcbe.github.io/cbe67701-uncertainty-quantification/03.02-Contributed-Example.html)

\"Open

\"Download\"" ] } ], "metadata": { "colab": { "name": "03.01-Contributed-Example.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }